FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s prof. ssadelfino M. G.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G."

Transcript

1 FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s prof. ssadelfino M. G.

2 A1 DEFINIZIONE DI FUNZIONE 2

3 Diapositiva 2 A1 Autore; 08/09/2015

4 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f Non è una funzione! 3

5 DEFINIZIONE DI FUNZIONE X a b c.1 Y Non è una funzione! 4

6 DEFINIZIONE DI FUNZIONE E una funzione! Non è una funzione! 5

7 DEFINIZIONE DI FUNZIONE Non è una funzione! 6

8 IL GRAFICO RAPPRESENTA UNA FUNZIONE? 7

9 LO STUDIO DI FUNZIONE 8

10 CLASSIFICAZIONE DELLE FUNZIONI 9

11 A2 GLI ZERI DIUNA FUNZIONE f( x ) =

12 Diapositiva 10 A2 Autore; 08/09/2015

13 INTERSEZIONE CON GLI ASSI Intersezione con l asse delle ordinate, asse delle y, x = 0 x= 0 y = f( x) A( 0; ya) Intersezione con l asse delle ascisse, asse delle x, y = 0 y= 0 y = f( x) B( x B ;0) 11

14 STUDIO DEL SEGNO DELLA FUNZIONE Studiare il segno della funzione serve a capire in quali intervalli del suo dominio il grafico si trova al di sopra dell asse delle x e dove al di sotto di essa y y y > 0 f( x) > 0 = 0 f( x) = 0 < 0 f ( x ) < 0 Si riporta sul grafico la zona interessata Ricorda di considerare solamente i valori che rientrano nel dominio! 12

15 LE FUNZIONI INIETTIVE, SURIETTIVE E BIIETTIVE DEFINIZIONE Funzione iniettiva, funzione suriettiva, funzione biiettiva (o biunivoca) Una funzione da A a B si dice: - iniettiva se ogni elemento di B è immagine di al più un elemento di A; - suriettiva se ogni elemento di B è immagine di almeno un elemento di A; - biiettiva (o biunivoca) se è sia iniettiva sia suriettiva. ESEMPIO ESEMPIO y = 2x -1 - Suriettiva - Iniettiva BIIETTIVA y = x Suriettiva se - Non iniettiva se 13

16 LE FUNZIONI INIETTIVE Una funzione da A a B: f: A B si dice Iniettiva se ogni elemento di B è immagine di al più un elemento di A In modo equivalente, possiamo dire che una funzione è iniettiva se a elementi distinti di A corrispondono elementi distinti di B, ossia x, x A x x f( x) f( x) Funzione iniettiva Funzione non iniettiva 14

17 Per stabilire se la nostra FUNZIONE è INIETTIVA o meno useremo il cosiddetto TEST DELLE RETTE ORIZZONTALI. Vediamo in cosa consiste: Si tratta di TRACCIARE delle RETTE PARALLELE all'asse DELLE ASCISSE. Se almeno una delle rette tracciate, INTERSECA IL GRAFICO in ALMENO DUE PUNTI DISTINTI, la funzione NON E' INIETTIVA dato che ad elementi distinti dix non corrispondono elementi distinti di Y. Ad esempio, la funzione da noi disegnata non è iniettiva poiché le rette parallele all'asse delle x che abbiamo disegnato intersecano la funzione in due punti distinti: i due punti evidenziati in rosso rappresentano due valori distinti dixa cui viene associato uno stesso valore di Y. La stessa cosa possiamo dire per i due punti evidenziati in azzurro e per i due punti evidenziati in verde. 15

18 LE FUNZIONI SURIETTIVE Una funzione da A a B: f: A B si dice Suriettiva se ogni elemento di B è immagine di almeno un elemento di A Funzione suriettiva Funzione non suriettiva Non esiste alcun elemento di B che non sia immagine di elementi di A Esiste un elemento di B (5) che non è immagine di alcun elemento di A 16

19 Al fine di stabilire se la FUNZIONE è SURIETTIVA o meno utilizziamo il TEST DELLE RETTE ORIZZONTALI, in altre parole disegniamo tanterette PARALLELE all'asse DELLE ASCISSE. Se almeno una delle rette che abbiamo disegnato, NONINTERSECA IL GRAFICO della funzione in ALCUN PUNTO significa che la funzione NON E' SURIETTIVA dato che esiste almeno un valore diyche non è immagine di nessun valore dix. Ad esempio, la funzione da noi disegnata non è suriettiva poiché le rette parallele all'asse dellexche abbiamo disegnato in rosso non intersecano la funzione in nessun punto. 17

20 LE FUNZIONI BIIETTIVE Una funzione da A a B: f: A B si dice Biettiva (o biunivoca) se è sia iniettiva sia suriettiva Poiché la funzione è iniettiva ad elementi distinti di A corrispondono elementi distinti di B, ma la funzione è anche suriettiva quindi non esiste alcun elemento di B che non sia immagine di un elemento dia. Se gli insiemi A, B hanno un numero finito di elementi allora essi devono avere di anche avere lo stesso numero di elementi. Una funzione è biettiva se per ogni elemento y di B vi è uno e un solo elemento x di A tale che f(x) = y 18

21 Vediamo ora di capire, una volta disegnata una funzione, come è possibile stabilire se essa è BIUNIVOCA o meno. A tale proposito usiamo il cosiddetto TEST DELLE RETTE ORIZZONTALI, cioè disegniamo tanterette PARALLELE all'asse DELLE ASCISSE. Se le rette tracciate, INTERSECANO IL GRAFICOdella funzione SEMPRE e se lo fanno solamente in UN PUNTO significa che la funzione E' BIUNIVOCA dato che a valori distinti dixsono associati valori distinti diye che ogni valore diyè immagine di un valore dix. Ad esempio, la funzione da noi disegnata è biunivoca poiché le rette parallele all'asse dellexche abbiamo disegnato in blu intersecano tutte la funzione e lo fanno sempre in un solo punto che abbiamo evidenziato in rosso. 19

22 LE FUNZIONI CRESCENTI, LE FUNZIONI DECRESCENTI, LE FUNZIONI MONOTÒNE DEFINIZIONE Funzione crescente Una funzione y = f (x) di dominio si dice crescente in senso stretto in un intervallo I, sottoinsieme di D, se, comunque scelti x 1 e x 2 appartenenti a I, con x 1 < x 2, ) risulta f (x 1 ) < f (x 2 ). ESEMPIO y = x 2 4 Crescente in Funzione non decrescente Se, invece di f (x 1 ) < f (x 2 ), vale la funzione è crescente in senso lato o non decrescente. 20

23 LE FUNZIONI CRESCENTI, LE FUNZIONI DECRESCENTI, LE FUNZIONI MONOTÒNE DEFINIZIONE Funzione decrescente Una funzione y = f (x) di dominio si dice decrescente in senso stretto in un intervallo I, sottoinsieme di D, se, comunque scelti x 1 e x 2 appartenenti a I, con x 1 < x 2, risulta f (x 1 ) > f (x 2 ). ESEMPIO Decrescente in Funzione non crescente Se, invece di f (x 1 ) > f (x 2 ), vale la funzione è decrescente in senso lato o non crescente. Non crescente in R 21

24 LE FUNZIONI CRESCENTI, LE FUNZIONI DECRESCENTI, LE FUNZIONI MONOTÒNE DEFINIZIONE Funzione monotona Una funzione di dominio si dice monotòna in senso stretto in un intervallo I, sottoinsieme di D, se, in quell intervallo è sempre crescente o sempre decrescente in senso stretto. Funzione monotòna crescente in I Funzione monotòna decrescente in I 22

25 LE FUNZIONI PERIODICHE DEFINIZIONE Funzione periodica Una funzione y = f (x) si dice periodica di periodo T, con T > 0, se, per qualsiasi numero k intero, si ha: f(x) = f(x+ kt). ESEMPIO y = sen (x) è periodica di periodo 2π perché sen (x) = sen (x + 2kπ). y = tg (x) è periodica di periodo π perché tg (x) = tg (x + kπ). 23

26 LE FUNZIONI PARI E LE FUNZIONI DISPARI DEFINIZIONE Funzione pari Indichiamo con D un sottoinsieme di R tale che, se, allora. Una funzione y = f (x) si dice pari in D se f ( x) = f (x) per qualunque x appartenente a D. ESEMPIO f (x) = 2x 4 1 f ( x) = 2( x) 4 1 = 2x 4 1 = f (x) f è pari. 24

27 LE FUNZIONI PARI E LE FUNZIONI DISPARI DEFINIZIONE Funzione dispari Indichiamo con D un sottoinsieme di R tale che, se, allora. Una funzione y = f (x) si dice dispari in D se f ( x)= f (x) per qualunque x appartenente a D. ESEMPIO f (x) = x 3 + x f ( x) = ( x) 3 + ( x) = x 3 x = f (x) f è dispari. 25

28 LA FUNZIONE INVERSA DEFINIZIONE Funzione inversa Data la funzione biiettiva f da A a B, la funzione inversa di f è la funzione biiettiva f 1 da B ad A che associa a ogni y di B il valore x di A tale che y = f (x). Data una funzione biiettiva reale di variabile reale y = f(x), disegnare il grafico di f 1 equivale a partire dalle ordinate di f e ricavare le ascisse. Ordinate e ascisse si scambiano i ruoli. Il grafici di f e di f 1 sono simmetrici rispetto alla bisettrice del I e III quadrante. 26

29 LA FUNZIONE INVERSA: ESPONENZIALE E LOGARITMICA La funzione esponenziale e la funzione logarimica 27

30 LA FUNZIONE INVERSA DIALTRE FUNZIONI La funzione arcoseno La funzione arcocoseno La funzione arcotangente La funzione arcocotangente 28

31 LE FUNZIONI COMPOSTE Le funzioni composte Date le due funzioni e, con o y = g (f (x)) indichiamo la funzione, detta funzione composta, da A a C che si ottiene associando a ogni x di A l immagine mediante g dell immagine di x mediante f. ESEMPIO Consideriamo: f (x) = x 2, g(x) = x + 1. Otteniamo: La composizione NON è commutativa. 29

32 I GRAFICI DELLE FUNZIONI E LE TRASFORMAZIONI GEOMETRICHE LE TRASLAZIONI 30

33 I GRAFICI DELLE FUNZIONI E LE TRASFORMAZIONI GEOMETRICHE LE SIMMETRIE 31

34 I GRAFICI DELLE FUNZIONI E LE TRASFORMAZIONI GEOMETRICHE LE DILATAZIONI 32

35 I GRAFICI DELLE FUNZIONI E LE TRASFORMAZIONI GEOMETRICHE (CASI PARTICOLARI) y= f 2 ( x) 33

36 I GRAFICI DELLE FUNZIONI E LE TRASFORMAZIONI GEOMETRICHE (CASI PARTICOLARI) 1 y = f( x) 34

37 I GRAFICI DELLE FUNZIONI E LE TRASFORMAZIONI GEOMETRICHE (CASI PARTICOLARI) y= f( x) 35

FUNZIONI E LORO PROPRIETÀ (2) V SCIENTIFICO a. s

FUNZIONI E LORO PROPRIETÀ (2) V SCIENTIFICO a. s FUNZIONI E LORO PROPRIETÀ (2) V SCIENTIFICO a. s. 2015-2016 A2 GLI ZERI DIUNA FUNZIONE f( x ) = 0 0 2 Diapositiva 2 A2 Autore; 08/09/2015 INTERSEZIONE CON GLI ASSI Intersezioneconl assedelleordinate,assedelley,x=0

Dettagli

PREMESSE DELL ANALISI INFINETISIMALE

PREMESSE DELL ANALISI INFINETISIMALE PREMESSE DELL ANALISI INFINETISIMALE LE PREMESSE DELL ANALISI INFINETISIMALE Insiemi numerici e insiemi di punti Un insieme i cui elementi sono numeri reali è chiamato insieme numerico. Detto R l insieme

Dettagli

Esempi di funzione...

Esempi di funzione... Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni

Funzioni: definizioni e tipi. Prof.ssa Maddalena Dominijanni Funzioni: definizioni e tipi Definizione di funzione Dati due insiemi non vuoti A e B, si dice funzione o applicazione da A a B una relazione che associa ad ogni elemento dell insieme A uno ed un solo

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

Generalità sulle funzioni

Generalità sulle funzioni Pagina 1 Generalità sulle funzioni Definizione: Dati due insiemi A e B, si definisce funzione una relazione che associa ad ogni elemento di A uno e un solo elemento di B. Osservazione: Dalla definizione

Dettagli

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Appunti di Matematica 5 - Funzioni - Funzioni. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B Funzioni Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y = () y viene chiamato immagine di e indicato anche

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Funzioni reali di variabile reale Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni reali di variabile reale 1 / 50 Funzioni Definizione Sia A un sottoinsieme di R.

Dettagli

ESERCITAZIONE 7 : FUNZIONI

ESERCITAZIONE 7 : FUNZIONI ESERCITAZIONE 7 : FUNZIONI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 20 Novembre 2012 Corso di recupero Docente:

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili.

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili. OBIETTIVO DELLA RICERCA SCIENTIFICA MODELLO DEL FENOMENO NATURALE stabilire se esistono relazioni tra le quantità che si ritengono essenziali per la descrizione di un fenomeno. è una costruzione ideale

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni:

y = tgx, la funzione reciproca e la funzione inversa di ciascuna di esse risultano rispettivamente avere le seguenti equazioni: Classe 3^D a.s. 200/20 APPUNTI DA INTEGRARE ALLA LEZIONE DEL 0/2/0 LA FUNZIONE RECIPROCA E LA FUNZIONE INVERSA Partendo dalle funzioni trigonometriche fondamentali y = senx, y = cos x, y = tgx, la funzione

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente)

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente) Funzioni Dati due insiemi non vuoti A e B, si chiama funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B NOTAZIONE DELLE FUNZIONI

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Studio di funzione. numeri.altervista.org

Studio di funzione. numeri.altervista.org Studio di funzione 1. Determinazione del campo di esistenza CONDIZIONE DI ESISTENZA intera: FUNZIONE RAZIONALE se è del tipo f(x)=p(x) dove P(x) e' un polinomio nella variabile x --------------------------------------------------------------------

Dettagli

CENNI SUL CONCETTO DI FUNZIONE

CENNI SUL CONCETTO DI FUNZIONE CENNI SUL CONCETTO DI FUNZIONE Dati due insiemi A e B, una funzione f è una relazione tra gli elementi dell insieme A e gli elementi dell insieme B tale che ad ogni elemento di A corrisponde uno ed un

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Noi studiamo funzioni da R R x è la variabile indipendente y è la variabile dipendente

Noi studiamo funzioni da R R x è la variabile indipendente y è la variabile dipendente FUNZIONE Una funzione f definita in X a valori in Y è una corrispondenza che : y=f(x) è l immagine di x attraverso la legge f Il sottinsieme di X a cui la legge f associa un immagine si dice dominio della

Dettagli

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni

Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Equazioni e disequazioni goniometriche

Equazioni e disequazioni goniometriche 1 Equazioni e disequazioni goniometriche Restrizione di una funzione Nel definire la funzione logaritmica come inversa di quella esponenziale, avevamo ricordato che: Una funzione è invertibile se e soltanto

Dettagli

TRASFORMAZIONI DEL PIANO E GRAFICI

TRASFORMAZIONI DEL PIANO E GRAFICI Trasformazioni del piano e grafici TRASFORMAZIONI DEL PIANO E GRAFICI RICHIAMI DI TEORIA Definizione: consideriamo il piano R munito di un sistema di riferimento cartesiano ortogonale. Una trasformazione

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

LICEO CLASSICO ANDREA DA PONTEDERA

LICEO CLASSICO ANDREA DA PONTEDERA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classe 5A PROGRAMMA DI MATEMATICA svolto fino al 15 aprile (evidenziate in giallo le aggiunte rispetto al file precedente) Intervallo limitato

Dettagli

GRAFICI DI FUNZIONI E TRASFORMAZIONI DEL PIANO

GRAFICI DI FUNZIONI E TRASFORMAZIONI DEL PIANO Note su GRAFICI DI FUNZINI E TRASFRMAZINI DEL IAN Giulia Fidanza In queste note ci proponiamo di trovare l equazione di una funzione il cui grafico sia ottenuto dal grafico di una funzione nota attraverso

Dettagli

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010.

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010. Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI Corso di Analisi Matematica A.A. 009 / 00 Le Funzioni Fabio Memoli indice Il Concetto di Funzione Funzioni Reali Di Variabile

Dettagli

LE FUNZIONI CLASSE III D

LE FUNZIONI CLASSE III D LE FUNZIONI CLASSE III D GENERALITÀ SULLE FUNZIONI Definizione: Dati due insiemi A e B, si definisce funzione una relazione che associa a ogni elemento di A uno e un solo elemento di B. Osservazione: Dalla

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

Coordinate cartesiane nel piano

Coordinate cartesiane nel piano Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

1. Funzioni reali di una variabile reale

1. Funzioni reali di una variabile reale Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 31 index Proprietà elementari dei

Dettagli

FUNZIONI E LORO PROPRIETA'

FUNZIONI E LORO PROPRIETA' FUNZIONI E LORO PROPRIETA' Definizione: Dati due insiemi A e B si dice funzione di A in B una qualunque legge che faccia corrispondere ad ogni elemento di A uno ed un solo elemento di B. Si indica con

Dettagli

Liceo Classico Statale Vittorio Emanuele II Matematica in analisi

Liceo Classico Statale Vittorio Emanuele II Matematica in analisi Liceo Classico Statale Vittorio Emanuele II Matematica in analisi Le funzioni Definizione di funzione Dati due insiemi A e B, si definisce funzione una relazione che associa ad ogni elemento di A uno e

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x))

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x)) Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f (g()) notazione funzionale = f (g()) La composizione ha senso se il valore g() appartiene al

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Lezione 16 (18 dicembre)

Lezione 16 (18 dicembre) Lezione 16 (18 dicembre) Funzione logaritmica Funzioni crescenti e decrescenti Funzioni e traslazioni Funzioni pari e dispari Funzioni iniettive, suriettive, bigettive Grafico della funzione logaritmica

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n 0 ottobre 008 A. MARTINI Castelranco Veneto (TV) Relazioni e Funzioni. Insieme delle parti. Partizione di un insieme 3. Prodotto cartesiano 4. Deinizione di relazione 5. Deinizione di unzione 6. Funzioni

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Liceo Scientifico Statale Einstein Milano posta certificata: Tel. 02/ Fax. 02/

Liceo Scientifico Statale Einstein Milano posta certificata: Tel. 02/ Fax. 02/ Liceo Scientifico Statale Einstein Milano posta certificata: mips01000g@pec.istruzione.it Tel. 02/5413161 Fax. 02/5460852 CLASSE 3 L A.S. 2018-2019 PROGRAMMA SVOLTO DI MATEMATICA 1. EQUAZIONI E DISEQUAZIONI

Dettagli

Liceo Scientifico Statale Einstein

Liceo Scientifico Statale Einstein Liceo Scientifico Statale Einstein PROGRAMMA CONSUNTIVO MATEMATICA Classe IV I Anno Scolastico 2017-2018 Docente: prof. Barbara Veronesi Ore di insegnamento: 4 settimanali Funzioni Classificazione delle

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Soluzioni degli esercizi proposti venerdi 7-10

Soluzioni degli esercizi proposti venerdi 7-10 Soluzioni degli esercizi proposti venerdi 7-10 Si consideri la funzione f(x) il cui grafico e' dato dal disegno sotto. 1. determinare il dominio e l'immagine 2.determinare gli x tali che f(x) 0 3. determinare

Dettagli

Soluzione di Adriana Lanza

Soluzione di Adriana Lanza SOLUZIONE Studio delle funzioni e Le funzioni sono funzioni definite in, assumono valori in R, sono iniettive e suriettive I loro grafici si ottengono dalla curva di equazione mediante l affinità di equazioni

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2013/2014 Univ. Studi di Milano D.Bambusi, C.Turrini (Univ. Studi di Milano) Istituzioni di Matematiche 1 / 19 index 1 D.Bambusi, C.Turrini (Univ. Studi

Dettagli

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Classe III sez. A Modulo 1 Unità didattica 1 Ripetizione della risoluzione delle equazioni di

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. .7 esercizi 5.7 esercizi Chi non risolve esercizi non impara la matematica. La relazione f: { studenti del Versari-Macrelli } { classi del Versari-Macrelli } «lo studente è iscritto alla classe» è una

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Appunti di Matematica

Appunti di Matematica Appunti di Matematica Studio della funzione irrazionale 9 x 2 f(x) = x 1 Massimo Pasquetto I.P.S.E.O.A. Angelo Berti classe 5AS 23 Settembre 2016 massimo dot pasquetto at infinitum dot it Appunti di Matematica

Dettagli

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili.

Tali quantità o caratteristiche essenziali di un fenomeno possono essere qualitative o quantitative e vengono dette variabili. OBIETTIVO DELLA RICERCA SCIENTIFICA MODELLO DEL FENOMENO NATURALE stabilire se esistono relazioni tra le quantità che si ritengono essenziali per la descrizione di un fenomeno. è una costruzione ideale

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

FUNZIONI NUMERICHE. Funzione numerica

FUNZIONI NUMERICHE. Funzione numerica Funzione numerica FUNZIONI NUMERICHE Una funzione si dice numerica se gli insiemi A e B sono insiemi numerici, cioè N (insieme dei numeri naturali), Z (insieme dei numeri relativi), Q (insieme dei numeri

Dettagli

SYLLABUS DI ANALISI 5B DON BOSCO

SYLLABUS DI ANALISI 5B DON BOSCO SYLLABUS DI ANALISI 5B DON BOSCO 2016-17 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure. Al contrario,

Dettagli

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Classe III sez. F Modulo 1 Unità didattica 1 Ripetizione della risoluzione delle equazioni di

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO 2014-15 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure.

Dettagli

FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI. 4 Liceo Scientifico a.s. 2017/18

FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI. 4 Liceo Scientifico a.s. 2017/18 FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI 4 Liceo Scientifico a.s. 2017/18 FUNZIONI ELEMENTARI E LORO TRASFORMAZIONI Presentiamo il grafico delle funzioni elementari e delle funzioni che si ottengono trasformando

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2014-2015 L.Doretti 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi: lezione 2 novembre 2011 Studio di funzioni Studiare le seguenti funzioni FINO alla derivata prima,

Dettagli

Programma di matematica classe 3^ sez. E a.s

Programma di matematica classe 3^ sez. E a.s Programma di matematica classe 3^ sez. E a.s. 2018-2019 Testo in adozione: LA matematica a colori - EDIZIONE BLU per il secondo biennio vol.3 Autore: Leonardo Sasso Ed Petrini -------------------------------------------------------------------------

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ CAPITL 7 [numerazione araa] [numerazione devanagari] [numerazione cinese] LE FUNZINI E LE LR PRPRIETÀ IL PREZZ GIUST gni volta che acquistiamo un prodotto o un servizio, paghiamo in camio una certa cifra

Dettagli

y = è una relazione tra due variabili, che ad ogni valore della

y = è una relazione tra due variabili, che ad ogni valore della LE FUNZIONI DEFIINIIZIIONE Una funzione f () = è una relazione tra due variabili, che ad ogni valore della VARIABILE INDIPENDENTE associa AL PIU (al massimo) un valore della VARIABILE DIPENDENTE E UNA

Dettagli

LE FUNZIONI. Cosa sono DEFINIZIONI

LE FUNZIONI. Cosa sono DEFINIZIONI LE FUNZIONI Cosa sono Il concetto di funzione nasce nell antichità come nozione di dipendenza di una variabile da un altra. I matematici greci già facevano uso implicito del concetto di funzione in argomenti

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale

CONVITTO NAZIONALE MARIA LUIGIA. Programma svolto. Definizione di funzione tra insiemi numerici. Definizione di funzioni reali a variabile reale CONVITTO NAZIONALE MARIA LUIGIA Classe 3B Liceo Scientifico Anno scolastico 2011-2012 Docente: prof.ssa Paola Perego Disciplina: Matematica MODULO 1 : Funzioni Programma svolto ARGOMENTO CONOSCENZE/CONTENUTI

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica.

2ALS. Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. 2ALS Lavoro estivo in preparazione all esame di settembre per gli studenti con debito formativo in Matematica. Si consiglia il libro: Matematica-recupero dei debiti formativi e ripasso estivo 2 ISBN 978-88-24741279

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Matematica Lezione 8

Matematica Lezione 8 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 8 Sonia Cannas 6/11/2018 Funzioni: definizione Nella lezione 5 abbiamo visto che le funzioni sono particolari tipi di relazioni tra

Dettagli

x dove fx ( ) assume tali valori si dice punto di massimo o di

x dove fx ( ) assume tali valori si dice punto di massimo o di 7. Funzioni limitate ed illimitate, funzioni inverse Definizione: Una funzione f: A Bsi dice limitata superiormente od inferiormente se il suo condominio è un insieme limitato superiormente od inferiormente.

Dettagli

Modello di un fenomeno

Modello di un fenomeno Funzioni Modello di un fenomeno Un modello è una costruzione ideale basata su alcune caratteristiche essenziali del fenomeno, dette variabili. Un modello è ovviamente una approssimazione del fenomeno che

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE SIMMETRIE E GRAFICI DEDUCIBILI Angela Donatiello FUNZIONI ESPONENZIALI Crescita

Dettagli

3 Relazioni e funzioni. M. Simonetta Bernabei & Horst Thaler

3 Relazioni e funzioni. M. Simonetta Bernabei & Horst Thaler 3 Relazioni e funzioni M. Simonetta Bernabei & Horst Thaler Relazioni e funzioni Una relazione è un insieme di coppie ordinate (x,y). Animali Vita media (anni) x Tempo massimo di vita (anni) y Gatto 12

Dettagli

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

PROGRAMMA DI MANTENIMENTO ESTIVO

PROGRAMMA DI MANTENIMENTO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOL ISTITUTO TECNICO PER GEOMETRI INCHI SCUOLE PRITRIE PROGRMM DI MNTENIMENTO ESTIVO CLSSE MTERI PROF. QURT GEOMETRI Matematica ndrea ernesco Làvore NNO SCOLSTICO

Dettagli

03 - Le funzioni reali di variabile reale

03 - Le funzioni reali di variabile reale Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale ppunti del corso di Matematica 03 - Le funzioni reali di variabile reale nno ccademico 2013/2014

Dettagli

Istituzioni di Matematiche prima parte

Istituzioni di Matematiche prima parte Istituzioni di Matematiche prima parte anno acc. 2010/2011 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Proprietà elementari dei sottoinsiemi

Dettagli

Insiemi di numeri reali

Insiemi di numeri reali Capitolo 1 1.1 Elementi di teoria degli insiemi Se S è una totalità di oggetti x, si dice che S è uno spazio avente gli elementi x. Se si considerano alcuni elementi di S si dice che essi costituiscono

Dettagli