Esame scritto di fisica moderna

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame scritto di fisica moderna"

Transcript

1 Esame scritto di fisica moderna Traccia di soluzione 4 luglio 01 Esercizio 1. hamiltoniana data è quella di una buca di potenziale infinita, le cui autofunzioni sono date da due famiglie, dispari ψ n x = ψ n x e pari ψ n+1 x = ψ n+1 x nπ ψ n x = Asin x, n = 1,,... 1 n+1π ψ n+1 x = Bcos x, n = 0,1,,... associate ai valori di energia E n = kn m = 4n π, n = 1,,... 3 m E n+1 = kn+1 m = n+1 π, n = 0,1,,... 4 m Ricaviamo i coefficienti A e B usando la condizione di normalizzazione e ponendo la fase arbitraria eguale a uno: 1 = ˆ ψ n x = A ˆ nπ sin ˆ x = B ψ n x = ψ n+1 x = n+1π cos x = A = B = 5 nπ sin x, n = 1,,... n+1π cos x, n = 0,1,,... 7 Il valore medio dell impulso e della posizione nell n-esimo autostato dell Hamiltoniana sono in quanto sono dati dall integrale di una funzione pari su dominio dispari. e indeterminazione dell impulso si ottiene notando che p = x = 0 8 p = me n = n π, 9 1

2 da cui nπ p = p p =. 10 indeterminazione in posizione si ottiene da ψ n x x ψ n x = x sin nπ x = x = 1 1 4n π, n = 1,... ψ n+1 x x ψ n+1 x = x cos n+1π x = 1, n = 0,1,.. 1 n+1 π 11 quindi x = x x = 1, n = 1,, n π Esercizio. Iniziamo scrivendo, in notazione di Dirac, lo stato come ψt = e i E 1t ψ 1 + e i E t e iα ψ, 13 dove E 1 = π /m e E = π /m. Esso dipende dal solo parametro α perchè una sovrappossizione di due stati in generale dipende da quattro parametri. Di questi uno è una fase globale inosservabile, un altro è fissato per normalizzazione, ed un terzo è fissato dalla condizione che i due possibili risultati dati siano equiprobabili. Nella base delle coordinate πx ψx,t = x ψt = 1 e i E 1t cos πx + 1 e i Et e iα sin Utilizzando questo risultato calcoliamo la matrice densità del sistema:. 14 x ρ y = x ψt ψt y 15 { 1 = e i πx E1t cos + 1 } e i πx Et e iα sin 1 { 1 e i πy E1t cos + 1 } e i πy Et e iα sin 17 = 1 [ πx πy πx πy cos cos +sin sin + 18 e i[e E 1 t α] πx πy cos sin +e i[e E 1 t α] πy ] πx cos sin. 19 Supponiamo che sia stata eseguita una misura di energia sullo stato ψx, t, ottenendo come risultato E 1. o stato dopo tale misura è ψ ψ1 x,t = 1 e i E 1t cos πx, 0 associato alla matrice densità x ρ ψ1 y = 1 πx cos cos πy, 1

3 x ρ ψ1 x = 1 πx cos. Se invece si è ottenuto come risultato E lo stato è ψ ψ = 1 e i πx Et e iα sin, 3 associato alla matrice densità x ρ ψ y = 1 πx sin sin x ρ ψ x = 1 sin πx πy, 4. 5 Esercizio 3. Fissiamo t = 0, e calcoliamo il valore medio dell impulso p, sapendo che ψx,t = 0 = 1 πx [cos πx +e iα sin ]. Si ha p = i = i 4 3 ˆ ˆ [ cos e iα πx +e iα sin [ e iα cos πx cos 3π e iα4 3π ][ πx πx e iα sin π sin πx +e iαπ πx cos ] πx πx sin ] e iα e iα = 8 sinα. 7 3 Pertanto se imponiamo la condizione p = 4 3 troviamo sinα = 1, ossia α = π Esercizio 4. o stato al generico tempo t è ψx,t = 1 [e i πx ] E1t cos +e i πx Et e iπ sin. 8 Il valore medio dell impulso in funzione di t è quindi p = i = i 4 3 [ e i πx ][ E1t cos +e i πx Et e iπ sin ˆ [ e i[e 1 E t +π ] πx πx cos cos [e i[e 1 E t +π ] e i[e 1 E t +π ] ] ˆ = 8 3 sin E 1 E t + π. 3 e i E 1t π πx sin +e i Et e iπ e i[e 1 E t +π ] πx sin sin πx π πx cos ] ] 9

4 Questa quantità è nulla se e solo se l argomento del seno è uguale a nπ: quindi E 1 E t + π = nπ 30 π m π t m = nπ π 31 3 π m t = nπ π, 3 t 0 = m 1+n π Esercizio 5. equazione di Schrödinger per le autofunzioni dispari di energia è Ĥ ψ n x = E n ψ n x 34 x ˆp m +Vx ψ nx = E n x ψ n x 35 m ψ nx g ˆ / δxψ n x = E n ψ n x. 3 m / Ma l integrale con δx si annulla dato che la funzione è dispari ψ0 = ψ0 = 0, quindi ritroviamo la stessa equazione di Schrödinger che per il potenziale V 0. Ne segue che le autofunzioni dispari del primo sistema sono anche autofunzioni di questo nuovo sistema. Esercizio. Supponendo di avere uno stato ad energia negativa E < 0, partiamo dall equazione di Schrödinger nella regione / x / m ψ x = E + g m δx ψx. 37 a soluzione generale è del tipo e può quindi riscritta come ψx = c 1 e κx +c e κx, dove κ = me > 0, 38 ψx = Csinhκx+δ. 39 Imponendo che la funzione d onda si annulli ai bordi della buca otteniamo { Asinhκx+/ se / < x < 0 ψx = Bsinhκx / se 0 < x < /. Dalla continuità della funzione d onda nell origine otteniamo così 40 A = B. 41 e costanti possono essere fissate per normalizzazione non richiesta. Si ha κ A = sinhκ κ. 4 4

5 a condizione su g può essere ottenuta imponendo la discontinuità della derivata prima della funzione d onda nell origine: ˆ ǫ ψ x = ψ 0 + ψ 0 = g ψ0, 43 m ǫ m m da cui Questa equazione ha una soluzione unica se g > 4/. κ g = tanh κ. 44 5

ESAME SCRITTO DI FISICA MODERNA. 17 Luglio Traccia di soluzione., e α una fase globale inosservabile. Per il secondo sistema

ESAME SCRITTO DI FISICA MODERNA. 17 Luglio Traccia di soluzione., e α una fase globale inosservabile. Per il secondo sistema ESAME SCRITTO DI FISICA MODERNA 7 Luglio 04 Traccia di soluzione ) Per il primo sistema la funzione d onda è x φ = x k = φ(x) = Ce iα e ik x () dove con k si è indicato l-autostato dell impulso, C è una

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 007-008 () Sia dato un sistema che può trovarsi in tre stati esclusivi,, 3, e si supponga che esso si trovi nello stato

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 015-016 (1) Si consideri una particella che può colpire uno schermo diviso in tre zone, indicate dai ket 1,, 3, e si supponga

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2011-2012 Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si trovi

Dettagli

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale

FISICA QUANTISTICA I PROVA SCRITTA DEL 20/9/ Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale FISICA QUANTISTICA I PROVA SCRITTA DEL 0/9/013 1. Si consideri il moto quantistico unidimensionale di una particella soggetta al potenziale V (x) = V 0 θ(x) αδ(x), V 0, α > 0, (1) con la funzione a gradino

Dettagli

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione ESAME SCRITTO DI FISICA MODERNA giugno 08 Traccia di soluzione ) Ponendo α = /σ ), il valore medio della posizione è + ψ ˆx ψ = dx ψ ˆx x x ψ = dx ψ x)xψx) = α + dx x e αx x 0), ) e con un semplice cambio

Dettagli

Equazioni differenziali - Applicazioni

Equazioni differenziali - Applicazioni Equazioni differenziali - Applicazioni Antonino Polimeno Università degli Studi di Padova Equazione di Schrödinger 1D - 1 Equazione di Schrödinger i ψ(x, t) = Ĥ ψ(x, t) t al tempo t = 0 la funzione è definita

Dettagli

PRIMA PARTE anno accademico

PRIMA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA PRIMA PARTE anno accademico 017-018 (1) Si consideri una particella che può colpire uno schermo in cui sono praticate tre fenditure, indicate dai ket

Dettagli

FISICA MODERNA anno accademico Traccia delle soluzioni

FISICA MODERNA anno accademico Traccia delle soluzioni PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 011-01 Traccia delle soluzioni Esercizio 1 La probabilità che il sistema non si trovi nello stato 1 è pari alla probabilità

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. FISICA MODERNA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA FISICA MODERNA anno accademico 2013-2014 (1) Si consideri un sistema che può trovarsi in uno di tre stati esclusivi 1, 2, 3, e si supponga che esso si

Dettagli

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Esame Scritto di Meccanica Quantistica Traccia di soluzione

Esame Scritto di Meccanica Quantistica Traccia di soluzione Esame Scritto di Meccanica Quantistica Traccia di soluzione 7 Giugno 7. Per esprimere la hamiltoniana data H = P 4m + p m + mω X + x ) in termini di x e x si esegue il cambiamento di coordinate ) X = x

Dettagli

Esercizi di Fisica Matematica 3, anno

Esercizi di Fisica Matematica 3, anno Esercizi di Fisica Matematica 3, anno 01-013 Dario Bambusi, Andrea Carati 5.06.013 Abstract Tra i seguenti esercizi verranno scelti gli esercizi dell esame di Fisica Matematica 3. 1 Meccanica Hamiltoniana

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 6 GIUGNO 7 Si risolvano cortesemente i seguenti problemi PRIMO PROBLEMA (PUNTEGGIO: 3/3) Facendo uso delle proprietà della matrici di Pauli, si calcoli

Dettagli

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico

Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Applicazioni alla meccanica quantistica Oscillatore armonico quantistico Considero l equazione di Schrödinger per gli autovalori Ĥψ = Eψ e prendo un s.o.n.c. di funzioni u j (x). ψ si potrà esprimere come

Dettagli

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2 1 Teoria Una particella di massa m = 1 g e carica elettrica q = 1 c viene accelerata per un tratto pari a l = m da una differenza di potenziale pari av = 0 volt Determinare la lunghezza d onda di De Broglie

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico Tema d esame di Elementi di MQ. Prova I Dato il potenziale monodimensionale V (x) = 2 γδ(x), con γ positivo, trovare l energia dello stato fondamentale la probabilità che una particella nello stato fondamentale

Dettagli

I esonero di Meccanica Quantistica 22/2/2006 A.A Proff. G. Martinelli, A. Pugliese

I esonero di Meccanica Quantistica 22/2/2006 A.A Proff. G. Martinelli, A. Pugliese I esonero di Meccanica Quantistica //006 A.A. 005 006 Proff. G. Martinelli, A. Pugliese Esercizio n. Una particella di spin / e massa m è vincolata a muoversi su una sfera di raggio R. Al tempo t =0 lo

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2014-2015 (1) Per un sistema meccanico n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione

Dettagli

Ist. di Fisica Matematica mod. A Quarta esercitazione

Ist. di Fisica Matematica mod. A Quarta esercitazione Ist. di Fisica Matematica mod. A Quarta esercitazione Francesca Arici (farici@sissa.it Domenico Monaco (dmonaco@sissa.it 3 Novemre La numerazione seguita per gli Esercizi è quella delle note del corso.

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP

Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Metodo di separazione di variabili e applicazione delle serie di Fourier alle soluzioni di alcune EDP Docente:Alessandra Cutrì Equazione delle onde unidimensionale non omogenea u tt (x, t = a 2 u xx (x,

Dettagli

Prova scritta finale 9 giugno 2005

Prova scritta finale 9 giugno 2005 Prova scritta finale 9 giugno 5 Istituzioni di Fisica della Materia Prof. orenzo Marrucci anno accademico 4-5 Tempo a disposizione: 3 ore Uso degli appunti o di libri: NON AMMESSO uso della calcolatrice:

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2012-2013 (1) Per un sistema n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione x

Dettagli

Note sulla Buca/Barriera di Potenziale Introduzione alla Meccanica Quantistica A.A Prof. G. Martinelli

Note sulla Buca/Barriera di Potenziale Introduzione alla Meccanica Quantistica A.A Prof. G. Martinelli Note sulla Buca/Barriera di Potenziale Introduzione alla Meccanica Quantistica A.A. 2004 2005 Prof. G. Martinelli Soluzione dell Equazione di Schrödinger Sia data una particella di massa m che si muove

Dettagli

Metalli come gas di elettroni liberi

Metalli come gas di elettroni liberi Metalli come gas di elettroni liberi I metalli sono caratterizzati da elevata conducibilità elettrica e termica. La conducibilità elettrica in particolare (o il suo inverso, la resistività) è una delle

Dettagli

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio

1D, rappresentazione delle coordinate. Funzione normalizzata. Densità di probabilità. Osservabile F(X) Valore medio Stato quantistico Funzione d onda 1D, rappresentazione delle coordinate + ( x) dx 1 Densità di probabilità Funzione normalizzata Osservabile F(X) Valore medio Osservabili Operatori lineari hermitiani sullo

Dettagli

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a

ESERCIZI DI MECCANICA QUANTISTICA. a cura di Stefano Patrì - a.a ESERCIZI DI MECCANICA QUANTISTICA a cura di Stefano Patrì - a.a. - Esercizio Un oscillatore armonico in dimensione con massa m e pulsazione ω si trova in uno stato iniziale ψ, tale che: una misura dell

Dettagli

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 11/12 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

Corso di Metodi Matematici per la Finanza

Corso di Metodi Matematici per la Finanza Corso di Metodi Matematici per la Finanza Soluzioni degli esercizi su EDO/ED lineari del secondo ordine a coecienti costanti Es. 1 a) x (t) 4x (t) + 4x(t) = 0, x(0) = 1, x (0) = 0 Equazione caratteristica:

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA SECONDA PARTE anno accademico 2016-2017 (1) Per un sistema meccanico n-dimensionale scrivere: (a) gli elementi di matrice dello operatore posizione x

Dettagli

Calcolo Scientifico e Matematica Applicata Primo Parziale,

Calcolo Scientifico e Matematica Applicata Primo Parziale, Calcolo Scientifico e Matematica Applicata Primo Parziale, 19.11.2018 Risolvere gli esercizi 2,, 4 oppure, in alternativa, gli esercizi 1, 2,, 5. Valutazione degli esercizi: 1 4, 2 14, 8, 4 8, 5 4. 1.

Dettagli

Elettronica dello Stato Solido Lezione 7: Particelle confinate. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 7: Particelle confinate. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 7: Particelle confinate Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Buca a pareti infinite Buca a pareti finite Oscillatore armonico

Dettagli

Prova scritta finale 19 giugno 2013

Prova scritta finale 19 giugno 2013 Prova scritta finale 19 giugno 13 Istituzioni di Fisica della Materia Prof. Lorenzo Marrucci anno accademico 1-13 Tempo a disposizione: 3 ore Uso degli appunti o libri: NON AMMESSO uso della calcolatrice:

Dettagli

Problemi di Meccanica Quantistica. Capitolo II. Problemi Unidimensionali

Problemi di Meccanica Quantistica. Capitolo II. Problemi Unidimensionali Problemi di Meccanica Quantistica Capitolo II Problemi Unidimensionali a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema II.1 Si consideri una particella

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

SOLUZIONI COMPITO del 10/07/2009 ANALISI 1 - INFORMATICA 12 CFU + AUTOMATICA 5+5 CFU ANLISI 1 (I MODULO) - INFORMATICA + AUTOMATICA 5 CFU TEMA A

SOLUZIONI COMPITO del 10/07/2009 ANALISI 1 - INFORMATICA 12 CFU + AUTOMATICA 5+5 CFU ANLISI 1 (I MODULO) - INFORMATICA + AUTOMATICA 5 CFU TEMA A SOLUZIONI COMPITO del 0/07/009 ANALISI - INFORMATICA CFU + AUTOMATICA 5+5 CFU ANLISI I MODULO) - INFORMATICA + AUTOMATICA 5 CFU Esercizio Osserviamo che possiamo scrivere 0 = z 6 TEMA A + i ) z = [ z richieste

Dettagli

Compito di recupero del giorno 27/11/2015

Compito di recupero del giorno 27/11/2015 Compito di recupero del giorno 27/11/2015 Esercizio n. 1 Una particella di massa m e spin 1/2 si muove in due dimensioni nel piano xy ed è soggetta alla seguente Hamiltoniana: H = 1 2m (p2 x + p 2 y) +

Dettagli

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA

VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA 3/7 GENERALIZZAZIONI E SVILUPPI 09/10 1 VALORI E DISTRIBUZIONI DI VALORI DI UNA GRANDEZZA GENERICA Forma unificata dei risultati già ottenuti I risultati ottenuti nei fascicoli 3/3, 3/5 e 3/6 sulle grandezze

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Sito Personale di Ettore Limoli Lezioni di Matematica Prof. Ettore Limoli Sommario Lezioni di Matematica... Equazioni differenziali lineari... Generalità... Equazione differenziale lineare omogenea del

Dettagli

Equazione di Schrödinger

Equazione di Schrödinger Equazione di Schrödinger dualità onda- particella particella libera come onda piana de Broglie Einstein NB - 1 derivata temporale: Equazione di Schrödinger derivata 2^ spaziale: 2 Equazione di Schrödinger

Dettagli

Compitino 1 di Meccanica Quantistica I

Compitino 1 di Meccanica Quantistica I Compitino di Meccanica Quantistica I Facoltà di Scienze, M.F.N., Università degli Studi di Pisa, 5 dicembre 00 (A.A. 0/) (Tempo a disposizione: 3 ore ) Problema. Un sistema a due stati è caratterizzato

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica

L equazione di Schrödinger unidimensionale: soluzione analitica e numerica Chapter 3 L equazione di Schrödinger unidimensionale: soluzione analitica e numerica In questo capitolo verrà descritta una metodologia per risolvere sia analiticamente che numericamente l equazione di

Dettagli

Prova scritta finale 16 giugno 2015

Prova scritta finale 16 giugno 2015 Prova scritta finale 6 giugno 5 Istituzioni di Fisica della Materia Prof. orenzo Marrucci anno accademico 4-5 Tempo a disposizione: 3 ore Uso degli appunti o libri: NON AMMESSO uso della calcolatrice:

Dettagli

PROVA SCRITTA ANALISI II

PROVA SCRITTA ANALISI II PROA SCRITTA ANALISI II Esercizio. Discutere la convergenza puntuale e la convergenza uniforme in (, + ) e in (, + ) della successione di funzioni (2 punti). f n (x) = e x arctan x n Soluzione. Per avere

Dettagli

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f 7/4 URTO SU UN POTENZIALE CENTRALE 0/ DIFFUSIONE DA UN POTENZIALE CENTRALE Nel caso di diffusione da un potenziale centrale V x) = V r), l ampiezza di diffusione f Ω) = f x) che specifica la dipendenza

Dettagli

EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale

EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale Capitolo 6 EQUAZIONE DI SCHRÖDINGER STAZIONARIA: Buche di Potenziale Consideriamo lo studio di stati stazionari di sistemi elementari. Il sistema più semplice è quello di una particella libera, la cui

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione.

Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio a) Studiare l esistenza e la natura degli estremi liberi della funzione. Analisi Matematica II - Ingegneria Meccanica/Energetica - 7 Lulgio 218 1) Data la funzione f(, ) = 4 + 4 4 2 7 a) Studiare l esistenza e la natura degli estremi liberi della funzione. b) Trovare il massimo

Dettagli

Esercizi di riepilogo 2 ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2 ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2 ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Determinare quali sei seguenti insiemi è uno spazio vettoriale rispetto alle usuali operazioni

Dettagli

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx

Teoria Es. 1 Es. 2 Es.3 Es. 4 Totale. Cognome: Nome: Matricola: Prima Parte. x a dx Teoria Es. Es. 2 Es. Es. 4 Totale Analisi e Geometria Appello 5/07/209 Docente: Numero di iscrizione all appello: Cognome: Nome: Matricola: Prima Parte (a) Prima domanda di teoria. ( punti) Enunciare e

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

METODI NUMERICI. Metodo delle differenze finite

METODI NUMERICI. Metodo delle differenze finite METOI NUMERICI Lo sviluppo dei moderni calcolatori ha consentito di mettere a disposizione della scienza e della tecnica formidabili strumenti che hanno permesso di risolvere numerosi problemi la cui soluzione

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Antonino Polimeno Università degli Studi di Padova Equazioni differenziali - 1 Un equazione differenziale è un equazione la cui soluzione è costituita da una funzione incognita

Dettagli

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a

Cognome: Nome: Matr. (e x 1 x)(1 x) 2/3 x (sin x) a Es. 1 Es. 2 Es. 3 Es. 4 T. Totale Analisi e Geometria 1 Docente: Gianluca Mola 27/1/29 Ing. Industriale Cognome: Nome: Matr. Nello spazio sottostante gli esercizi devono essere riportati sia i risultati

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve:

Esercizi di riepilogo sulle curve. 1. Si fornisca una parametrizzazione per le seguenti curve: Esercizi di riepilogo sulle curve. Si fornisca una parametrizzazione per le seguenti curve: (a) l ellisse = {(x, y) R x + y = } α(t) = (3 cost, sin t), t [, π]. (b) = {(x, y) R x + y =, x } α(t) = (3 cost,

Dettagli

y 3y + 2y = 1 + x x 2.

y 3y + 2y = 1 + x x 2. Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 03-04 (dott.ssa Vita Leonessa) Esercizi svolti: Equazioni differenziali ordinarie. Risolvere

Dettagli

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 3 settembre 2009 Tema A

Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare) 3 settembre 2009 Tema A Università degli Studi di Bergamo Corso integrato di Analisi (Geometria e Algebra Lineare) settembre 009 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

22. Integrazione numerica

22. Integrazione numerica . Integrazione numerica I metodi di integrazione numerica per le equazioni differenziali consistono nel determinare schemi ricorrenti che generano orbite discrete vicine a quelle esatte. Uno schema di

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2 Analisi Matematica II Corso di Ingegneria Gestionale Compito del 15--18 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

Analisi Matematica I (A)

Analisi Matematica I (A) Analisi Matematica I A) Ingegneria Edile, 6 Novembre 1996 Michele Campiti) 1. Si determinino i numeri complessi z soddisfacenti la relazione: z = 3 + i) 3 7 1 3i) 6.. Si studi il seguente integrale improprio

Dettagli

Soluzione del secondo Esonero di Meccanica Quantistica

Soluzione del secondo Esonero di Meccanica Quantistica 1 Soluzione del secondo Esonero di Meccanica Quantistica 1/3/007 Compito A Osserviamo che l hamiltoniana è separabile nella forma H = H x1 + H y1 + H x + H y dove si è posto H x1 = p x 1 m + U(x 1), H

Dettagli

= 0, y(x, t) < M, e ove 0 < x < L. Poniamo y = X(x) T (t) d 2 X dx 2 = 1. d 2 T dt 2 = κ2 ; v 2 T. dt 2 + v2 κ 2 T = 0.

= 0, y(x, t) < M, e ove 0 < x < L. Poniamo y = X(x) T (t) d 2 X dx 2 = 1. d 2 T dt 2 = κ2 ; v 2 T. dt 2 + v2 κ 2 T = 0. Modi normali Una corda di lunghezza è tesa tra i punti x = e x =.All istante t = essa ha una configurazione data da f(x) con < x < ed è rilasciata con velocità nulla. Trovare lo spostamento della corda

Dettagli

PROPRIETÀ GENERALI. L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V (x, t),

PROPRIETÀ GENERALI. L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V (x, t), 1/3 STUDIO PRELIMINARE DELL EQUAZIONE DI SCHRÖDINGER 10/11 1 PROPRIETÀ GENERALI L equazione di Schrödinger, per una particella che si muove in un campo di forze corrispondente all energia potenziale V

Dettagli

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 10 Luglio 2019

Università di Roma Tor Vergata - Corso di Laurea in Ingegneria Analisi Matematica I - Prova scritta del 10 Luglio 2019 Università di Roma Tor Vergata - Corso di Laurea in Ingegneria nalisi Matematica I - Prova scritta del 0 Luglio 09 Esercizio. [5 punti] Calcolare lo sviluppo di Taylor dell ordine n = 5 con centro x 0

Dettagli

Le Funzioni di Bessel

Le Funzioni di Bessel Le Funzioni di Bessel Serie di Laurent del prodotto Siano f, g : C due funzioni olomorfe in un anello := {z C r < z z 0 < R}, r < R. Allora f(z)g(z) è olomorfa in e quindi si potrà scrivere come una serie

Dettagli

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2

Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. 2 Analisi Matematica III modulo Soluzioni della prova scritta preliminare n. Corso di laurea in Matematica, a.a. 003-004 17 dicembre 003 1. Si consideri la funzione f : R R definita da f(x, y) = x 4 y arctan

Dettagli

FM210 / MA - Soluzioni della seconda prova di esonero ( )

FM210 / MA - Soluzioni della seconda prova di esonero ( ) FM10 / MA - Soluzioni della seconda prova di esonero (31-5-017) Esercizio 1. Un asta rigida omogenea AB di lunghezza l e massa M è vincolata a muoversi su un piano verticale Π, con estremo A fissato nel

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

1 Il paradosso del gatto di Schrödinger

1 Il paradosso del gatto di Schrödinger 1 Il paradosso del gatto di Schrödinger by extrabyte Abstract. Una descrizione del paradosso del gatto di Schrödinger 1.1 Introduzione Riportiamo velocemente i postulati della Meccanica Quantistica 1.

Dettagli

Esercizi proposti per il corso di Fisica Matematica docente A. Teta - a.a. 2018/19 29 OTTOBRE u t = u xx + e x

Esercizi proposti per il corso di Fisica Matematica docente A. Teta - a.a. 2018/19 29 OTTOBRE u t = u xx + e x Esercizi proposti per il corso di Fisica Matematica docente A. Teta - a.a. 018/19 9 OTTOBRE 018 Equazione del calore Esercizio 1. Si trovi la soluzione dell equazione del calore in R con dato iniziale

Dettagli

PARITA. Parità Parità intrinseca Conservazione della Parità

PARITA. Parità Parità intrinseca Conservazione della Parità PARITA Parità Parità intrinseca Conservazione della Parità PARITÀ L operatore di inversione spaziale è una trasformazione discreta che inverte il segno delle tre coordinate spaziali: P x, y, z -x, -y,

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del , se (x, y) = (0, 0) ( x e. + y x e (y2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -6-9 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = arctan xy + x + y

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = arctan xy + x + y Analisi Matematica II Corso di Ingegneria Biomedica Compito A del -7-2 - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Problemi di Meccanica Quantistica. Capitolo IV. Oscillatore Armonico Unidimensionale

Problemi di Meccanica Quantistica. Capitolo IV. Oscillatore Armonico Unidimensionale Problemi di Meccanica Quantistica Capitolo IV Oscillatore Armonico Unidimensionale a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema IV.1 All istante

Dettagli

Soluzioni IV anno Fis prima prova

Soluzioni IV anno Fis prima prova Soluzioni IV anno Fis prima prova ) All interno dello strato a < x < a, la densità di corrente è data da J x < a) = c 4 π rot B = c 4 π, B o a, ) ; analogamente, all esterno dello strato x > a) la densità

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL COMPITO A. ( 1) k 2k + 1 e(2k+1)(x+y),

INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL COMPITO A. ( 1) k 2k + 1 e(2k+1)(x+y), 1 INGEGNERIA MECCANICA - CANALE L-Z ANALISI MATEMATICA II SOLUZIONI DELLA PROVA SCRITTA DEL 1-6-16 - COMPITO A ESERCIZIO 1 Studiare la convergenza assoluta, puntuale e totale della serie k + 1 e(k+1)(x+y),

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2 x 2 y 2 x y 2 + x y

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = 2 x 2 y 2 x y 2 + x y Analisi Matematica II Corso di Ingegneria Gestionale Compito A del -7- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del f(x, y) = x 2 + 2y 2 x 3 y 3 Analisi Matematica II Corso di Ingegneria Gestionale Compito A del 7-7-8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx

ANALISI DI FOURIER. 2πk. è periodica di periodo T. Più precisamente, essendo. T x + 2π = cos. s(x) = s x + T ) T +α. f(x) dx ANALISI DI FOURIER Sia >. Una funzione f, definita per x R, si dice periodica di periodo, se f(x + = f(x, x R. ( Se una funzione è periodica di periodo, essa è anche periodica di periodo, 3,..., k,....

Dettagli

Laboratorio II, modulo Segnali periodici (cfr.

Laboratorio II, modulo Segnali periodici (cfr. Laboratorio II, modulo 2 2015-2016 Segnali periodici (cfr. http://wpage.unina.it/verdoliv/tds/appunti/appunti_03.pdf) Alcune definizioni (1) Segnale periodico: x(t) = x(t+t 0 ) per qualunque t Segnale

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

I POSTULATI DELLA MECCANICA QUANTISTICA

I POSTULATI DELLA MECCANICA QUANTISTICA 68 I POSTULATI DELLA MECCANICA QUANTISTICA Si intende per postulato una assunzione da accettarsi a priori e non contraddetta dall esperienza. I postulati trovano la loro unica giustificazione nella loro

Dettagli

Esame di Fisica Matematica 2, a.a (8/5/2014)

Esame di Fisica Matematica 2, a.a (8/5/2014) Esame di Fisica Matematica, a.a. 03-04 (8/5/04) Tempo a disposizione: DUE ORE E MEZZA. Svolgere tutti gli esercizi. Scrivere chiaramente nome, cognome e numero di matricola. Non è consentito l uso di libri,

Dettagli

1 Introduzione all operatore di Laplace.

1 Introduzione all operatore di Laplace. CORSO DI ANALISI IN PIÙ VARIABILI II CORSO DI LAUREA IN MATEMATICA L OPERATORE DI LAPLACE 1 Introduzione all operatore di Laplace. Diamo un esempio di un problema di fisica matematica la cui equazione

Dettagli