CORSO DI TOPOGRAFIA A - A.A ESERCITAZIONI ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CORSO DI TOPOGRAFIA A - A.A. 2006-2007 ESERCITAZIONI - 09.05.07 ALLEGATO al file Esercizi di geodesia. r a. Z c. nella quale"

Transcript

1 CORSO DI TOPOGRAFIA A - A.A. 6-7 ESERCITAZIONI ALLEGATO l fil Esrcizi di godsi Ellissoid trrstr Fin dll scond mtà dl VII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E' l suprfici di rifrimnto intrnzionlmnt dottt, gnrt dll rotzion di un lliss (dtt lliss mridin, di smissi, c) ttorno ll ss minor (ss polr). Vdi Figur. Un llissoid di rotzion è dfinito dll quzion: r Z + c nll qul r + Y Dfiniscono univocmnt l llissoid du prmtri gomtrici: l llissoid risult dfinito ssgnndo i vlori di du smissi, c oppur un smiss un di prmtri dimnsionli α ' : smiss mggior c smiss minor α schiccimnto (prim) ccntricità ' scond ccntricità

2 c α c c ' Prmtri dgli llissoidi mggiormnt utilizzti: Ellissoid [m] α c [m] WGS /98, ,34 6, x -3 HAYFORD / ,946 6,767 x -3 BESSEL ,55 /99, ,963 6, x -3 Si dicono MERIDIANI l szioni pin (llissi tutt uguli) ottnut scndo l llissoid con pini pssnti pr l ss polr. Si dicono PARALLELI l szioni pin (circonfrnz) ottnut scndo l llissoid con pini prllli l pino qutoril. COORDINATE GEOGRAFICHE ELLISSOIDICHE Sono du prmtri (ngoli) tti dfinir univocmnt l posizion plnimtric di un punto P sull llissoid trrstr. Ltitudin ϕ Angolo comprso tr l norml llissoidic pr P il pino qutoril, contto vrso nord (ltitudin N) o vrso sud (ltitudin S). Risult: ϕ 9 ϕ 9 N S Longitudin λ Angolo comprso tr il pino dl mridino pr P il pino dl mridino fondmntl (Grnwich o M.Mrio), contto vrso st (longitudin E) o vrso ovst (longitudin W). Risult: λ 36 λ 36 E W

3 RETICOLATO GEOGRAFICO Lungo i prllli: ϕ cost Lungo i mridini: λ cost L du fmigli di curv costituiscono il rticolto gogrfico. Si intrscno con ngoli rtti (sist. ortogonl). Vdi Figur3. COORDINATE GEOGRAFICHE ASTRONOMICHE Hnno dfinizion nlog qull llissoidich m considrndo l vrticl (norml l goid) in luogo dll norml llissoidic, il pino qutoril stronomico (norml ll ss polr stronomico) i mridini stronomici si dtrminno con misur di godsi stronomic (ffttut risptto ll stll fiss ). Gli scostmnti tr coordint gogrfich stronomich d llissoidich sono pri ll componnti Nord Est dll dvizion dll vrticl (ngolo tr vrticl norml llissoidic): ϕ ϕ - ϕ λ λ λ

4 SEZIONI NORMALI PRINCIPALI SULL ELLISSOIDE I MERIDIANI sono szioni normli principli dto ch ogni pino mridino è un pino di simmtri. L scond szion norml principl si ottin con un pino norml ll llissoid prpndicolr l mridino, dtto PRIMO VERTICALE. GRAN NORMALE è il nom dl suo rggio di curvtur (vdi Figur4). Dll'quzion dll'lliss mridin dll'llissoid di rotzion, ssndo r sn ϕ W Z ) snϕ ) sn ϕ snϕ W L prim sprssion indic il rggio dl prlllo in funzion dll ltitudin ϕ di prmtri dll'llissoid. Il rggio di curvtur dl mridino in un punto è R ρ. Poiché ρ dϕ ds (Figur5) ds dr + dz, si ottin

5 d cui si ottin drivndo ds quindi ρ ) sn ϕ) 3 ) 3 sn ϕ) dϕ Il rggio di curvtur dl primo vrticl (dtto Grn Norml N) si ottin pplicndo l primo vrticl l prlllo il torm di Musnir: R r N sn ϕ W Si dimostr ch N è smpr mggior o ugul ρ (ugul solo i poli dov il primo vrticl coincid col mridino, ltrimnti smpr mggior). SEZIONI NORMALI QUALSIASI SULL ELLISSOIDE L Formul di Eulro fornisc il rggio di curvtur di un szion norml qulsisi vnt zimut α. R α cos α sn α cos α sn α + + R R ρ N Il RAGGIO MEDIO DI CURVATURA dll szioni normli in un punto è dto d: R R R sn ϕ ρ N sso è il rggio dll sfr ch mglio pprossim l llissoid nll intorno di un punto, dtt SFERA LOCALE.

6 L formul di Eulro il torm di Musnir prmttono di clcolr in un punto il rggio di curvtur di un curv qulsisi sull llissoid. SEZIONI NORMALI RECIPROCHE Dti du punti A B sull llissoid non sist in gnrl un unic szion norml ch li contng m szioni normli distint dtt rciproch (vdi Figur6). ARCHI DI CURVE SULL ELLISSOIDE Noti i rggi di curvtur dl mridino dl prlllo è possibil ricvr i rispttivi lmnti di rco ds p (rco lmntr di prlllo) ds m (rco lmntr di mridino): ds p r x dλη ds m ρ x dϕ COORDINATE CARTESIANE GEOCENTRICHE Y Z ( N + h) ( N + h) snλ ( N ) + h) snϕ (*) COORDINATE GEOGRAFICHE Y snλ tn λ cosλ Y λ rctn dll prim dll trz dll (*) si clcol h

7 h N Z ) N snϕ snϕ N Z snϕ ) N snϕ N snϕ Z tn ϕ Z cosλ ossrvndo ch: ) N snϕ ) N snϕ + N snϕ cosλ tnϕ Z + Y ) N snϕ + N snϕ + Y Z N snϕ + N snϕ + N snϕ + Y Z + N snϕ ϕ rctn + Y FORMULE DI BENCINI R + Y (distnz dll'ss polr) Z ϑ rctn (vlor di prim pprossimzion dll ltitudin ridott) R Z R + snϑ tnϑ δ ϑ (corrzion d pportr l vlor ϑ R ) (+ tn ϑ ) cosϑ ϑ ϑ δ ϑ + (vlor corrtto di scond pprossimzion dll ltitudin ridott)

8 ϑ ϕ rctn tn

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford.

ESERCIZIO 1 Calcolare i raggi di curvatura delle sezioni normali principali nel Polo Nord dell' ellissoide di Hayford. CORSO DI OOGRAFIA A - A.A. 006-007 ESERCIAZIOI - 09.05.06 ESERCIZI DI GEODESIA ESERCIZIO 1 Clcolr i rggi di curvtur dll szioni normli principli nl olo ord dll' llissoid di Hyford. 1) Szioni ormli rincipli

Dettagli

Da cartesiano geocentrico a cartesiano locale

Da cartesiano geocentrico a cartesiano locale Trsformzion tr sistmi di rifrimnto D crtsino gocntrico crtsino locl Si considri un punto l cui posizion è not risptto d un llissoid di rifrimnto. Si ssoci tl punto un sistm crtsino locl, ch h: origin nl

Dettagli

Superfici di Riferimento (1/4)

Superfici di Riferimento (1/4) Superfici di Riferimento (1/4) L definizione di un superficie di riferimento nsce dll necessità di vere un supporto mtemtico su cui sviluppre il rilievo eseguito sull superficie terrestre. Tle superficie

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

S kx. e che è dispari in quanto

S kx. e che è dispari in quanto imulzion MIUR Esm di tto 09 - mtmtic Prolm f x 0, 0 i h immditmnt: 0 x 0 x f ' x 0 x lim f lim 0 lim f lim x x x x f 0 Il grfico riport l ndmnto; pplicndo ll curv l trslzion di vttor 0;, ovvro: x' x y

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA PROBLEMA 2 www.mtfili.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 27 - PROBLEMA 2 L funzioni g, g 2, g, g 4 sono dfinit nl modo sgunt: g (x) = 2 x2 2 g 2 (x) = x g (x) = 2 π cos (π 2 x) ) g 4 (x) = ln( x ) Vrific

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR

ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR ESERCITAZIONE DIECI: INTEGRALI DEFINITI E FORMULA DI TAYLOR Tizin Rprlli 5/5/8 RICHIAMI DI TEORIA Proposizion.. Si f C ([, b]) g C ([, b]), llor f(x)g(x)dx = [F (x)g(x)] b F (x)g (x)dx. dov F (x) è un

Dettagli

Esercizi Circuiti Resistivi

Esercizi Circuiti Resistivi srcizi Circuiti sistivi srcizio n isolvr il circuito in figur: v v v v 4 4 5 4 0 0Ω 5Ω 5Ω 4 5Ω Ω 5 v 5 5 4 () isolvr un circuito signific in gnrl dtrminr tnsioni corrnti in tutti i lti dl circuito. Trsformimo

Dettagli

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a

La pendenza m può essere ricavata derivando l equazione della semiellisse situata nel semipiano y 0 : a a Esm di Stto 7 sssion strordinri Prolm Utilizzndo l formul di sdoppimnto, l tngnt ll lliss nl punto ; x y x x y y x y Imponndo il pssggio pr (; ) si ottin: x ch, sostituito nll quzion dll lliss, prmtt di

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

PROBLEMA 1 In un sistema di assi cartesiani ortogonali O x y una curva γ ha per equazione

PROBLEMA 1 In un sistema di assi cartesiani ortogonali O x y una curva γ ha per equazione ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO LICEO DELLA COMUNICAZIONE SESSIONE SUPPLETIVA Tm di: MATEMATICA. s. 9- PROBLEMA In un sistm di ssi crtsini ortogonli O y un curv γ h pr quzion y.

Dettagli

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota:

Rap a p p o p r o to o I n I c n r c em e e m n e t n al a e Def. rapporto incrementale nel punto x incremento h Nota: Rpporto Incrmntl α Δ Δy y m tnα y. Il rpporto incrmntl dll unzion nl punto rltivo d un incrmnto è il coicint nolr dll scnt l rico dll unzion ni punti di sciss d Not: Nll smpio rico è riportto > m, in nrl,

Dettagli

Si definisce sistema di riferimento un insieme di regole e osservazioni che permettono di stimare coordinate ad una generica epoca.

Si definisce sistema di riferimento un insieme di regole e osservazioni che permettono di stimare coordinate ad una generica epoca. Trsformzione tr sistemi di coordinte Sistemi di riferimento Si definisce sistem di riferimento un insieme di regole e osservzioni che permettono di stimre coordinte d un generic epoc. Un generico Sistem

Dettagli

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA

Nome Cognome classe 5D 16 Dicembre VERIFICA di MATEMATICA PROBLEMA Nom Cognom cls D 6 Dicmr 8 VERIFICA di MATEMATICA PROBLEMA Considr l unzion, studin l ndmnto trccin il grico proil punti: Di l dinizion di unzion inittiv Sull dl grico proil ch hi trccito, l unzion è inittiv?

Dettagli

IV. L EQ. DI VAG MEDIANTE EQ. POLARE

IV. L EQ. DI VAG MEDIANTE EQ. POLARE IV. L EQ. DI VAG MEDIANTE EQ. POLARE LA GEOMETRIA CON L EQ. PARAMETRICA DI VAG Euzion Polr C. IV Pg. 1 Essndo nll E. di Vg il vlor OA (dll'origin d un unto, d in gnrl tr unto unto) un vlor ssoluto, non

Dettagli

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*)

Fig. 1. 1) La resistenza totale della bobina vale: (*) 2) Il modulo B del campo di induzione magnetica B r nel punto medio M della spira vale: L (*) Fcoltà di nggnri Prov Scritt di Fisic uglio 4 - Compito usito n. n un filo rttilino lungo fluisc un corrnt. Ad un distnz dl filo è post un oin, il cui punto mdio è ll stss quot dl punto mdio O dl filo.

Dettagli

Geodetic Reference System 1980 di Michele T. Mazzucato

Geodetic Reference System 1980 di Michele T. Mazzucato odtic Rrnc Syst 90 di Michl T. Mzzucto Costnti otrich Drivt Costnti Fisich Drivt Forul intrnzionl dll grvità Il sist è stto dottto nll XVII Assl nrl dll'intrntionl Union o odsy nd ophysics IU tnutsi nll

Dettagli

Metodi Matematici per la Fisica

Metodi Matematici per la Fisica Mtodi Mtmtici pr l Fisic Prov scritt - 7 sttmbr 011 Esrcizio 1 6 punti Si clcoli l intgrl I snx snhx dx Ci sono du mtodi, di sguito il primo Ci sono infiniti poli smplici inftti il sno iprbolico si nnull

Dettagli

Calcolo a fatica di componenti meccanici. Terza parte

Calcolo a fatica di componenti meccanici. Terza parte Clcolo ftic di coponnti ccnici Trz prt Il cofficint di sicurzz nll progttzion ftic Un qulsisi punto ll intrno dll r sotts dl sgnto ch è rpprsntto d un coppi di vlori può giungr l liit trit un incrnto di

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2

α = α λ e Essendo ( ) , sostituendo nella (81) si ottiene: (83) 3 (86) Possiamo adesso scrivere la soluzione generale della (81): ~ 2 Appunti dll lzion dl Prof Stfno D Mrchi dl //6 cur dl Prof Frnndo D Anglo Soluzion di un srcizio ssgnto nll scors lzion (srcizio h) (8) L soluzion gnrl dll quzion ssocit è dt d: (8) ( ) o Ossrvto ch il

Dettagli

Compito sugli integrali definiti e impropri (1)

Compito sugli integrali definiti e impropri (1) Compito sugli intgrli dfiniti impropri () Esrcizio Clcolr i sgunti intgrli dfiniti: () () d d ; Esrcizio Stilir s i sgunti intgrli impropri convrgono d, in cso ffrmtivo, scrivr qul vlor: () () d ; d Esrcizio

Dettagli

1 La forma della Terra (Principi di Geodesia)

1 La forma della Terra (Principi di Geodesia) Topografia, Cartografia e GIS Prof. Carlo Bisci Modulo Topografia e Cartografia (6 CFU) 1 La forma della Terra (Principi di Geodesia) La Geodesia Studio della forma e delle dimensioni della Terra Scelta

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza

Analisi Matematica II. Esercizi sugli integrali multipli, sugli integrali superficiali, sulle formule di Gauss-Green, di Stokes e della divergenza Analisi Matmatica II Esrcizi sugli intgrali multipli, sugli intgrali suprficiali, sull formul di Gauss-Grn, di toks dlla divrgnza orso di laura in Inggnria Mccanica. A.A. 2008-2009. Esrcizio 1. alcolar

Dettagli

Liceo scientifico e opzione scienze applicate *

Liceo scientifico e opzione scienze applicate * PROVA D ESAME SESSIONE STRAORDINARIA 0 Lico scintifico opzion scinz pplict * Lo studnt dv svolgr uno di du problmi rispondr qusiti dl qustionrio Durt mssim dll prov: or È consntito l uso dll clcoltric

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R Curve prmetriche April 6, 01 Esercizi sulle curve scritte in form prmetric. 1. Elic cilindric Dt l curv di equzioni prmetriche r(t) x(t) = cos t y(t) = sin t t [0, T ], > 0, b R z(t) = bt (0.1) clcolre

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

APOTEMA AREA POLIGONO REGOLARE LUNGHEZZA CIRCONFERENZA LUNGHEZZA ARCO CIRCONFERENZA AREA CERCHIO AREA SETTORE CIRCOLARE AREA CORONA CIRCOLARE

APOTEMA AREA POLIGONO REGOLARE LUNGHEZZA CIRCONFERENZA LUNGHEZZA ARCO CIRCONFERENZA AREA CERCHIO AREA SETTORE CIRCOLARE AREA CORONA CIRCOLARE CERCHIO E CIRCONFERENZ CIRCONFERENZ CERCHIO POSIZIONE RETT RISPETTO CIRCONFERENZ POSIZIONE DI DUE CIRCONFERENZE NGOLI L CENTRO NGOLI LL CIRCONFERENZ SETTORE CIRCOLRE PROPRIET CORDE E RCHI POLIGONI INSCRITTI

Dettagli

INTEGRALI DOPPI Esercizi svolti

INTEGRALI DOPPI Esercizi svolti INTEGRLI OPPI Esrcizi svolti. Calcolar i sgunti intgrali doppi: a b c d f g h i j k y d dy, {, y :, y }; d dy, {, y :, y }; + y + y d dy, {, y :, y }; y d dy, {, y :, y }; y d dy, {, y :, y + }; + y d

Dettagli

( a) 1 a + Es. Data la funzione:

( a) 1 a + Es. Data la funzione: Es. Dt l uzio: ' ' ( Esrcizi Complmtri. A( ( b. Dtrmir pr quli vlori di b l uzio mmtt u puto di mssimo d u puto di miimo pr quli vlori l uzio o mmtt tli puti.. Dtrmir i vlori di b i modo ch l uzio prsti

Dettagli

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica

Esercizi di Geometria - Foglio 2 Corso di Laurea in Matematica Esercizi di Geometri - Foglio Corso di Lure in Mtemtic A. Sottospzi ffini. Esercizio A.1 Esempi e non-esempi di sottospzi ffini Determinre quli dei seguenti insiemi sono sottospzi ffini (precisndo di qule

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.matfilia.it SESSIONE SUPPLETIVA 8 - PROBLEMA f k () = k ln() g k () = k, k > ) L invrsa di y = k ln() si ottin nl sgunt modo: y k = ln(), y k =, da cui, scambiando con y, y = g k () = k Quindi l invrsa

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

GEODESIA 2 PARTIAMO DALL IPOTESI DI ESEGUIRE MISURE DIRETTAMENTE SULLA SUPERFICIE DI RIFERIMENTO: L ELLISSOIDE

GEODESIA 2 PARTIAMO DALL IPOTESI DI ESEGUIRE MISURE DIRETTAMENTE SULLA SUPERFICIE DI RIFERIMENTO: L ELLISSOIDE GEODESIA 2 PARTIAMO DALL IPOTESI DI ESEGUIRE MISURE DIRETTAMENTE SULLA SUPERFICIE DI RIFERIMENTO: L ELLISSOIDE si dimostra che la linea di minor lunghezza che congiunge due punti sull ellissoide è la geodetica:

Dettagli

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti

Propulsione Aerospaziale. Cap. 4 Sez. d Ugelli per esoreattori e endoreattori. Esercizi svolti Politcnico di ilno Fcoltà di Innri Industril Corso di Lur in Innri roszil Insnmnto di Proulsion roszil nno ccdmico / C. 4 Sz. d Ulli r sorttori ndorttori Esrcizi svolti rv. dicmbr ESERCIZIO 4d. Un ullo

Dettagli

Simulazione di II prova di Matematica Classe V

Simulazione di II prova di Matematica Classe V Liceo Scientifico Pritrio R. Bruni Pdov, loc. Ponte di Brent, 31/05/2018 Simulzione di II prov di Mtemtic Clsse V Studente/ss Risolvi uno dei due problemi. 1. Un tpp giornlier di un percorso di trekking

Dettagli

x BP, controllando che risulta :

x BP, controllando che risulta : Corso sprimntl - Sssion suppltiv -.s. 9- ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- PROBLEMA E dt un circonrnz di cntro O dimtro AB. Sul prolungmnto

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

x ; sin x log 1 x ; 4 0 0,0.

x ; sin x log 1 x ; 4 0 0,0. .. Pr quli vlori dl prmtro l sri S (i uzio dl prmtro ). q ch covrg s solo s q. q Ricordimo ch pr q è q q q q q h soluzio pr tli vlori l sri covrg S E' u sri gomtric di rgio covrg? Pr tli vlori sprimi l

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z)

Quadriche in E 3 (C) L equazione cartesiana di una quadrica in coordinate non omogenee (x,y,z) Qudriche in E (C) L equione crtesin di un qudric in coordinte non omogenee (,,) Q:, +, +, +, +, +, +,4 + +,4 +,4 + 4,4. in coordinte omogenee (,,, 4 ) Q:, +, +, +, +, +, + +,4 4 + +,4 4 +,4 4 + 4,4 4.

Dettagli

11 Funzioni iperboliche

11 Funzioni iperboliche 11 Funzioni iprbolich 11.1 L funzioni iprbolich: dfinizioni grafici L funzioni iprbolich sono particolari combinazioni di di. Hanno numros applicazioni nl campo dll inggnria si prsntano in modo dl tutto

Dettagli

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2

γ : y = 1 + 2t 1 + t 2 z = 1 + t t2 Politcnico di Milano Inggnria Industrial Analisi Gomtria Esrcizi sull curv. Si considri la curva x t + t : y 6 + 4t t t t R. z t t (a) Stabilir s la curva piana. (b) Stabilir s la curva smplic. (c) Stabilir

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

Generalità sulle superfici algebriche. Superficie cilindrica

Generalità sulle superfici algebriche. Superficie cilindrica Generlità sulle superfici lgeriche Definizione: Si definisce superficie lgeric di ordine n il luogo geometrico dei punti P dello spzio le cui coordinte crtesine,, z verificno un equzione lgeric di grdo

Dettagli

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1

SOLUZIONE PROBLEMA 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1 SOLUZIONE PROBLEMA 1 1. Studiamo la funzion q ( = at, ssndo a b costanti rali con a >. Il dominio dlla funzion è tutto R la funzion è ovunqu continua. Il grafico dlla funzion non

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

SPOSTAMENTO E RETTIFICA DI CONFINE

SPOSTAMENTO E RETTIFICA DI CONFINE SPOSEO E REIFI I OFIE Lo SPOSEO si qundo un confin ià rttilino vin sostituito con un ltro smpr rttilino L REIFI si qundo un confin polionl o curvilino vin sostituito con un ltro rttilino. SPOSEO REIFI

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F(x) è un primitiv di f(x), llor le funzioni F(x) + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(x). Precismente:! se F(x) è un primitiv di f (x), llor nche

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

Svolgimento a cura di Nicola de Rosa. Punto 1 Consideriamo la figura sottostante rappresentante la geometyria del problema. M N t

Svolgimento a cura di Nicola de Rosa. Punto 1 Consideriamo la figura sottostante rappresentante la geometyria del problema. M N t Svolgimnto cur di Nicol d Ros PROBLMA Punto Considrimo l figur sottostnt rpprsntnt l gomtri dl prolm. M N t K P A H O B Q L suprfici ltrl dl solido ottnuto dll rotzion dl trpzio isoscl PQNM ttorno ll rtt

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

Note di Matematica Generale

Note di Matematica Generale This is pg i Printr: Opqu this Not di Mtmtic Gnrl Robrto Mont Dcmbr 13, 2005 ii ABSTRACT Ths nots r still work in progrss nd r intndd to b for intrnl us. Pls, don t cit or quot. Contnts This is pg iii

Dettagli

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010)

Ingegneria dei Sistemi Elettrici_2 a (ultima modifica 08/03/2010) Ingegneri dei Sistemi Elettrici_2 (ultim modific 08/03/2010) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell elettromgnetismo, si

Dettagli

Corso di Automi e Linguaggi Formali Parte 3

Corso di Automi e Linguaggi Formali Parte 3 Esmpio Sdo il pumping lmm sist tl ch ogni prol di tin un sottostring non vuot ch puo ssr pompt o tglit rpprsntrl com Invc non in dv ssr in posso Corso di Automi Linguggi Formli Gnnio-Mrzo 2002 p.3/22 Corso

Dettagli

Ad esempio: Casi particolari di riduzione per integrali tripli

Ad esempio: Casi particolari di riduzione per integrali tripli Csi prticolri di riduzione per integrli tripli 1 Se f ècontinusu = [ 1,b 1 ] [ 2,b 2 ] [ 3,b 3 ], tutte le formule di riduzione funzionno. llor l ordine di integrzione può essere qulsisi e perciò si us

Dettagli

Integrale indefinito

Integrale indefinito 04//05 Intgrl indinito unzion intgrl Dinizion Si un unzion intgrbil scondo Rimnn nll intrvllo [,b] [,b], si dinisc unzion intgrl di, l intgrl dinito: t 04//05 Torm ondmntl dl clcolo intgrl Si continu in

Dettagli

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla

La condizione richiesta è soddisfatta quando il primo massimo della curva, di ascissa x, si trova sulla Esam di Stato 8 sssion suppltiva Problma La condizion richista è soddisfatta quando il primo massimo dlla curva, di ascissa, si trova sulla bisttric dl primo quadrant, pr cui (tutt l misur linari sono

Dettagli

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA

Nome.Cognome. 18 Dicembre 2008 Classe 4G. VERIFICA di MATEMATICA Nome.Cognome. 8 Dicembre 008 Clsse G VERIFICA di MATEMATICA A) Risolvi le seguenti disequzioni goniometriche sin ) sin + ) 0 6 tn cos + sin ) 0 (punti:0,5) ) tn + tn > 0 sin 5) sin > cos (punti: ) 6) sin

Dettagli

j Verso la scuola superiore Gli insiemi N, Z, Q, R

j Verso la scuola superiore Gli insiemi N, Z, Q, R j Vrso l suol suprior Gli insimi N, Z, Q, R Individu l rispost orrtt Un numro è divisor sondo di un numro s L oprzion è impossiil possiil in Z possiil in R Trdundo il tsto nll simologi mtmti si h ; pplindo

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

UNITA DI MISURA. distanze

UNITA DI MISURA. distanze Unità di misur. ppunti di Topogrfi UNIT DI MISUR distnze L unità di misur bitulmente impiegt per esprimere le distnze è il metro. Per grndezze molto piccole è opportuno ricorrere i sottomultipli, centimetro

Dettagli

A.A Corso di Laurea in Scienze geologiche

A.A Corso di Laurea in Scienze geologiche A.A. 2014-2015 Corso di Laurea in Scienze geologiche CARTOGRAFIA CARTOGRAFIA INSIEME DI OPERAZIONI TECNICHE, SCIENTIFICHE E DIMOSTRATIVE ATTE AD ELABORARE CARTE ED A PERMETTERNE L USO E LA LETTURA CARTA

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

INSIEMI, RETTA REALE E PIANO CARTESIANO

INSIEMI, RETTA REALE E PIANO CARTESIANO INSIEMI, ETTA EALE E PIANO CATESIANO ICHIAMI DI TEOIA SUGLI INSIEMI Un insieme E è definito ssegnndo i suoi elementi, tutti distinti tr loro: se x è un elemento di E scrivimo x E, mentre, se non lo è,

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA (ultima modifica 02/10/2014)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA (ultima modifica 02/10/2014) ELETTROMGNETISMO PPLITO LL'INGEGNERI ELETTRI ED ENERGETI (ultim modific 02/10/2014) Prim di definire le grndee di bse e le costnti universli del modello elettromgnetico per poter sviluppre i vri temi dell

Dettagli

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1)

PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 QUESITO 2 Si calcoli il limite della funzione y = log(x+3) log (2x+1) www.mtefili.it PNI 2007 SESSIONE STRAORDINARIA - QUESITI QUESITO Si clcoli il limite dell funzione y log(x+) log (2x+), qundo x tende 2. x 2 +x 6 Il limite si present nell form indetermint 0/0. log(x +

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progtto i cinghi trpzoili L cinghi trpzoili sono utilizzt frquntmnt pr l trsmission i potnz ntggi Bsso costo Smplicità i instllzion Cpcità i ssorbir vibrzioni torsionli picchi i coppi Svntggi Mncnz i sincronismo

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

RAPPRESENTAZIONE DELLA SUPERFICIE TERRESTRE

RAPPRESENTAZIONE DELLA SUPERFICIE TERRESTRE RAPPRESENTAZIONE DELLA SUPERFICIE TERRESTRE La superficie terrestre è di forma Le dimensioni irregolare e non semplice da della terra eccedono definire matematicamente. le nostre capacità di misura. OCCORRE

Dettagli

a monometriche Oxy, l equazione cartesiana di Γ è: y =

a monometriche Oxy, l equazione cartesiana di Γ è: y = Y557 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Tem di: MATEMATICA Il cndidto risolv uno dei due problemi e 5 dei quesiti del questionrio. PROBLEMA Nel pino sono dti: il cerchio γ

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Roberto Rossi. Padova, 22 settembre 2008 Cenni di Geodesia e Cartografia

Roberto Rossi. Padova, 22 settembre 2008 Cenni di Geodesia e Cartografia Padova, 22 settembre 2008 Cenni di Geodesia e Cartografia Roberto Rossi Dipartimento Territorio e Sistemi Agro-forestali Università di Padova roberto.rossi@unipd.it Il problema cartografico Posizione sul

Dettagli

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE

FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE FUNZIONI IMPLICITE E MOLTIPLICATORI DI LAGRANGE Indic 1. Funzioni implicit 1. Ottimizzazion vincolata. Esrcizi 4.1. Funzioni implicit 4.. Ottimizzazion vincolata 6 1. Funzioni implicit Ricordiamo ch s

Dettagli

Integrazione per cambio di coordinate in R 3

Integrazione per cambio di coordinate in R 3 Integrzione per cmbio di coordinte in R 3 L situzione è del tutto simile quell vist in R 2. Definizione. Si chim cmbio di coordinte su un insieme R 3 ogni funzione : definit su un ltro R 3 tle che è biiettiv,

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Ottica ondulatoria. Interferenza e diffrazione

Ottica ondulatoria. Interferenza e diffrazione Ottic ondultori Interferenz e diffrzione Interferenz delle onde luminose Sorgenti coerenti: l differenz di fse rest costnte nel tempo Ond luminos pin che giunge su uno schermo contenente due fenditure

Dettagli