Corso di Fisica. Onde Interferenza e Diffrazione. Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni a.a.08-09

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Fisica. Onde Interferenza e Diffrazione. Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni a.a.08-09"

Transcript

1 Corso di Fisica Onde Interferenza e Diffrazione Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni a.a

2 SOMMARIO 1. Esercizi sulle onde 2. Diffrazione 3. Interferenza 4. Diffrazione con Raggi X su cristalli e legge di Bragg 2

3 1. Esercizi sulle onde 1. Un onda è descritta dall espressione: y Asen ( kx ωt ) = con A = 0.02 m; k = 2.11 rad/m ; w = 3.62 rad/s. Determinare la lunghezza d onda, la frequenza e la velocità dell onda. Si ha 2 π λ = = 2.98 m ; f 576Hz k = ω 2 π = 0. m ; υ = fλ = s 2. Scrivere l espressione di un onda sinusoidale y che viaggia lungo una corda nel verso negativo dell asse x con le seguenti caratteristiche y max = 8cm, λ = 80cm; f = 3Hz, y(0,0) = 0. 2π 1 La formula generale è: y = A sen ( kx +ω t +φ ). Osservo che: A = ymax, k = = 7.85m ; λ rad ω = 2 π f = 6π. Inoltre poiché y(0,0) = 0 allora φ = 0, da cui: y = 0.08sen ( 7.85x + 6π t). s 3. Riscrivere l espressione dell onda di cui all esercizio sopra nel caso in cui y(x,0) = 0 nel punto x = 10cm. L espressione è: y = 0.08sen ( 7.85x + 6π t + φ ). Se y(x,0) = 0 per x = 10cm si ha: 0 = 0.08sen ( 7. 85x + φ ) da cui otteniamo φ = rad. Si ha: y = 0.08sen ( 7.85x + 6π t 0.785) 3

4 1 0 1 ω1 φ ω2 φ2 4. Due onde sinusoidali sono descritte da: y = A sen[ k x t ]; y = A sen[ k x t ] con: A0 = 5m; k1 = k2 = 4π m 1 ; ω 1= ω2 =1200π s; φ1=0; φ2 = 0.25π rad. (a) Qual è l ampiezza dell onda risultante? (b) Qual è la frequenza dell onda risultante? φ2 φ2 La funzione dell onda risultante ha la forma: y = y1 + y2 = 2A0 cos sen k 1x ω1t con 2 2 φ2 ampiezza A = 2A0 cos =9.24m e frequenza 2 = ω1 f = 600Hz. 2 π 5. Due altoparlanti sono azionati da un oscillatore a 800Hz e sono l uno di fronte all altro a distanza di D =1.25m. Trovare i due punti lungo il segmento che li unisce dove si aspetterebbero dei minimi relativi ( velocità del suono v = 343 m/s). La lunghezza d onda è: λ = υ = 0.429m. Per avere minimo, la differenza di cammino deve essere f un numero dispari di mezza lunghezza d onda. Quindi, se X è la distanza di uno dei due λ D x x = 2n + 1 con altoparlanti dall ascoltatore, la differenza di cammino delle due onde è: ( ) ( ) 2 n numero intero. Otteniamo, per n = 0,1,2,-1,-2, i seguenti punti di minimo: x = 0.518m; 0.303m; 0.089m;0.732m;0.947m. 4

5 6. Due onde sono date da: y1 = Acos[ kx ωt] ; y = Acos[ kx + ωt] 2 con x e y in metri e t in secondi, A = 0.015m; k = 0.5 m 1 ; ω = 40 s. (a) determinate la posizione dei nodi dell onda stazionaria risultante. (b) Qual è lo spostamento massimo per 0.4m? L onda stazionaria risultante è data dalla somma delle due: y y + y = A cos ( kx) cos( ω ) x x (a) I nodi si formano dove y = 0, cioè cos = 0 2 nodi per : x = π m; 3 π m ; 5 π m (b) Per x = 0.4m l onda ha ampiezza : y = 0.03cos = m. 2 = t quindi per: = ( 2n + 1) 2 2 π. Avremo perciò 7. A quale distanza da una sorgente isotropa ( cioè che irradia allo stesso modo in tutte le direzioni ) di onde elettromagnetiche di potenza 30W l ampiezza del campo elettrico sarà E m = 10V/m? Risp. X = 4.24m 8. Un onda radio trasmette 1.5 W/m 2 di potenza per unità di area. Una superficie piana di area A è perpendicolare alla direzione di propagazione dell onda. Calcolare la pressione di radiazione dell onda nell ipotesi che la superficie sia un assorbitore perfetto. Risp. p = 5x10-9 Pa 5

6 9. Un impulso che viaggia su una corda in moto verso destra lungo l asse x è rappresentato da una funzione: 2 y( x, t) = ( x 3t) Dove x e t sono misurati in metri e secondi rispettivamente. (a) mostrare che questa espressione rappresenta una funzione d onda e determinarne la velocità. (b) Mostrare in grafico la forma d onda negli istanti t = 0 e t = 2s. Soluzione: (b) y(x,0) y(x,2s) (a) si mostri che: 2 x y 2 1 = 2 υ 2 t y 2 y(x,t) con v = 3 m/s x [m] 6

7 10. Una lampadina incandescente irradia 15W isotropicamente. Calcolare il valore massimo del campo elettrico e del campo magnetico alle distanze: (a) 1m; (b) 5 m dalla sorgente. (a) E = 30 V/m; B = 0.1 µt (b) E = 6 V/m; B = 0.02 µt 11. Un onda elettromagnetica piana ha un flusso di energia di 300 W/m 2. Una superficie piana rettangolare di dimensioni 20cmx40cm è posta perpendicolarmente rispetto alla direzione di propagazione. Se la superficie assorbe metà dell energia incidente e ne riflette la metà calcolare (a) l energia totale assorbita dalla superficie in un minuto (b) la quantità di moto assorbita nello stesso tempo. (a) 720J; (b) 2.4x10-6 kg m/s 12. La luce del sole esercita una pressione di radiazione tipica di 5x10-6 Pa. Calcolare la forza di radiazione su uno specchio orizzontale perfettamente riflettente di dimensioni 40cm x 80cm. F = 3.2 µn 13. Un filo lungo ha un raggio di 0.3mm e resistenza 5 Ω è percorso da una corrente di 2 A. Determinare il valore e la direzione del vettore di Poynting del filo S = 1.06x10 4 W/m 2 diretto radialmente verso il filo. 7

8 2. Diffrazione Consideriamo una sorgente di onde elettromagnetiche S piane, i cui fronti d onda incontrano un ostacolo come l'apertura in uno schermo opaco (fenditura). La fenditura abbia dimensioni lineari dello stesso ordine di grandezza della lunghezza d onda della radiazione elettromagnetica. Consideriamo il caso particolare Diffrazione di Fraunhofer ) dove la sorgente S e lo schermo C dove si visualizza il fenomeno della diffrazione siano a grande distanza dalla fenditura che supponiamo rettilinea, di larghezza a e lunghezza L>>a. S k a Fronti d onda piana Schermo C Schermo opaco con fenditura 8

9 Suddividiamo la fenditura in N strisce ciascuna di larghezza y =a/n. Ciascuna striscia funge da sorgente di onde secondarie ( principio di Huygens-Fresnel) contribuendo con ampiezza E al campo risultante E p in un punto P dello schermo, individuato dai raggi uscenti ad angolo θ rispetto alla normale al piano della fenditura. I contributi relativi a due strisce adiacenti hanno nel punto P la differenza di fase, derivante dalla differenza di cammino ysenθ: 9

10 Metodo dei fasori Possiamo rappresentare l onda armonica come un vettore, detto FASORE, di modulo E 0 /r, che ruota intorno all origine con velocità angolare ω. La proiezione del fasore sull asse verticale dà, istante per istante, il valore E 1 (t). 10

11 Con riferimento alla figura, gli N fasori che rappresentano le ampiezze E delle singole sorgenti secondarie, in cui è suddivisa la fenditura, costituiscono una poligonale di N lati. L angolo formato tra ciascun fasore e il successivo è dato da : La differenza di fase tra l onda emessa dall estremo B e l estremo A è : Per y ed N la poligonale diventa un arco di circonferenza di raggio ρ con angolo al centro pari a α. Dalla figura l ampiezza del campo eletrico risultante è pari alla corda che sottende l arco: 11

12 12

13 13

14 1. Esercizi sulla diffrazione

15 3. Interferenza di onde: esperimento di Young In questo esperimento la luce uscente dalla sorgente S viene diffratta alle fenditure S 1 ed S 2. La luce emessa da S 1 ed S 2 produce su uno schermo C, posto a distanza L >> d ( d = separazione fenditure) una figura di interferenza consistente in strisce chiare (massimi di intensità luminosa ) e scure (minimi) alternate, detta figura di interferenza. 15

16 Siano E 1, E 2 onde prodotte dalle sorgenti S 1 ed S 2 : La differenza di fase tra le due onde è: I massimi di interferenza si hanno quando la differenza di percorso dsenθ è un multiplo intero della lunghezza d onda λ. In questa condizione le due onde risultano infatti in fase. 16

17 1. Esercizi sull interferenza

18 4. Diffrazione X dei Cristalli Durante il corso di chimica vi è stato mostrato come i solidi, in forma cristallina, si dispongano in strutture tridimensionali ordinate. Un reticolo cristallino molto comune in natura è per esempio il reticolo cubico a facce centrate (FCC). Cu a (Å) C ( diamante ) 3.57 Si 5.43 Ge 5.66 α-sn 6.49 GaAs 5.65 a Si 2 FCC compenetrati di ¼ della diagonale di corpo NaCl 2 FCC compenetrati di 1/2 lato del cubo 18

19 E possibile esplorare la struttura microscopica dei cristalli utilizzando un fascio di raggi X, radiazione elettromagnetica con lunghezza d onda di circa 1Ǻ, lo stesso ordine di grandezza della costante reticolare a nei cristalli. La teoria della diffrazione X è stata sviluppata da Sir William Bragg nel Bragg mostrò che un piano di atomi nel cristallo riflette la radiazione nello stesso modo nel quale la luce viene riflessa da uno specchio, percui l angolo in uscita θ r è uguale all angolo incidente θ i. k cristallo Fronte onda piana Fascio incidente Fascio riflesso Θ i Θ r = Θ i a Piano di Bragg 19

20 Legge di Bragg Se si considera la radiazione come riflessa da piani di Bragg paralleli e successivi, è possibile che i fasci riflessi dai vari piani interferiscano costruttivamente. Perché si abbia interferenza costruttiva, la differenza di cammino tra le due onde riflesse deve essere tale che: θ θ AB + BC = nλ A θ B d C ossia deve valere la legge di Bragg: 2d sen θ = nλ Poiché la distanza tra piani d corrisponde a qualche Å il fenomeno non si osserva con luce visibile ( ~ 5000 Å). E necessario usare fotoni X. 20

21 Esercizi sulla Diffrazione nei cristalli 1. Lo ioduro di potassio ha stessa struttura cristallina di quella del NaCl, con d = nm. Un fascio monocromatico di raggi X mostra un massimo di diffrazione per primo ordine quando l angolo di incidenza è 7.6. Calcolare la lunghezza d onda dei raggi X. λ = 0.934nm 2. Un fascio monocromatico di raggi X incide sulla superficie di un cristallo di NaCl. Nel fascio riflesso il massimo del secondo ordine si trova ad un angolo di 20.5 tra il fascio incidente e la superficie. Determinare la lunghezza d onda dei raggi X. λ = 0.984nm 3. Raggi monocromatici X di lunghezza d onda λ = 0.166nm incidono su un cristallo di KCl. Se la distanza tra i piani è di 0.314nm a quale angolo rispetto alla superficie del cristallo bisogna dirigere il fascio per poter osservare un massimo del secondo ordine? α = 32 21

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

Cosa si intende per onda?

Cosa si intende per onda? Fenomeni Ondulatori Cosa si intende per onda? si definisce onda una perturbazione che si propaga non si ha propagazione di materia ma solo di energia onde meccaniche (mezzo) onde elettromagnetiche (vuoto,

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

ESPERIMENTO DI YOUNG DOPPIA FENDITURA

ESPERIMENTO DI YOUNG DOPPIA FENDITURA ESPERIMENTO DI YOUNG DOPPIA FENDITURA Larghezza fenditure a > d (L = distanza fenditure - schermo; d = distanza tra le fenditure) Evidenza della natura ondulatoria della luce Luce monocromatica

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 13/6/2011 - NOME 1) Un gas perfetto monoatomico con n= 2 moli viene utilizzato in una macchina termica

Dettagli

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO 1 INTERFERENZA Massimi di luminosità Onda incidente L onda prodotta alla fenditura S0, che funge da sorgente, genera due onde alle fenditure

Dettagli

Ottica fisica - Interferenza

Ottica fisica - Interferenza Ottica fisica - Interferenza 1. Principi di sovrapposizione e di Huygens 2. Interferenza 3. Riflessione e trasmissione della luce VIII - 0 Principio di sovrapposizione In un sistema meccanico in cui si

Dettagli

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo;

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo; Prova scritta di Elettromagnetismo e Ottica (CCS Fisica), 21 gennaio 2013 Nel piano x = 0 giace una lastra conduttrice collegata a terra. Nei punti di coordinate (a, a, 0) e (a, a, 0) si trovano due cariche,

Dettagli

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L.

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Lozzi Testi degli esercizi svolti in aula Corpo Nero 1. Il corpo

Dettagli

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1 La diffrazione Il fenomeno della diffrazione si incontra ogni volta che la luce incontra un ostacolo o un apertura di dimensioni paragonabili alla sua lunghezza d onda. L effetto della diffrazione è quello

Dettagli

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione Interferenza Coerenza Diffrazione Polarizzazione Fenomeni interferenziali Interferenza: combinazione di onde identiche provenienti da diverse sorgenti che si sovrappongono in un punto dello spazio costruttiva

Dettagli

4.5 Polarizzazione Capitolo 4 Ottica

4.5 Polarizzazione Capitolo 4 Ottica 4.5 Polarizzazione Esercizio 98 Un reticolo con N fenditure orizzontali, larghe a e con passo p, è posto perpendicolarmente a superficie di un liquido con n =.0. Il reticolo è colpito normalmente alla

Dettagli

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione.

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione. FAM Serie 6: Fenomeni ondulatori VI C. Ferrari Esercizio 1 Equazione dell iperbole ed interferenza Considera due sorgenti S 1 e S 2 poste sull asse Ox in x = d 2 e x = d 2. 1. Nel piano Oxy determina le

Dettagli

6) Si considerino due polarizzatori ideali (il primo orientato in direzione verticale e il secondo in

6) Si considerino due polarizzatori ideali (il primo orientato in direzione verticale e il secondo in 1) Un onda monocromatica polarizzata, con componenti del campo elettrico uguali a: E x = (1/2) 1/2 cos(kz - t) E y = (1/2) 1/2 sen(kz - t + /4), passa attraverso polarizzatori ideali, il primo orientato

Dettagli

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore Capitolo 15 L interferenza e la natura ondulatoria della luce 15.2 Il principio di sovrapposizione e l interferenza della luce Quando due onde luminose passano per uno stesso punto, i loro effetti si sommano

Dettagli

Interazione dei raggi X con la materia

Interazione dei raggi X con la materia Interazione dei raggi X con la materia Emissione di fotoelettroni Fascio incidente (I 0 ) di raggi X Fluorescenza Scattering coerente e incoerente Assorbimento (I) calore Lo scattering coerente dei raggi

Dettagli

nasce la spettroscopia come tecnica di analisi chimica

nasce la spettroscopia come tecnica di analisi chimica sviluppo storico della spettroscopia: il reticolo di diffrazione *1810 Fraunhofer sviluppa il diffrattometro a reticolo e misura ben 700 righe, fra righe chiare (di emissione) e righe scure (di assorbimento);

Dettagli

La luce. Quale modello: raggi, onde, corpuscoli (fotoni)

La luce. Quale modello: raggi, onde, corpuscoli (fotoni) La luce Quale modello: raggi, onde, corpuscoli (fotoni) Le onde luminose onde elettromagnetiche con frequenza compresa tra 4. 10 14 e 8. 10 la lunghezza d onda e compresa fra 400nm e 750nm 10 14 Hz 14

Dettagli

Liceo Pedagogico- Artistico G. Pascoli di Bolzano VERIFICA DI FISICA IN SOSTITUZIONE DELL ORALE CLASSE 5a B- FILA A 15/03/2010

Liceo Pedagogico- Artistico G. Pascoli di Bolzano VERIFICA DI FISICA IN SOSTITUZIONE DELL ORALE CLASSE 5a B- FILA A 15/03/2010 Liceo Pedagogico- Artistico G. Pascoli di Bolzano VERIFICA DI FISICA IN SOSTITUZIONE DELL ORALE CLASSE 5a B- FILA A 15/03/2010 1. Secondo le conoscenze più recenti: a) la luce si comporta soltanto come

Dettagli

Pi greco, la fase, l interferenza: dalla fisica classica alla fisica quantistica. Lucio Andreani & Matteo Galli

Pi greco, la fase, l interferenza: dalla fisica classica alla fisica quantistica. Lucio Andreani & Matteo Galli Pi greco, la fase, l interferenza: dalla fisica classica alla fisica quantistica Lucio Andreani & Matteo Galli Dipartimento di Fisica, Università di Pavia http://fisica.unipv.it http://fisica.unipv.it/eventi/pi-day.htm

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 25/7/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 25/7/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 25/7/2011 - NOME 1) Un contenitore con un volume iniziale di 0.05 m 3 contiene 2 moli di gas ideale monoatomico

Dettagli

Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata

Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata Reticoli e Diffrazione - Testi degli esercizi Fisica della Materia Condensata A.A. 2015/2016 Reticoli e Diffrazione Esercizio 1 Calcolare il fattore di struttura cristallino F( G) per il reticolo cubico

Dettagli

La diffrazione della luce CNR-INOA

La diffrazione della luce CNR-INOA La diffrazione della luce La luce: onde o particelle? C.Huygens (169-1695) Costruisce il più potente telescopio dell epoca Scopre l anello di Saturno Sostiene la natura ondulatoria della luce Basi sperimentali:

Dettagli

Onde sonore stazionarie in un tubo risonante

Onde sonore stazionarie in un tubo risonante Onde sonore stazionarie in un tubo risonante Scopo dell esperimento Determinare la velocità del suono analizzando le caratteristiche delle onde sonore stazionarie in un tubo risonante. Richiamo teorico

Dettagli

ΔΦ = 0, 2π, Interferenza totalmente costruttiva: totalmente distruttiva: ΔΦ = π, 3π,

ΔΦ = 0, 2π, Interferenza totalmente costruttiva: totalmente distruttiva: ΔΦ = π, 3π, INTERFERENZA Il termine interferenza è riferito a quei fenomeni di sovrapposizione che compaiono quando onde provenienti da sorgenti diverse si sovrappogono in un punto dello spazio (riguarda tutti i tipi

Dettagli

Sovrapposizione di onde sinusoidali

Sovrapposizione di onde sinusoidali Sovrapposizione di onde sinusoidali Consideriamo due onde sinusoidali che si propagano verso destra con stessa f, λ e ampiezza ma con differenza di fase φ: y1 = Asen(kx ωt) y 2 = Asen(kx ωt + φ ) La funzione

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ

Dettagli

Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW

Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW 21.1-21.5 1 1. Sovrapposizione e interferenza Quando due onde occupano la stessa regione di spazio, le loro ampiezze si sommano in ogni

Dettagli

Le onde. Definizione e classificazione

Le onde. Definizione e classificazione Le onde Definizione e classificazione Onda: perturbazione che si propaga nello spazio, trasportando energia e quantità di moto, ma senza trasporto di materia Onde trasversali La vibrazione avviene perpendicolarmente

Dettagli

Es) Due sorgenti di onde elettromagnetiche interferiscono tra loro. Qual è e in che direzione viene irraggiata l intensità massima

Es) Due sorgenti di onde elettromagnetiche interferiscono tra loro. Qual è e in che direzione viene irraggiata l intensità massima OEM1) ONDE ELETTROMAGNETICHE Es) Due sorgenti di onde elettromagnetiche interferiscono tra loro. Qual è e in che direzione viene irraggiata l intensità massima Esempio) Due antenne radiotrasmittenti parallele

Dettagli

caratteristiche della onde:, T, y = f(x,t) onda unidimensionale

caratteristiche della onde:, T, y = f(x,t) onda unidimensionale caratteristiche della onde:, T, = f(x,t) onda unidimensionale : la minima distanza tra punti che oscillano concordemente rispetto alla posizione di equilibrio T: il tempo minimo necessario perché la perturbazione

Dettagli

La diffrazione - guida

La diffrazione - guida La diffrazione - guida La diffrazione è una caratteristica generale dei fenomeni ondulatori che si manifesta ogni volta che una porzione di un fronte d onda, sia esso di suono, di onde di materia o di

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 16 luglio 2001 Teoria 1. La posizione del centro di massa di un sistema di N particelle puntiformi è data da Ni r i m i

Dettagli

Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A gennaio 2016

Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A gennaio 2016 Corso di Laurea in Biotecnologie Agro Industriali Prova scritta di Fisica - A.A. 205-6 - 29 gennaio 206 () Un fascio di protoni entra in una regione di spessore d = 4.0 0 2 m in cui è presente un campo

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

I Esonero di Elementi di Ottica del 13/06/2011

I Esonero di Elementi di Ottica del 13/06/2011 I Esonero di Elementi di Ottica del 13/06/2011 1) L onda elettromagnetica piana sinusoidale di frequenza f= 100 khz emessa da un sottomarino in superficie, si propaga orizzontalmente sia nell aria che

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Quarta lezione Applicazione di tecniche di diffrazione (Laboratorio II) Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico di

Dettagli

Prerequisiti Lezione 1. Ripasso

Prerequisiti Lezione 1. Ripasso Prerequisiti Lezione 1 Ripasso Misura di angoli Nel sistema sessagesimale l'angolo completo o angolo giro è suddiviso in 360 spicchi, equivalenti all'unità di misura convenzionale denominata grado sessagesimale,

Dettagli

Le onde. F. Soramel Fisica per Medicina 1

Le onde. F. Soramel Fisica per Medicina 1 Le onde a) onda sonora: le molecole si addensano e si rarefanno b) onda all interfaccia liquido-aria: le particelle oscillano in alto e in basso c) onda in una corda d) onda in una molla e) onda sismica

Dettagli

LE ONDE. Tipi di onde e aspetti generali

LE ONDE. Tipi di onde e aspetti generali LE ONDE Tipi di onde e aspetti generali Che cos è un onda? In fisica con il termine onda si indica una perturbazione che nasce da una sorgente e si propaga nel tempo e nello spazio, trasportando energia

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Reticoli e Diffrazione - Testi degli esercizi

Reticoli e Diffrazione - Testi degli esercizi Reticoli e Diffrazione - Testi degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Reticoli e Diffrazione Esercizio 1....................................

Dettagli

INTERFERENZA E DIFFRAZIONE

INTERFERENZA E DIFFRAZIONE INTERFERENZA E DIFFRAZIONE Scopo dell esperienza:determinare sperimentalmente le seguenti caratteristiche fisiche: lunghezza d onda di una sorgente LASER apertura di una singola fenditura rettilinea apertura

Dettagli

Ingegneria Meccanica AA 2018/19 Esame 25 luglio 2019

Ingegneria Meccanica AA 2018/19 Esame 25 luglio 2019 Ingegneria Meccanica AA 08/9 Esame 5 luglio 09 Nome Cognome Mat. Problema. In una regione sede di un campo magnetico uniforme di induzione B=(,0,0) T, si muove un elettrone (m_{e}=9. 0 ³¹ kg) con velocità

Dettagli

Le caratteristiche delle onde. perturbazione che si propaga nello spazio e nel tempo

Le caratteristiche delle onde. perturbazione che si propaga nello spazio e nel tempo Fenomeni ondulatori Un onda è costituita da una successione regolare di punti di massimo e di minimo, sia nello spazio che nel tempo, secondo una sequenza definita Può essere utile osservare la seguente

Dettagli

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione L'identificazione della luce come fenomeno ondulatorio è dovuta principalmente a Fresnel e Huyghens ed è basata

Dettagli

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Ottica fisica La natura ondulatoria della luce è stata evidenziata da Young ai primi dell 800 usando l interferenza e confutando l idea corpuscolare di Newton Le onde elettromagnetiche sono state previste

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche n Equazione delle onde per i campi n Corda vibrante n Onde piane n Polarizzazione n Energia e quantita` di moto - vettore di Poynting n Velocita` di fase e di gruppo Equazione delle

Dettagli

64. Quali tra le seguenti unità può essere usata per misurare la pressione?

64. Quali tra le seguenti unità può essere usata per misurare la pressione? 63. Siano date 2 lampadine ad incandescenza (di quelle normalmente usate nelle nostre case) A e B, entrambe da 60 W ed entrambe da 220 V. Le collego in parallelo e le alimento a 220 V utilizzando una presa

Dettagli

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente OTTICA FISICA Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente gli effetti sperimentali non sono spiegabili

Dettagli

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale Serie 36: Soluzioni FAM C Ferrari Esercizio Un identità utile Abbiamo F G = e quindi, applicando la regola di Leibnitz, F y G z F z G y F z G x F x G z F x G y F y G x F G = ( x F y )G z +F y x G z ( x

Dettagli

STATICA FORZE NEL PIANO

STATICA FORZE NEL PIANO MECCANICA E MACCHINE I MODULO - Capitolo Statica Forze nel piano Capitolo STATICA FORZE NEL PIANO Esercizio : Due forze, F = 330 N e F 2 = 250 N, sono applicate nel punto A e formano tra loro l'angolo

Dettagli

Lucegrafo. IV a Esperienza del Laboratorio di Fisica Generale II. Teoria. Principio di Huygens

Lucegrafo. IV a Esperienza del Laboratorio di Fisica Generale II. Teoria. Principio di Huygens IV a Esperienza del Laboratorio di Fisica Generale II Lucegrafo Teoria Principio di Huygens La propagazione della luce è descritta con un semplificato modello ondulatorio, una costruzione geometrica per

Dettagli

Scritto Appello III, Materia Condensata. AA 2017/2018

Scritto Appello III, Materia Condensata. AA 2017/2018 Scritto Appello III, Materia Condensata. AA 2017/2018 21/06/2018 1 Esercizio 1 Sia un A un solido monoatomico che cristallizza in una struttura cubica a facce centrate con lato del cubo a e velocità del

Dettagli

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Ottica 1. Un fascio di luce di lunghezza λ passa attraverso una fenditura rettangolare di larghezza a. La sua immagine viene

Dettagli

Ottica fisica - Diffrazione

Ottica fisica - Diffrazione Ottica fisica - Diffrazione 1. Diffrazione di Fraunhofer 2. Risoluzione di una lente 3. Reticoli di diffrazione IX - 0 Diffrazione Interferenza di un onda con se stessa, in presenza di aperture od ostacoli

Dettagli

Elettronica dello Stato Solido Lezione 2: I cristalli. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 2: I cristalli. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 2: I cristalli Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it D. Ielmini Elettronica dello Stato Solido 02 2 Outline Definizione del problema Struttura

Dettagli

Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile.

Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile. PROPRIETA OTTICHE DEI MATERIALI Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile. Tratteremo inizialmente i concetti ed i principi

Dettagli

FAM. 2. Calcola l intensità media Ī nel caso di un onda piana (longitudinale) e nel caso di un onda sferica ad una distanza di 100m dalla sorgente.

FAM. 2. Calcola l intensità media Ī nel caso di un onda piana (longitudinale) e nel caso di un onda sferica ad una distanza di 100m dalla sorgente. FAM Serie 5: Fenomeni ondulatori V C. Ferrari Esercizio Intensità Considera un onda armonica in aria in condizioni normali ( C, atm). Sapendo che la sua frequenza è di 8Hz e la sua ampiezza di spostamento

Dettagli

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio 1 Calcolare la larghezza della frangia centrale della figura di interferenza

Dettagli

SPETTROSCOPIO A RETICOLO

SPETTROSCOPIO A RETICOLO SPETTROSCOPIO A RETICOLO Scopo dell esperienza: determinazione passo del reticolo separazione tra le due righe del doppietto della luce gialla del sodio determinazione della lunghezza d onda di un fascio

Dettagli

ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO.

ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO. ESAME DI FISICA II- Sessione 16/07/2013 Compito per l Ordinamento 270 e i VV.OO. PROBLEMA 1 Una lastra di dielettrico (a=b=1 cm; spessore 0.1 cm), in cui si misura un campo elettrico di 10 3 V.m -1, presenta

Dettagli

Onde. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Onde. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Onde Si è visto come alcuni fenomeni fisici siano periodici, e si ripetano dopo un certo tempo Alcune grandezze fisiche sono in grado di propagarsi nello spazio oppure, se si fissa un punto dello spazio,

Dettagli

Principio di Huygens principio di Huygens

Principio di Huygens principio di Huygens Principio di Huygens La propagazione dei fronti d onda (superfici a fase costante) può essere ottenuta supponendo ad ogni istante un fronte d onda come la sorgente dei fronti d onda a istanti successivi

Dettagli

Onde. 1 Lo spostamento di una corda è: y(x, t) = y m sin(kx + t). La lunghezza d onda dell onda è: A 2 k/. B k/. C k. D 2 /k. E k/2.

Onde. 1 Lo spostamento di una corda è: y(x, t) = y m sin(kx + t). La lunghezza d onda dell onda è: A 2 k/. B k/. C k. D 2 /k. E k/2. Onde Fondamenti di fisica Onde e suono 1 Lo spostamento di una corda è: y(x, t) = y m sin(kx + t). La lunghezza d onda dell onda è: A 2 k/. B k/. C k. D 2 /k. E k/2. 2 In una vasca per onde liquide sono

Dettagli

Fisica della Visione Introduzione

Fisica della Visione Introduzione 1 Introduzione 2 Lezione 1 Le sorgenti luminose: Radiazione solare e luce visibile Le sorgenti luminose: Lo spettro visibile. La lunghezza d'onda e i colori spettrali. Lo spettro di emissione solare. Lo

Dettagli

Diffusione dei raggi X da parte di un elettrone

Diffusione dei raggi X da parte di un elettrone Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un

Dettagli

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza Parte I Problemi Richiami Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza u ν = 8π hν c 3 ν e βhν 1, dove c è la velocità della luce

Dettagli

Un percorso di ottica parte III. Ottica ondulatoria

Un percorso di ottica parte III. Ottica ondulatoria Un percorso di ottica parte III Ottica ondulatoria Isabella Soletta Liceo Fermi Alghero Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali

Dettagli

La misura della distanza

La misura della distanza Università degli studi di Brescia Facoltà di Ingegneria Corso di Topografia A Nuovo Ordinamento La misura della distanza Anno Accademico 006-007 Metodi di misura indiretta della distanza Stadia verticale

Dettagli

r S = m esempio P sole = I 4πr S = W

r S = m esempio P sole = I 4πr S = W Esercizio Un telefono cellulare emette microonde di frequenza f = 900 MHz con una potenza massima di 240 mw. Se il limite di sicureza per l irraggiamento di onde em sul corpo umano è fissato a un intensità

Dettagli

Liceo Scientifico Severi Salerno

Liceo Scientifico Severi Salerno Liceo Scientifico Severi Salerno ESERCITAZIONE FISICA Docente: Pappalardo Vincenzo Data: 3/0/019 Classe: 4D 1. ESERCIZIO Un clacson, considerato come una sorgente puntiforme, suona alla frequenza di 100Hz.

Dettagli

I SEGNALI SINUSOIDALI

I SEGNALI SINUSOIDALI I SEGNALI SINUSOIDALI I segnali sinusoidali sono i segnali più importanti nello studio dell elettronica e dell elettrotecnica. La forma d onda sinusoidale è una funzione matematica indispensabile per interpretare

Dettagli

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Ottica fisica La natura ondulatoria della luce è stata evidenziata da Young ai primi dell 800 usando l interferenza e confutando l idea corpuscolare di Newton Le onde elettromagnetiche sono state previste

Dettagli

(1) 1. Calcolare lo spessore minimo di una lamina a quarto d onda avente indice di rifrazione veloce n = 1 + ξ /1000 e indice di

(1) 1. Calcolare lo spessore minimo di una lamina a quarto d onda avente indice di rifrazione veloce n = 1 + ξ /1000 e indice di III proa parziale di Fisica Generale L-B Corsi di laurea in Ingegneria Aerospaziale e Meccanica II Facoltà di Ingegneria, sede di Forlì Prof. D. Galli 12 giugno 2003 (1) Cognome e nome: Numero di matricola

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 };

ESERCIZI. 1.2 Dire quali dei seguenti insiemi sono vuoti e descriverne il complementare nell insieme dei numeri reali: C:= {x R x 1 3 e x 1 2 }; ESERCIZI. INSIEMISTICA. Sia l insieme dei punti dello spazio, Γ una sfera e N il suo polo nord. Quali delle seguenti relazioni sono corrette? N Γ; N ; Γ ; Γ ; N ; Γ N.. Dire quali dei seguenti insiemi

Dettagli

ONDA. Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico.

ONDA. Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico. ONDA Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico. Una qualsiasi perturbazione (originata da una sorgente), impulsiva o periodica, che

Dettagli

DIFFRAZIONE. deviazione rispetto alla traiettoria rettilinea dell ottica geometrica

DIFFRAZIONE. deviazione rispetto alla traiettoria rettilinea dell ottica geometrica DIFFRAZIONE deviazione rispetto alla traiettoria rettilinea dell ottica geometrica La diffrazione è un particolare fenomeno di deviazione o sparpagliamento che si verifica quando un onda incontra nel suo

Dettagli

Esperimento di Ottica

Esperimento di Ottica Esperimento di Ottica studio dei fenomeni di interferenza e diffrazione Capitolo 24 del Giancoli (Fisica con Fisica Moderna) Onde cresta valle x = lunghezza d onda A = ampiezza Onde elettromagnetiche la

Dettagli

FISICA GENERALE I - 10/12 CFU NP II appello di Febbraio A.A Cognome Nome n. matr.

FISICA GENERALE I - 10/12 CFU NP II appello di Febbraio A.A Cognome Nome n. matr. FISICA GENERAE I - / CFU NP II appello di Febbraio A.A. - 5..4 Cognome Nome n. matr. Corso di Studi Docente Voto 9 crediti crediti crediti Esercizio n. Due masse puntiformi scivolano senza attrito su un

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Le onde ci sono familiari - onde marine,

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

INTERFERENZA 1. Allora la luce totale emessa, data dalla somma delle onde luminose emesse dai singoli atomi, NON SARA' POLARIZZATA

INTERFERENZA 1. Allora la luce totale emessa, data dalla somma delle onde luminose emesse dai singoli atomi, NON SARA' POLARIZZATA INTERFERENZA 1 SORGENTI LUMINOSE NATURALI Le sorgenti di onde luminose sono, in generale, atomi e molecole (ad esempio, gli atomi che compongono il filamento di una lampadina, gli atomi che formano lo

Dettagli

I esonero di Ottica Geometria a.a compito A

I esonero di Ottica Geometria a.a compito A I esonero di Ottica Geometria a.a. 2016-17 compito A Un onda elettromagnetica piana con frequenza 5x10 12 Hz entra con incidenza normale in un mezzo spesso 10 Km. Sapendo che la luce impiega un tempo t=50

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Scritto Appello II, Materia Condensata. AA 2017/2018

Scritto Appello II, Materia Condensata. AA 2017/2018 Scritto Appello II, Materia Condensata. AA 017/018 19/0/018 Coloro che hanno superato il primo esonero dovranno svolgere gli esercizi 3 e 4 in un tempo massimo di due ore (il punteggio sarà riportato in

Dettagli

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Diffrazione di Raggi-X da Monocristalli A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Raccolta Dati di Diffrazione: Diffrazione di Raggi X Raccolta

Dettagli

Onde elettromagnetiche. Propagazione delle onde Riflessione e rifrazione

Onde elettromagnetiche. Propagazione delle onde Riflessione e rifrazione Onde elettromagnetiche Propagazione delle onde Riflessione e rifrazione Arcobaleno di Maxwell La luce visibile è solo una piccola regione dello spettro elettromagnetico. Alcune radiazioni si producono

Dettagli

produrrebbe separatamente in per quel punto. Si dice che i fasci emessi in queste condizioni da S

produrrebbe separatamente in per quel punto. Si dice che i fasci emessi in queste condizioni da S NRFRNZA. Da un punto di vista generale, con il nome di interferenza andrebbero indicati tutti quei fenomeni che derivano dalla sovrapposizione di onde luose diverse in una certa regione: in realtà ci si

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 4 Onde elettromagnetiche Sommario

Dettagli

Master Class di Ottica. Interferenza

Master Class di Ottica. Interferenza Master Class di Ottica 6 marzo 2012 Interferenza Dr. Eleonora Nagali La luce 1/2 Sir Isaac Newton 1642-1727 Augustin-Jean Fresnel Christiaan Huygens 1629-1695 1788-1827 Christiaan Huygens: in analogia

Dettagli

Diffrazione di Raggi X

Diffrazione di Raggi X Diffrazione di Raggi X 1. Laue, Friedrich, Knipping (Monaco, 1912): diffrazione da reticolo tridimensionale 2. Ewald (Tesi di dottorato, Monaco, 1913): costruzione del reticolo reciproco 3. Bragg and Bragg

Dettagli

Fisica dello Stato Solido

Fisica dello Stato Solido Fisica dello Stato Solido Richiami di fisica classica Corso di Laurea Magistrale in Ingegneria Elettronica a.a.10-11 http://www.de.unifi.it/fisica/ruzzi/fss.html Sommario ermodinamica Primo principio della

Dettagli

POLARIZZAZIONE. I = < (E 0 cos ϕ) 2 > (1) dove < (E 0 cos ϕ) 2 > è il valore mediato nel tempo.

POLARIZZAZIONE. I = < (E 0 cos ϕ) 2 > (1) dove < (E 0 cos ϕ) 2 > è il valore mediato nel tempo. POLARIZZAZIONE ESERCIZIO 1 Un fascio di luce naturale attraversa una serie di polarizzatori ognuno dei quali ha l asse di polarizzazione ruotato di 45 rispetto al precedente. Determinare quale frazione

Dettagli

MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO

MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO MISURA DELLE FREQUENZE DI RISONANZA DI UN TUBO SONORO Scopo dell esperienza è lo studio della propagazione delle onde sonore all interno di un tubo, aperto o chiuso, contenete aria o altri gas. Si verificherà

Dettagli

Fisica Generale II (prima parte)

Fisica Generale II (prima parte) Corso di Laurea in Ing. Medica Fisica Generale II (prima parte) Cognome Nome n. matricola Voto 4.2.2011 Esercizio n.1 Determinare il campo elettrico in modulo direzione e verso generato nel punto O dalle

Dettagli

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria?

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria? Esercizi 1) Il modulo della differenza dei due vettori indicati nella figura vale a) 10 b) 3 d) 2 1 1 2) Siano dati due vettori di modulo pari a 3 e 6. Se l angolo tra di essi è di π/3 rad, il loro prodotto

Dettagli