Problema Detto x 0 il numero di minuti di conversazione già effettuati nel mese corrente, determina x 1 tale che: g(x 1 ) = g(x 0) 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Problema Detto x 0 il numero di minuti di conversazione già effettuati nel mese corrente, determina x 1 tale che: g(x 1 ) = g(x 0) 2"

Transcript

1 Problema Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate dall estero, un canone fisso da 0 euro al mese, più 0 centesimi per ogni minuto di conversazione. Indicando con x i minuti di conversazione effettuati in un mese, con f(x) la spesa totale nel mese e con g(x) il costo medio al minuto:. Individua l espressione analitica delle funzioni f(x) e g(x) e rappresentale graficamente; verifica che la funzione g(x) non ha massimi né minimi relativi e dai la tua interpretazione dell andamento delle due funzioni alla luce della situazione concreta che esse rappresentano.. Detto x 0 il numero di minuti di conversazione già effettuati nel mese corrente, determina x tale che: g(x ) = g(x 0) Traccia il grafico della funzione che esprime x in funzione di x 0 e discuti il suo andamento. Che significato ha il suo asintoto verticale? Sul suo sito web l operatore telefonico ha pubblicato una mappa che rappresenta la copertura del segnale telefonico nella zona di tuo interesse: La zona è delimitata dalla curva passante per i punti A, B e C, dagli assi x e y, e dalla retta di equazione x = 6; la porzione etichettata con la Z, rappresenta un area non coperta dal segnale telefonico dell operatore in questione. Prof. Salvatore Scialpi - Pag. /9

2 3. Rappresenta il margine superiore della zona con una funzione polinomiale di secondo grado, verificando che il suo grafico passi per i tre punti A, B e C. Sul sito web dell operatore compare la seguente affermazione: nella zona rappresentata nella mappa risulta coperto dal segnale il 96% del territorio ; verifica se effettivamente è così. L operatore di telefonia modifica il piano tariffario, inserendo un sovrapprezzo di 0 centesimi per ogni minuto di conversazione successivo ai primi 500 minuti. 4. Determina come cambiano, di conseguenza, le caratteristiche delle funzioni f(x) e g(x), riguardo agli asintoti, alla monotonia, continuità e derivabilità, individua eventuali massimi e minimi assoluti della funzione g(x) e della sua derivata e spiegane il significato nella situazione concreta. Prof. Salvatore Scialpi - Pag.. /9

3 ESAME DI STATO a PROVA - L. SCIENTIFICO PROBLEMI ASSEGNATI A.S SOLUZIONE DEL PROBLEMA N. Indicando con x i minuti di conversazione effettuati in un mese (commerciale), la relativa spesa totale è espressa dalla funzione x f( x ) = La variabile x può assumere valori compresi tra un minimo di 0 minuti e un massimo pari ai minuti contenuti in un mese di 30 giorni, cioè Il grafico della f (x) è quello di una retta crescente, nel quale l'intercetta 0 indica il costo fisso iniziale, mentre la pendenza indica il costo al minuto. 0 Il costo medio al minuto è invece dato dal rapporto tra quanto viene speso in un mese e il numero di minuti di conversazione effettuati, cioè dalla funzione ( ) g x nel nostro caso ( ) g x f( x) =, x x 0 + = 0 = x x x E evidente che g( x ) appartiene alla famiglia delle omografiche, ax + b funzioni la cui equazione caratteristica è y = e che cx + d graficamente fanno riferimento all iperbole equilatera di centro e asintoti d a C( ; ) c c d a x = e y =. c c Il grafico di g(x), quindi, è un'iperbole equilatera con l'asse y come asintoto verticale e la retta y = come asintoto orizzontale. 0 Prof. Salvatore Scialpi - Pag. 3/9

4 ESAME DI STATO a PROVA - L. SCIENTIFICO Fig. Per x 0 la funzione g(x), decrescendo, tende al valore /0 senza assumerlo mai. Quindi nell intervallo ] 0; + [ la funzione g(x) non ha estremanti relativi, mentre in ]0; 43.00], il dominio a cui la situazione si riferisce, la funzione g(x) ammette un minimo assoluto (xo = 43.00, con g(xo) = 0, ). Dal grafico in figura Fig. si evince che all aumentare dei consumi diminuisce sensibilmente il costo medio che tende al valore /0.. Se xo rappresenta il numero di minuti di conversazione già effettuati e g(xo) il relativo costo medio per minuto, allora il valore x richiesto, quello tale per cui gx ( 0) gx ( ) = indica il numero di minuti di conversazione che dimezza il costo medio g(xo). Considerando che il grafico della g(x) è decrescente, necessariamente dovrà essere x > x0. Determiniamo x. Dalla relazione gx ( 0) gx ( ) =, segue x + 00 x = 0x 0x 0 Prof. Salvatore Scialpi - Pag. 4/9

5 ESAME DI STATO a PROVA - L. SCIENTIFICO xx + 00x = xx + 00x xx+ 00x 00x = x ( x 00) = 00x x0 x = (00 x0 ) Anche questa è una funzione omografica, pertanto il suo grafico, vedi Fig., è un iperbole equilatera di centro e asintoti d a C( ; ) c c d x = e c = ( ; ) = (00; 00) a y = x= 00 e y = 00 c X X X0 Fig. Si noti bene che sull asse delle ascisse ci sono i valori assunti da x0 mentre sull asse delle ordinate troviamo i minuti di conversazione, x, che dimezzano il costo medio g(xo). Alla luce di questa precisazione, solamente i loro valori positivi hanno un significato reale. Analizzando il grafico si osserva che all aumentare di xo, aumenta rapidamente il numero di minuti di conversazione che dimezzano il costo medio g(xo) e quando x si avvicina a 00 i minuti di conversazione necessari a dimezzare il costo tendono ad un valore infinitamente alto, irraggiungibile. Questo si spiega con il fatto che Prof. Salvatore Scialpi - Pag. 5/9

6 ESAME DI STATO a PROVA - L. SCIENTIFICO quando xo assume valore 00, il costo medio dei minuti di conversazione, ( 00) g, è uguale a = 0,, esattamente il doppio di 5 che è il costo medio su 30 giorni raggiungibile solo 0 asintoticamente. Raggiunti o superati i 00 minuti di conversazione, il costo medio non è quindi più dimezzabile. Dunque il dominio che modellizza la situazione reale è ]0; 00[. D'altra parte più ci avviciniamo ai 00 minuti di conversazione, più il tempo x necessario a dimezzare il costo al minuto tende a diventare infinitamente grande. 3. Cerchiamo una funzione del tipo p( x) = ax + bx + c 7 il cui grafico passa per i punti A(0; ), B(; ) e C(4;4). Risolviamo il sistema ottenuto sostituendo all equazione della funzione le coordinate dei punti noti = c 7 = 4 a+ b+ c 4 = 6a+ 4b+ c la soluzione del sistema è la terna a = 8 b =. c = La funzione che descrive il margine superiore della zona considerata è dunque px ( ) = x + x+ con x [ 0;6 ]. 8 Osserviamo che tale funzione descrive un arco di parabola il cui vertice e rappresentato proprio dal punto C. L area sottesa dalla funzione px ( ) nell intervallo [ 0;6 ] è: 6 Atotale = ( ) 8 x + x + dx 3 = x + x + x 4 0 =. 0 L area della zona Z, quella priva di copertura, è quella di un triangolo rettangolo i cui cateti hanno lunghezza pari a, pertanto 6 Prof. Salvatore Scialpi - Pag. 6/9

7 ESAME DI STATO a PROVA - L. SCIENTIFICO A Z =. Conseguentemente la regione effettivamente coperta dal segnale ha area 4 Acoperta = = Vediamo se l area coperta costituisce il 96% dell area totale: A A coperta totale 4 97,6 = 0,976 = = 97, 6% 00 L area effettivamente coperta dal segnale è superiore a quella dichiarata dal gestore (96%), a tutto vantaggio del consumatore. 4. In questo caso, la funzione che descrive il costo totale diventa x + 0 se 0 x f( x) = x x 500 x = se x > che è una funzione a tratti, continua negli intervalli 0 x < 500 e x > 500 ma lo è anche in x = 500, dove i limiti destro e sinistro coincidono col valore f (500) = 60. Il grafico di f ( x) è costituito dal segmento di retta compresa tra i punti P(0;0) e Q(500;60) e dai punti della semiretta passante per Q e R(0,-40) con x 500. I coefficienti angolari delle due rette sono entrambi positivi pertanto la funzione e strettamente crescente in tutto il suo dominio. E facile constatare che tale funzione raddoppia la pendenza dopo i primi 500 minuti, perché da quel momento in poi raddoppia il costo al minuto. Poiché i due rami di cui si compone la f ( x ) appartengono a rette aventi coefficienti angolari differenti, f '( x ) = per x->500 dalla sinistra, 0 f '( x ) = per x->500 dalla destra, f ( x ) è derivabile ovunque 5 tranne che in x=500 dove `e presente un punto angoloso. Prof. Salvatore Scialpi - Pag. 7/9

8 ESAME DI STATO a PROVA - L. SCIENTIFICO Fig. 4 Il costo medio al minuto, aggiornato alla nuova tariffa, diventa: x + 00 se 0< x 500 0x g ( x) = x 00 se x > 500 5x Questa funzione è continua in ogni punto del dominio, anche in 3 x = 500 dove g ( 500) = = 0,. Il suo grafico è rappresentato 5 da due rami di iperbole. Fig. 5 Prof. Salvatore Scialpi - Pag. 8/9

9 ESAME DI STATO a PROVA - L. SCIENTIFICO Rispetto alla situazione precedente, g presenta ora un nuovo asintoto orizzontale destro di equazione y = ; ha un minimo 5 assoluto in x = 500 ove g ( 500) = 0,, ma non ha massimo assoluto né relativo; decresce per i primi 500 minuti, ma poi inverte la tendenza e cresce per avvicinarsi al nuovo costo unitario di 0 centesimi al minuto. Per quanto riguarda la derivata prima di g, osserviamo che in x = 500 g possiede un punto angoloso, pertanto la funzione non è ivi derivabile. Dunque in x = 500, la funzione g ' ha una singolarità con salto. Inoltre tra 0 e 500, la concavità di g è rivolta verso l alto, quindi g è positiva e di conseguenza g ' è crescente per x ] 0; 500[. Per ragionamenti analoghi, possiamo concludere che g ' è decrescente per x > 500. Prof. Salvatore Scialpi - Pag. 9/9

M557- Esame di Stato di Istruzione Secondaria Superiore

M557- Esame di Stato di Istruzione Secondaria Superiore Problema Ministero dell Istruzione, dell Università e della Ricerca M557- Esame di Stato di Istruzione Secondaria Superiore Indirizzi: LI, EA SCIENTIFICO LI3, EA9 SCIENTIFICO Opzione Scienze Applicate

Dettagli

Detto x 0 il numero di minuti di conversazione già effettuati nel mese corrente, determina x 1 tale che: g ( x 1. )= x 0

Detto x 0 il numero di minuti di conversazione già effettuati nel mese corrente, determina x 1 tale che: g ( x 1. )= x 0 Piano tariffario: un canone fisso di euro al mese piú centesimi per ogni minuto di conversazione. Indicando con x i minuti di conversazione effettuati in un mese, con f(x) la spesa totale nel mese e con

Dettagli

Tema di matematica. Problema 1. Esame di Stato 2015

Tema di matematica. Problema 1. Esame di Stato 2015 Problema Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto di conversazione Indicando con i minuti

Dettagli

LICEO SCIENTIFICO PROBLEMA 1

LICEO SCIENTIFICO PROBLEMA 1 www.matefilia.it LICEO SCIENTIFICO 2015 - PROBLEMA 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2014/2015

Soluzioni dei problemi della maturità scientifica A.S. 2014/2015 Soluzioni dei problemi della maturità scientifica A.S. 2014/2015 Sun-Ra Mosconi Andrea Scapellato 18 giugno 2015 Problema 1 1. Esprimiamo i costi in decimi di euro. Il canone fisso mensile ammonta a 100

Dettagli

Il sistema di riferimento cartesiano

Il sistema di riferimento cartesiano 1 Il sistema di riferimento cartesiano Un sistema di riferimento cartesiano si compone di due semirette orientate, tra loro perpendicolari, dette assi cartesiani. L asse delle ascisse (o delle x), è quello

Dettagli

Svolgimento 1 Scriviamo la funzione f(x) che rappresenta la spesa totale in un mese: Figura 2 Il grafico di f(x).

Svolgimento 1 Scriviamo la funzione f(x) che rappresenta la spesa totale in un mese: Figura 2 Il grafico di f(x). Problema 1 Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto di conversazione. Indicando con

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

ESAME DI STATO. SECONDA PROVA SCRITTA. Sessione ordinaria Matematica Soluzione dei due problemi.

ESAME DI STATO. SECONDA PROVA SCRITTA. Sessione ordinaria Matematica Soluzione dei due problemi. ESAME DI STATO. SECONDA PROVA SCRITTA. Sessione ordinaria 15. Matematica Soluzione dei due problemi. 1 Testo e soluzioni sono reperibili in molti siti, tra i quali http://www.matematica.it/tomasi/matls/15/m557.pdf

Dettagli

f(x) := 1 10 x g(x) := f(x) x = 1 x + 100

f(x) := 1 10 x g(x) := f(x) x = 1 x + 100 PROBLEMA. Dal momento che la spesa totale mensile data dalla somma del canone mensile e della spesa dovuta alle telefonate al minuto, indicando con x i minuti di conversazione ed f : R + R + la funzione

Dettagli

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13

Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13 Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in

Dettagli

Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 15/01/2019. Verifica scritta di Matematica Classe V

Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 15/01/2019. Verifica scritta di Matematica Classe V Liceo Scientifico Paritario R. Bruni Padova, loc. Ponte di Brenta, 15/01/2019 Verifica scritta di Matematica Classe V Soluzione Risolvi 4 degli 8 quesiti proposti. Ogni quesito vale 25 p.ti. 1. Un corpo

Dettagli

SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016

SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016 SOLUZIONE DEL PROBLEMA 2 TEMA DI MATEMATICA ESAME DI STATO 2016 1. Per prima cosa determiniamo l espressione analitica della funzione f per x 8. x 8 = y y = 2x 16 2 4 Del grafico di f (x) possiamo dire

Dettagli

, per cui le due curve f( x)

, per cui le due curve f( x) DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Pagina di 9 eas matematica http://spazioinwind.libero.it/adolscim DAL GRAFICO DI F(X) AL GRAFICO DI G(X) Dal grafico della funzione f( x ) al grafico della funzione

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

Si tratta di una funzione definita a tratti, il cui intervallo di definizione è suddiviso in 4 intervalli, AO-OB-BC- CD.

Si tratta di una funzione definita a tratti, il cui intervallo di definizione è suddiviso in 4 intervalli, AO-OB-BC- CD. PROBLEMA 1 Sia una funzione continua sull intervallo chiuso [-4, 6]. Il suo grafico, riportato in figura, passa per i punti A(-4;0), O(0,0),B(2;2), C(4;2), D(6;0) e consiste della semicirconferenza di

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

francesca fattori speranza bozza gennaio 2018

francesca fattori speranza bozza gennaio 2018 DERIVATE APPLICATE ALLO STUDIO DI FUNZIONE. OM Le derivate servono a trovare eventuali massimi e minimi delle funzioni. Ho pensato questo modulo in questo modo: concetto di derivata; calcolo di una derivata

Dettagli

Problemi Problema 1) Indichiamo con x > 0 il numero di minuti di conversazione effettuati in un mese. 1) Le espressioni cercate per f(x) e g(x) sono

Problemi Problema 1) Indichiamo con x > 0 il numero di minuti di conversazione effettuati in un mese. 1) Le espressioni cercate per f(x) e g(x) sono Problemi Problema 1) Indichiamo con > 0 il numero di minuti di conversazione effettuati in un mese. 1) Le espressioni cercate per f() e g() sono f() = +, f() g() = = + 1. Poiché g () = < 0, otteniamo che

Dettagli

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 2. Figura 1

SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA PROBLEMA 2. Figura 1 www.matefilia.it SCIENTIFICO COMUNICAZIONE OPZIONE SPORTIVA 216 - PROBLEMA 2 Nella figura 1 è rappresentato il grafico Γ della funzione continua f: [, + ) R, derivabile in ], + ), e sono indicate le coordinate

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1

GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1 GEOMETRIA ANALITICA : FORMULARIO + x 1 Punto medio d'un segmento, y + y 1 Distanza tra due punti ( - x 1 ) + (y - y 1 ) Condizione di appartenenza di un punto P (x p ;y p ) ad una curva di equazione f(x,y)

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Soluzione Problema 1

Soluzione Problema 1 Soluzione Problema 1 1. Ricordiamo che una funzione h(x) è derivabile in un punto c se esiste finita la sua derivata nel punto c. Per il significato geometrico della derivata ciò significa che esiste ed

Dettagli

SOLUZIONI Data la funzione. = x. a) scrivi qual è il dominio di f

SOLUZIONI Data la funzione. = x. a) scrivi qual è il dominio di f . Data la funzione a) scrivi qual è il dominio di f SOLUZIONI f ) ( b) scrivi quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

Scuole italiane all estero (Americhe boreale suppletiva) 2010 Quesiti QUESITO 1

Scuole italiane all estero (Americhe boreale suppletiva) 2010 Quesiti QUESITO 1 www.matefilia.it Scuole italiane all estero (Americhe boreale suppletiva) 2010 Quesiti QUESITO 1 Fra tutti i coni inscritti in una sfera si trovi quello di volume massimo. Indichiamo con y l altezza del

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

Soluzioni della prova di Matematica Maturità 2015

Soluzioni della prova di Matematica Maturità 2015 Soluzioni della prova di Matematica Maturità 015 Lara Charawi 1, Alberto Cogliati e Luca Magri 1 Dipartimento di Matematica, Università degli Studi di Pavia Dipartimento di Matematica, Università degli

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Ricerca di massimi e minimi col metodo della derivata prima

Ricerca di massimi e minimi col metodo della derivata prima Massimi e minimi con la derivata prima pag. 1 di 6 Ricerca di massimi e minimi col metodo della derivata prima Ricordiamo che il significato geometrico della derivata prima è quello di coefficiente angolare

Dettagli

c. Verifica, relativamente al modello scelto, che ammette un minimo relativo.

c. Verifica, relativamente al modello scelto, che ammette un minimo relativo. N.3 Le curve di costo. Un azienda che fabbrica accessori di arredamento, produce in un giorno un certo numero x di vasi di vetro e, per il costo totale, stima una spesa fissa di 80 al giorno e una spesa

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

La curva di Hubbert. C) solo f(x) può essere associata a Si mostri che è simmetrica rispetto alla retta x= ln(4)

La curva di Hubbert. C) solo f(x) può essere associata a Si mostri che è simmetrica rispetto alla retta x= ln(4) La curva di Hubbert La curva di Hubbert La curva in figura rappresenta la produzione annua ( in Gigabarili per anno ) di una certa risorsa non rinnovabile, in funzione del tempo x espresso in anni (Curva

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

LICEO SCIENTIFICO PROBLEMA 2

LICEO SCIENTIFICO PROBLEMA 2 www.matefilia.it LICEO SCIENTIFICO 2018 - PROBLEMA 2 Consideriamo f k (x): R R così definita: f k (x) = x + kx + 9, con k Z 1) Detto Γ k il grafico della funzione, verifica che per qualsiasi valore del

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

SOLUZIONI. = x x x

SOLUZIONI. = x x x . Data la funzione a) scrivi qual è il dominio di f SOLUZIONI f ( b) scrivi quali sono gli intervalli in cui f( risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013 Istituto Superiore XXV aprile Pontedera - Prof Francesco Daddi Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 7/0/03 Esercizio Si consideri la funzione e x+ se x < f(x) = 0 se x = x x x se

Dettagli

Esercizi riepilogativi sulle coniche verso l esame di stato

Esercizi riepilogativi sulle coniche verso l esame di stato Esercizi riepilogativi sulle coniche verso l esame di stato n. 9 pag. 55 Sono date le curve α e β definite dalle seguenti relazioni: α : xy x y + 4 = 0 β : luogo dei punti P (k + ; 1 + k ), k R a) Dopo

Dettagli

APPUNTI DI MATEMATICA: I limiti e la continuità Le derivate. Prof. ssa Prenol R.

APPUNTI DI MATEMATICA: I limiti e la continuità Le derivate. Prof. ssa Prenol R. APPUNTI DI MATEMATICA: I iti e la continuità Le derivate Prof. ssa Prenol R. INTERVALLI e INTORNI Definizione di intervallo: è un sottoinsieme di numeri reali e può essere - ilitato: graficamente viene

Dettagli

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA

UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - 6.Funzioni con derivate - CTF Matematica Codice Compito: - Numero d Ordine D. Un polinomio di grado e tangente all asse x ed ha un flesso orizzontale nel punto

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prima Prova Parziale (9//009) Università di Verona - Laurea in Biotecnologie - A.A. 009/0 Tema A Matematica e Statistica Prima Prova Parziale di MATEMATICA (9//009) Università di

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y

Equazione cartesiana della parabola con asse di simmetria parallelo all'asse delle ordinate Siano F(x F; y LEZIONI PARABOLA Definizione Si definisce parabola il luogo geometrico dei punti del piano equidistanti da un punto fisso,, detto fuoco, e da una retta fissa, d, detta direttrice. La definizione data mette

Dettagli

Problema 1. Maturità Scientifica 2015 Sessione Ordinaria

Problema 1. Maturità Scientifica 2015 Sessione Ordinaria Maturità Scientifica 05 Problema Sessione ordinaria Problema Pagina di 5 Maturità Scientifica 05 Problema Sessione ordinaria L operatore di telefonia modifica il piano tariffario, inserendo un sovrapprezzo

Dettagli

Esame di Stato 2015 - Tema di Matematica

Esame di Stato 2015 - Tema di Matematica Esame di Stato 5 - Tema di Matematica PROBLEMA Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per ogni minuto

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza Soluzione Dimostriamo che f(x) è una funzione dispari Osserviamo che in quanto in quanto x è una funzione dispari è una funzione dispari in quanto prodotto di una funzione dispari per una pari Pertanto

Dettagli

CLEAI, matematica generale, primo semestre Soluzioni degli esercizi della prova scritta dell 8 settembre 2004

CLEAI, matematica generale, primo semestre Soluzioni degli esercizi della prova scritta dell 8 settembre 2004 CLEAI, matematica generale, primo semestre 2003-2004 Soluzioni degli esercizi della prova scritta dell 8 settembre 2004 Studio di funzione Disegnare il grafico della seguente funzione (la derivata seconda

Dettagli

ORDINAMENTO 2006 SESSIONE SUPPLETIVA - PROBLEMA 2

ORDINAMENTO 2006 SESSIONE SUPPLETIVA - PROBLEMA 2 www.matefilia.it ORDINAMENTO 2006 SESSIONE SUPPLETIVA - PROBLEMA 2 Nel piano, riferito ad un sistema monometrico di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: x + k y, dove

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osserviamo anzitutto che la funzione g(x) = (ax b)e,-,. è continua e derivabile in R in quanto composizione di funzioni continue e derivabili. Per discutere la presenza di

Dettagli

Lezione 2. La cassetta degli arnesi

Lezione 2. La cassetta degli arnesi Lezione 2 La cassetta degli arnesi La funzione Funzione Per funzione si intende una legge che associa ad ogni valore assunto da una variabile (x) un solo valore della variabile (y). La variabile x è detta

Dettagli

Quali sono i valori di f (3) e f (5)? Motiva la tua risposta. 2. Rappresenta, indicativamente, i grafici delle seguenti funzioni:

Quali sono i valori di f (3) e f (5)? Motiva la tua risposta. 2. Rappresenta, indicativamente, i grafici delle seguenti funzioni: Problema 2 Nella figura 1 è rappresentato il grafico Γ della funzione continua f: [,+ ) R, derivabile in ],+ ), e sono indicate le coordinate di alcuni suoi punti. Figura 1 È noto che Γ è tangente all

Dettagli

SIMULAZIONE TERZA PROVA DOMANDE CHIUSE CAMPO DI ESISTENZA. 4 è: x 6x. = è:

SIMULAZIONE TERZA PROVA DOMANDE CHIUSE CAMPO DI ESISTENZA. 4 è: x 6x. = è: SIMULAZIONE TERZA PROVA DOMANDE CHIUSE CAMPO DI ESISTENZA Il campo di esistenza della funzione f() = 4 + a) ± b) c) d) > - + Il campo di esistenza della funzione f() = + a) b) -, - c) - < - d) > - Campo

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Corso di laurea in Matematica, a.a. 2005-2006 27 aprile 2006 1. Disegnare approssimativamente nel piano (x, y) l insieme x 4 6xy 2

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO ANNO SCOLASTICO 2012-13 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSO DI ORDINAMENTO Risoluzione Problema 1 a) Poiché per ogni valore di a l espressione analitica

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

MATEMATICA - Esempio di prova per il Liceo Scientifico - MIUR

MATEMATICA - Esempio di prova per il Liceo Scientifico - MIUR QUESTIONARIO - Quesito 1 (soluzione di L. Tomasi) Una possibile funzione con un grafico simile a quello dato è la seguente: f x 3,se x 0 '( x) 1,se x 0 x Questa funzione ha un asintoto verticale che coincide

Dettagli

PENDENZA (ripasso classe II)

PENDENZA (ripasso classe II) PENDENZA (ripasso classe II) Vediamo di definire quantitativamente il concetto di pendenza. Già ritroviamo la pendenza indicata in percentuale nei cartelli di pericolo nelle strade di montagna. La definizione

Dettagli

L iperbole. x 2 = 1. a 2 b 2. Si noti che tale equazione è stata ottenuta rispetto ad un riferimento privilegiato, detto RIFERIMENTO CANONICO.

L iperbole. x 2 = 1. a 2 b 2. Si noti che tale equazione è stata ottenuta rispetto ad un riferimento privilegiato, detto RIFERIMENTO CANONICO. L iperbole Fisso nel piano due punti distinti, F ed F FUOCHI F ed F l insieme: Si dice IPERBOLE di {P R : dist(p ; F ) dist(p ; F ) = a} Se dist(f ; F ) = c, fisso un sistema di assi cartesiano tale che

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016

PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

Risoluzione dei problemi

Risoluzione dei problemi Risoluzione dei problemi Il dominio della generica funzione è:! a a) Scriviamo l espressione della funzione in forma di equazione raccogliendo separatamente i termini contenenti il parametro a e quelli

Dettagli

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016

ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE. Leonardo da Vinci. Martina Franca ANNO SCOLASTICO 2015/2016 ISTITUTO ISTRUZIONE SECONDARIA SUPERIORE Leonardo da Vinci Martina Franca ANNO SCOLASTICO 2015/2016 Disciplina: MATEMATICA APPLICATA Classe : 3 ^ A A.F.M. Docente : Prof. GIANGASPERO Francesco Testo :

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2017 SOLUZIONE DEL PROBLEMA TEMA DI MATEMATICA ESAME DI STATO 7. Studiamo la funzione f() per verificare che il suo grafico sia compatibile con il profilo della pedana. Dominio della funzione. R Eventuali simmetrie

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico, Scientifico opzione scienze applicate e Scientifico ad indirizzo sportivo Tema di matematica Il candidato risolva uno dei due problemi

Dettagli

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Studio del segno delle derivate. Lezione 11 del 6/12/2018

Studio del segno delle derivate. Lezione 11 del 6/12/2018 Studio del segno delle derivate Lezione 11 del 6/12/2018 Segno della derivata prima Data una funzione f(x) derivabile in un intervallo I, allora se f x > 0 x I allora la funzione f(x) è strettamente crescente

Dettagli

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le

Dettagli

Derivate di funzioni 1 / 40

Derivate di funzioni 1 / 40 Derivate di funzioni 1 / 40 Variazione assoluta Sia data una funzione f (x) e due suoi valori in corrispondenza dei punti x 0 e x 0 + h, con h > 0. Supponiamo di voler determinare di quanto varia il valore

Dettagli

LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Appunti ed esercizi su: derivate, grafici e studio di funzione 6 dicembre 2010 1 Per altri materiali didattici o per informazioni: Blog personale:

Dettagli

f (1) 9 k 1 0 k 1; da cui:

f (1) 9 k 1 0 k 1; da cui: Esame di Stato 6 Problema La prima domanda sembra richiedere una soluzione di tipo qualitativo per cui, considerando che il grafico proposto, oltre alle richieste esplicitamente formulate, è simmetrico

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

maturità 2016

maturità 2016 www.matematicamente.it maturità 6 Esame di stato di istruzione secondaria superiore Indirizzi: Scientiico e Scientiico opzione scienze applicate Tema di matematica Il candidato risolva uno dei due problemi

Dettagli

SOLUZIONE ( ) ( ) ( ) ( )

SOLUZIONE ( ) ( ) ( ) ( ) PROBLEMA 1 La funzione è definita e derivabile sull intervallo chiuso [-7, 5] ed è ( ). Il grafico di ( ), la derivata di, consiste di tre segmenti e una semicirconferenza di raggio 2 e centro in O, come

Dettagli

Teoremi fondamentali dell'analisi Matematica versione 1

Teoremi fondamentali dell'analisi Matematica versione 1 Teoremi fondamentali dell'analisi Matematica versione 1 Roberto Boggiani 7 novembre 2012 1 Richiami di geometria analitica Dalla geometria analitica sulla retta sappiamo che dati due punti del piano A(x

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

di 4, che è l area dell intera mattonella, imponiamo che 5 e quindi a = 7 5

di 4, che è l area dell intera mattonella, imponiamo che 5 e quindi a = 7 5 Problemi Problema 1) 1) Siccome la funzione f(x) è una retta, l espressione cercata è f(x) = 1 x che soddisfa le condizioni a), b) e c) richieste. Per riflessione rispetto all asse y, all asse x e all

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2011/2012

Soluzioni dei problemi della maturità scientifica A.S. 2011/2012 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sunra J.N. Mosconi giugno Problema. Per determinare il periodo di g occorre determinare il più piccolo T > per cui valga, per ogni

Dettagli

di f '( x ) ; stabilisci infine se la funzione f '( )

di f '( x ) ; stabilisci infine se la funzione f '( ) Problema 1 La funzione f ( x ) rappresentata in figura 1 è continua e derivabile in R. Il suo grafico è tangente all asse x nell origine e alla retta t nel punto A. A. Traccia il grafico della funzione

Dettagli

Problemi sull iperbole

Problemi sull iperbole 1 ricerca dell equazione dell iperbole Scrivere l equazione, riferita agli assi, dell iperbole che ha l asse delle ascisse come asse traverso, le rette xx yy = 0, xx + yy = 0 come asintoti e passa per

Dettagli

Formulario di Geometria Analitica a.a

Formulario di Geometria Analitica a.a Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000

Corso di laurea in Scienze Biologiche Compito di Istituzioni di Matematiche assegnato il 12 giugno 2000 assegnato il 1 giugno 1 Risolvere il sistema di disequazioni ( ) 1 x 1 3 9 3 log (13 x) > 3 x 9 x 4 + 1 < Scrivere le equazioni delle circonferenze che passano per il punto A = (, ) e sono tangenti alle

Dettagli

Rette 1. Matematica con Elementi di Statistica

Rette 1. Matematica con Elementi di Statistica Rette 1 nel piano cartesiano ogni equazione di primo grado a +b +c = 0 con a e b non contemporaneamente nulli, rappresenta una retta e viceversa ogni retta può essere descritta con un equazione di questo

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli