Logica figurale. 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E Quanti triangoli sono rappresentati nella figura?

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Logica figurale. 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9. 2 Quanti triangoli sono rappresentati nella figura?"

Transcript

1 Logica figurale 1 Quanti quadrati contengono la stella? A. 1 B. 2 C. 5 D. 6 E. 9 2 Quanti triangoli sono rappresentati nella figura? A. 6 B. 8 C. 9 D. 10 E Quanti sono i quadrati presenti nella seguente figura? A. 24 B. 30 C. 59 D. 36

2 4 Quante figure femminili sono contenute nella figura seguente? A. 8 B. 16 C. 18 D. 12 E. 17

3 5 Cosa è rappresentato nel disegno di E. G. Boring? A. Una giovane e una vecchia donna B. Una giovane donna C. Una giovane donna e un rapace D. Un rapace e una vecchia donna E. Nessuna delle precedenti 6 Osservando il disegno proposto, quale delle seguenti coppie è formata da linee parallele? A. Solo la B B. Entrambe C. Nessuna D. Solo la A

4 7 Dopo aver osservato la figura sapreste dire se contiene linee curve ed indicarle? A. Sono curve le sole due linee orizzontali B. Non contiene linee curve C. Sono curve le linee indicate con le lettere C e D D. Sono curve le linee indicate con le lettere A e B 8 Osservare attentamente la figura ed individuare l affermazione corretta. A. La linea contrassegnata con A è più lunga di quella contrassegnata con B B. La linea contrassegnata con B è più lunga di quella contrassegnata con A C. Le linee contrassegnate con A e B hanno la stessa lunghezza D. La linea contrassegnata con B è esattamente pari ad un terzo della linea contrassegnata con A 9 Quale cerchio contiene il $ più grande? A. Il cerchio 3 B. Il cerchio 1 C. Tutti i $ sono uguali D. Il cerchio 2

5 10 È possibile tracciare, senza alzare la penna dal foglio o ripetere più volte lo stesso tracciato, sei linee rette in maniera da toccare tutti i sedici punti? A. No, è possibile tracciare solo cinque linee rette B. No, per tracciare sei linee rette occorre alzare almeno una volta la penna dal foglio C. Si, è possibile D. No, per tracciare sei linee rette occorre ripetere lo stesso tracciato per almeno due volte 11 Ogni figura geometrica può essere ottenuta attraverso la combinazione di elementi geometrici più piccoli (pezzi). Quali di queste figure sono ottenute con gli stessi pezzi? A. La n. 1 e la n. 2 B. La n. 2 e la n. 4 C. La n. 1 e la n. 4 D. La n. 2 e la n. 3 E. Sono tutte equivalenti

6 12 Nel seguente sistema le ruote dentate sono libere di ruotare attorno a un perno fisso. Se la ruota dentata C gira in senso orario, in quale senso gira la ruota dentata E? A. Il sistema di ingranaggi non può funzionare B. Nessuna delle altre alternative è corretta C. In senso inverso rispetto alla ruota dentata B D. Nello stesso senso della ruota dentata B E. In senso antiorario

7 13 Facendo riferimento al seguente ingranaggio risponda alle domande seguenti. Se la ruota A gira in senso orario: A. la ruota D gira in senso antiorario e la pallina P si muove in direzione 2 B. la ruota E gira in senso orario e la pallina P si muove in direzione 2 C. la ruota B gira in senso antiorario e la pallina P si muove in direzione 2 D. la ruota C gira in senso orario e la pallina P si muove in direzione 1 Se la ruota B gira in senso orario: A. la ruota D gira in senso antiorario e la pallina P si muove in direzione 2 B. la ruota C gira in senso antiorario e la pallina P si muove in direzione 2 C. la ruota E gira in senso orario e la pallina P si muove in direzione 1 D. la ruota A gira in senso antiorario e la pallina P si muove in direzione 1 Se la ruota D gira in senso antiorario: A. la ruota A gira in senso antiorario e la pallina P si muove in direzione 1 B. la ruota E gira in senso orario e la pallina P si muove in direzione 2 C. la ruota C gira in senso orario e la pallina P si muove in direzione 1 D. la ruota B gira in senso antiorario e la pallina P si muove in direzione 2 14 Quanti fra i seguenti 5 disegni possono essere tracciati senza staccare la penna dal foglio e senza passare due volte per lo stesso segmento? A. 5 B. 4 C. 3 D. 2 E. 1

8 15 Quale foratura si ottiene piegando e forando un foglio di carta secondo le modalità indicate nella figura in alto? A. Figura 1 B. Figura 5 C. Figura 3 D. Figura 4 E. Figura 2 16 Quale figura tridimensionale deriva dal ripiegamento del modello contenuto nel riquadro seguente?

9 17 18 Trova la figura che continua la serie.

10 19 Individuare la figura che completa la serie seguente: A. B. C. D. 20 Indica quale figura completa la serie.

11 21 Individua la figura che completa la sequenza. A. B. C. D. E. 22 Trova la figura che continua la serie.

12 23 Completa la serie seguente. A. 1 B. 2 C. 3 D Trova la figura che continua la serie. 25 Indicare la figura che completa la serie:

13 26 Individuare la figura che completa logicamente la proporzione: 27 Trova la figura che continua la serie. 28 Completare la seguente serie: A. B. C. D. E.

14 29 Indicare la figura da scartare. 30 Individua tra le seguenti la figura che non appartiene alla serie. 31 Il disegno indicato con la lettera «A», dopo essere stato ribaltato e ruotato è riproposto A. Nella figura contrassegnata dal numero 2 B. Nella figura contrassegnata dal numero 3 C. Nella figura contrassegnata dal numero 4 D. Nella figura contrassegnata dal numero 1

15 32 33 Completare la seguente serie: A. B. C. D. E.

16 34 35 Si consideri la seguente sequenza: Indicare quale delle 5 figure continua la sequenza indicata. A. Figura 4 B. Figura 2 C. Figura 5 D. Figura 1 E. Figura 3

17 36 Individua la figura che completa la sequenza. A. B. C. D. E. 37 Completare la seguente analogia figurale. A. B. C.

18 38 Individuare la figura mancante. A. B. C. D.

19 39 Individuare, tra le quattro figure proposte ( a, b, c o d ), la figura mancante nel seguente riquadro: A. B. C. D.

20 40 Individua la figura mancante. 41 Scegliere fra le alternative proposte quella che completa la serie.

21 42 Di seguito è presentata una configurazione incompleta. Individuate fra le cinque alternative proposte quella che completa il quadro. A. La figura indicata dalla lettera E B. La figura indicata dalla lettera C C. La figura indicata dalla lettera A D. La figura indicata dalla lettera B E. La figura indicata dalla lettera D 43 Individua la figura che termina correttamente la sequenza.

22 44 Si osservi la seguente serie incompleta di figure: quale delle alternative proposte ( a, b, c o d ) la completa correttamente? A. B. C. D. 45 Eliminare uno dei cinque disegni della serie. 46

23 47 Indicare in quale dei seguenti box contrassegnati da numeri è riproposto il disegno contrassegnato dalla lettera «A» dopo essere stato ribaltato e ruotato. A. Nel box contrassegnato con il numero 2 B. Nel box contrassegnato con il numero 3 C. Nel box contrassegnato con il numero 4 D. Nel box contrassegnato con il numero 1 48 Partendo dalla disposizione proposta, è possibile, togliendo sei graffette, ottenere tre quadrati di diverse dimensioni? A. Si, è possibile costruire tre quadrati di diverse dimensioni adiacenti l uno all altro e con uno spigolo in comune B. No, è possibile formare solo due quadrati di diverse dimensioni intersecati C. Si, è possibile formare tre quadrati, di cui il più grande contenente quello medio e quello medio contenente il più piccolo D. No

24 49 Utilizzando una volta sola i frammenti dall 1 al 9, quante volte è possibile ricostruire il disegno a sinistra? A. 4 volte B. 3 volte C. 2 volte D. Con i frammenti proposti non è possibile ricostruire il disegno a sinistra 50 Dopo aver osservato attentamente i disegni proposti individuare il disegno intruso. A. Il disegno intruso è in C B. Il disegno intruso è in A C. Il disegno intruso è in E D. Il disegno intruso è in B

a) Con i box 1, 2, 3, 4, 6. b) Con i box 1, 2, 3, 4, 8. c) Con i box 1, 3, 6, 5, 8 d) Con i box 1, 3, 6, 4, 7. c

a) Con i box 1, 2, 3, 4, 6. b) Con i box 1, 2, 3, 4, 8. c) Con i box 1, 3, 6, 5, 8 d) Con i box 1, 3, 6, 4, 7. c RLA0001 Con quali delle seguenti tessere incastrate perfettamente è possibile formare la seguente stringa alfanumerica 4N - 1F - MB - SH 63 a) Con i box 1, 2, 3, 4, 6. b) Con i box 1, 2, 3, 4, 8. c) Con

Dettagli

RLA0001 Individuare il disegno intruso. a) Disegno A. b) Disegno B. c) Disegno C. d) Disegno D. b

RLA0001 Individuare il disegno intruso. a) Disegno A. b) Disegno B. c) Disegno C. d) Disegno D. b RLA0001 Individuare il disegno intruso. a) Disegno A. b) Disegno B. c) Disegno C. d) Disegno D. b RLA0002 Individuare fra le figure proposte quella che è logico inserire quale quarto termine della proporzione

Dettagli

3. Osserva attentamente il centro della corda e la distanza con il centro del cerchio M. Cosa constati?

3. Osserva attentamente il centro della corda e la distanza con il centro del cerchio M. Cosa constati? Corde 1. Ruota la retta a attorno al punto A e leggi il testo di colore verde. a) La retta, quando è una secante? Quando una tangente? Quando la retta non è né l una né l altra? b) Quante tangenti e quante

Dettagli

a) 2, 5 e 12. b) 9, 6 e 5. c) 7, 6 e 5. d) 4, 5 e 12. d

a) 2, 5 e 12. b) 9, 6 e 5. c) 7, 6 e 5. d) 4, 5 e 12. d RSB0001 Con quali dei seguenti numeri devono essere sostituite, rispettivamente, le lettere X, Y e Z perché la somma dei numeri in ogni serie di tre cerchi uniti dalle linee rette dia come risultato sempre

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli.

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. 6.4 I poligoni regolari Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. Poligoni regolari: triangolo equilatero; quadrato; pentagono regolare; esagono regolare; ettagono

Dettagli

2. Quesiti dell area scientifica e scientifico-tecnologica

2. Quesiti dell area scientifica e scientifico-tecnologica 2. Quesiti dell area scientifica e scientifico-tecnologica Logica 01 Scegliere fra le alternative proposte quella che completa la serie: a b c d e 02 Un auto percorre 20.000 km nel corso di un lungo viaggio.

Dettagli

1 Costruisci una costellazione

1 Costruisci una costellazione foglio di lavoro Cos è una costellazione? Risponderai alla seguente domanda: Qual è l aspetto di una costellazione, quando la osserviamo da diverse angolazioni? 1 Costruisci una costellazione 1 L insegnante

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

Le rappresentazioni cartografiche sono modelli della superficie terrestre RIDOTTI APPROSSIMATI SIMBOLICI

Le rappresentazioni cartografiche sono modelli della superficie terrestre RIDOTTI APPROSSIMATI SIMBOLICI Le rappresentazioni cartografiche sono modelli della superficie terrestre RIDOTTI APPROSSIMATI SIMBOLICI Le rappresentazioni cartografiche sono modelli della superficie terrestre RIDOTTI APPROSSIMATI SIMBOLICI

Dettagli

Coppia di forze LEZIONE N 10. Corso di fisica I Prof. Giuseppe Ciancio

Coppia di forze LEZIONE N 10. Corso di fisica I Prof. Giuseppe Ciancio Coppia di forze LEZIONE N 10 1 Definizione delle coppia di forze: È un sistema di due forze () uguali e opposte agenti su rette d azione parallele distinte. La distanza minima tra le rette d azione delle

Dettagli

Le simmetrie dei poliedri regolari

Le simmetrie dei poliedri regolari Le simmetrie dei poliedri regolari Le isometrie del piano e dello spazio sono state classificate da due illustri matematici. Per quanto riguarda il piano, il teorema di Chasles, del 8, afferma che nel

Dettagli

Esercitazioni di. LOGICA e MATEMATICA. per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA

Esercitazioni di. LOGICA e MATEMATICA. per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA Esercitazioni di LOGICA e MATEMATICA per la preparazione della PROVA NAZIONALE INVALSI CLASSE PRIMA prof.ssa Lina Migliaccio 1 I test di Bertoldino 1. In una stalla ci sono 15 pecore. Scappano tutte tranne

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

a) È maggiore nel disegno III: corrisponde a 45/72.

a) È maggiore nel disegno III: corrisponde a 45/72. RSB0001 Dati i quadrati I, II e III, la superficie non annerita. a) È maggiore nel disegno III: corrisponde a 45/72. b) É uguale nei disegni I e III: corrisponde ai 46/72. c) È maggiore nel disegno I:

Dettagli

quadrilatero generico parallelogramma rombo rettangolo quadrato

quadrilatero generico parallelogramma rombo rettangolo quadrato Pavimentare 1. Quali forme di quadrilateri puoi costruire? Schizza tutte le forme possibili e scrivi il loro nome. 2. Cosa rappresentano i piccoli punti rossi sui lati del quadrilatero? 3. a) Costruisci

Dettagli

C C B B. Fig. C4.1 Isometria.

C C B B. Fig. C4.1 Isometria. 4. Isometrie 4.1 Definizione di isometria Date due figure congruenti è possibile passare da una all altra con una trasformazione. Una trasformazione geometrica in un piano è una funzione biunivoca che

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Kangourou Italia Gara del 17 marzo 2005 Categoria Junior Per studenti di seconda o terza superiore

Kangourou Italia Gara del 17 marzo 2005 Categoria Junior Per studenti di seconda o terza superiore junior_05_d.qxp 21/02/2005 16.13 Pagina 22 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di seconda o terza superiore I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. A Kangourou

Dettagli

COME RISOLVERE IL CUBO DI RUBIK

COME RISOLVERE IL CUBO DI RUBIK COME RISOLVERE IL CUBO DI RUBIK con il metodo strato per strato Teniamo il cubo con il centro giallo rivolto verso l alto (il centro bianco sarà sempre sotto). Completeremo il cubo con sequenze di rotazioni

Dettagli

RSA0001 Quale numero deve essere inserito nella seguente serie numerica? a) Il numero 4. b) Il numero 2. c) Il numero 9. d) Il numero 7.

RSA0001 Quale numero deve essere inserito nella seguente serie numerica? a) Il numero 4. b) Il numero 2. c) Il numero 9. d) Il numero 7. RSA0001 Quale numero deve essere inserito nella seguente serie numerica? a) Il numero 4. b) Il numero 2. c) Il numero 9. d) Il numero 7. d RSA0002 Quale frazione del disegno è quadrettata? a) 1/3. b) 2/3.

Dettagli

Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione

Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione LE TRASFORMAZIONI IN CABRI Per ottenere la figura immagine di una figura data in una trasformazione Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...)

Dettagli

Le isometrie Capitolo

Le isometrie Capitolo Le isometrie Capitolo Simmetria centrale e assiale erifica per la classe prima COGNOME............................... NOME............................. Classe.................................... Data...............................

Dettagli

a) Al nido il Cigno sono iscritti 180 bambini tra 7-12 mesi, 150 bambini tra 3-6 mesi e 160 bambini tra mesi.

a) Al nido il Cigno sono iscritti 180 bambini tra 7-12 mesi, 150 bambini tra 3-6 mesi e 160 bambini tra mesi. RSB0001 Supponendo che il grafico proposto sia relativo ai bambini iscritti/ospitati da quattro nidi d infanzia, suddivisi per età, indicare quale affermazione è corretta. a) Al nido il Cigno sono iscritti

Dettagli

ISTITUTO COMPRENSIVO DI DONGO curricolo verticale per la scuola primaria Area di apprendimento: MATEMATICA

ISTITUTO COMPRENSIVO DI DONGO curricolo verticale per la scuola primaria Area di apprendimento: MATEMATICA IL NUMERO ISTITUTO COMPRENSIVO DI DONGO curricolo verticale per la scuola primaria Area di apprendimento: MATEMATICA - opera con numeri naturali e decimali - utilizza il calcolo scritto e mentale 1 2 ordinare

Dettagli

Anno accademico 2005-06

Anno accademico 2005-06 Università degli Studi di Firenze Dipartimento di Meccanica e Tecnologie Industriali CORSO DI: DISEGNO MECCANICO (FI) CORSO DI: DISEGNO TECNICO IND.LE (PO) Anno accademico 2005-06 Docenti: Modulo 2: RAPPRESENTAZIONE

Dettagli

Simulazione della Prova Nazionale Invalsi di Matematica

Simulazione della Prova Nazionale Invalsi di Matematica VERSO LA PROVA nazionale scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 2 6 aprile 202 ISTRUZIONI Questa prova di matematica contiene 26 domande a risposta multipla

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Parallelogrammi 1 Parallelogrammi Nome: classe: data:

Parallelogrammi 1 Parallelogrammi Nome: classe: data: www.matematicamente.it Parallelogrammi 1 Parallelogrammi Nome: classe: data: 1. Quali tra le seguenti sono proprietà del parallelogramma?. ciascuna diagonale lo divide in due triangoli uguali. gli angoli

Dettagli

Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli?

Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli? Dal parallelogramma al rombo (fase 1 e 2) Fase 1 Disegna due circonferenze concentriche c e c di centro O; disegna su c un punto A e su c un punto B; traccia la retta r passante per i punti A e O, chiama

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Un approccio costruttivo alle trasformazioni geometriche del piano

Un approccio costruttivo alle trasformazioni geometriche del piano Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla

Dettagli

Matrici di Raven e Bochum

Matrici di Raven e Bochum Matrici di Raven e Bochum @ Le matrici di Raven e di Bochum sono tabelle 3 3 (ovvero con 3 righe e 3 colonne), o 3 5 (ovvero con 3 righe e 5 colonne), contenenti in ogni cella, tranne in una o due, alcuni

Dettagli

Anno Accademico 2005-06

Anno Accademico 2005-06 Università degli Studi di Firenze Dipartimento di Meccanica e Tecnologie Industriali CORSO DI: DISEGNO MECCANICO (FI) CORSO DI: DISEGNO TECNICO IND.LE (PO) Anno Accademico 2005-06 Docenti: Modulo 2: RAPPRESENTAZIONE

Dettagli

DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a

DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a DECLINAZIONE COMPETENZE SCUOLA PRIMARIA: MATEMATICA CLASSI 1 a 2 a 3 a COMPETENZE 1. Operare con i numeri nel calcolo scritto e mentale CONOSCENZE CONTENUTI A. I numeri da 0 a 20 B. I numeri da 20 a 100

Dettagli

CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado

CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO. SCUOLA secondaria di secondaria di primo grado CURRICULO VERTICALE COMPETENZE IN AMBITO LOGICO MATEMATICO SCUOLA secondaria di secondaria di primo grado classe 1^ TRAGUARDI per lo sviluppo L alunno si muove con sicurezza nel calcolo con i numeri Naturali

Dettagli

PROIEZIONI ORTOGONALI: SEZIONI CONICHE

PROIEZIONI ORTOGONALI: SEZIONI CONICHE www.aliceappunti.altervista.org PROIEZIONI ORTOGONALI: SEZIONI CONICHE 1) PREMESSA: Il cono è una superficie generata da una retta con un estremo fisso e l altro che ruota. La retta prende il nome di GENERATRICE.

Dettagli

Che cos è una retta? - Geometria sferica, euclidea e iperbolica Pagina 1

Che cos è una retta? - Geometria sferica, euclidea e iperbolica Pagina 1 Che cos è una retta? - Geometria sferica, euclidea e iperbolica Pagina 1 Vi hanno incaricati di progettare una rotta aerea tra Mosca e Vancouver (segnati sulla cartina da dei pallini rossi). Questa rotta

Dettagli

A forma di... Osserva e colora seguendo le indicazioni.

A forma di... Osserva e colora seguendo le indicazioni. A forma di... Osserva e colora seguendo le indicazioni. Gli oggetti a forma di cilindro di verde. Gli oggetti a forma di parallelepipedo di rosa. Gli oggetti a forma di sfera di azzurro. Il cubo Costruire

Dettagli

Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende

Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Attività - I Dadi Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Ci proponiamo l obiettivo di studiare le regole di costruzione dei dadi per progettare

Dettagli

TITOLO: LEGGERE I QUADRILATERI

TITOLO: LEGGERE I QUADRILATERI TITOLO: LEGGERE I QUADRILATERI Competenze di riferimento: Comprendere ed interpretare l informazione: comprendere messaggi verbali e non verbali di vario genere; individuare ed interpretare l informazione,

Dettagli

LA GEOMETRIA DELLO SPAZIO

LA GEOMETRIA DELLO SPAZIO LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei

Dettagli

Le Le ILL I U LL S U NI N IO IO

Le Le ILL I U LL S U NI N IO IO Le I LL U S N I IO Assimilazione dei Colori: la CHIAREZZA Il quadrato grigio in campo arancio sembra più scuro di quello in campo blu... in realtà sono Identici! L IRRADIAZIONE: Il quadrato Bianco in campo

Dettagli

CURRICOLO DI MATEMATICA CLASSE PRIMA

CURRICOLO DI MATEMATICA CLASSE PRIMA CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato

Dettagli

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006 LIVELLO ÉCOLIER E1. (5 punti ) Qual è il multiplo di 11 più vicino a 1000? E2. (7 punti ) Le lettere della parola ELA sono tutte distinte fra loro. Fa corrispondere ad ogni lettera di questa parola una

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della regola che spiega la progressione di una certa sequenza

Dettagli

Quale delle seguenti affermazioni è vera? RSA0003 a) 5 b) 3 c) 6 d) 2 a

Quale delle seguenti affermazioni è vera? RSA0003 a) 5 b) 3 c) 6 d) 2 a RSA0001 a) Figura 3 b) Figura 1 c) Figura 2 d) Figura 4 d RSA0002 Quale, tra le figure proposte, è uguale a quella data ruotata in senso antiorario di 130? a) Il numero dei libri di saggistica venduti

Dettagli

Compiti vacanze IIG a.s Alunno:

Compiti vacanze IIG a.s Alunno: Compiti vacanze IIG a.s. 2015-2016 Alunno: Numeri razionali assoluti 1 Completa, come nell esempio. 2 Sistema ciascuna lettera al posto giusto sulla semiretta numerica. A = 0,2 B = 0,9 C = 1,15 D = 0,6

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

Kangourou della Matematica 2016 Coppa a squadre Kangourou Finale - Cervia, 8 maggio Quesiti

Kangourou della Matematica 2016 Coppa a squadre Kangourou Finale - Cervia, 8 maggio Quesiti Kangourou della Matematica 2016 Coppa a squadre Kangourou Finale - Cervia, 8 maggio 2016 Quesiti 1. Somme Chiamate m il più piccolo numero di due cifre la somma delle quali sia ancora un numero di due

Dettagli

Per ruotare la figura fino a disporla parallela al occorre individuarne un qualsiasi segmento orizzontale. Per tale segmento, o per una parallela ad e

Per ruotare la figura fino a disporla parallela al occorre individuarne un qualsiasi segmento orizzontale. Per tale segmento, o per una parallela ad e Determinare la forma reale del triangolo rappresentato effettuando il ribaltamento (o la rotazione) del piano a cui appartiene. Nome Cognome Classe Data Per ruotare la figura fino a disporla parallela

Dettagli

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012

Ministero della Difesa Direzione Generale per il Personale Militare I Reparto - 3^ Divisione. BANCA DATI MATEMATICA II^ IMMISSIONE Concorso VFP4 2012 Ministero della ifesa irezione Generale per il Personale Militare I Reparto - 3^ ivisione N TI MTEMTI II^ IMMISSIONE oncorso VFP4 2012 Servizio inerente la fornitura di due archivi di quesiti e materiali

Dettagli

La prospettiva e i suoi strumenti teorici e tecnici

La prospettiva e i suoi strumenti teorici e tecnici Dispense del Corso di Disegno, tenuto da Riccardo Migliari nella Facoltà di Architettura Ludovico Quaroni della Sapienza Università di Roma nell Anno Accademico 2009 2010 La prospettiva e i suoi strumenti

Dettagli

ANGOLI MAGGIORI DELL ANGOLO RETTO

ANGOLI MAGGIORI DELL ANGOLO RETTO ANGOLI MAGGIORI DELL ANGOLO RETTO Le equazioni trigonometriche sin θ = a, cos θ = b e tan θ = c possono avere tante soluzioni. I tasti delle funzioni inverse nelle calcolatrici (sin 1, cos 1 e tan 1 ),

Dettagli

I quadrati magici. Ivana Sacchi -

I quadrati magici. Ivana Sacchi - I quadrati magici Ivana Sacchi - ivana@ivana.it I numeri da 1 a 9 Un "quadrato magico" è una tabella suddivisa in celle nel quale la somma dei numeri contenuti in ciascuna riga (orizzontale), colonna (verticale)

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali

Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa

Dettagli

1 L'omotetia. 2 Il teorema del rapporto dei perimetri e delle aree di due triangoli simili

1 L'omotetia. 2 Il teorema del rapporto dei perimetri e delle aree di due triangoli simili 1 L'omotetia Per definire un'omotetia bisogna disegnare una generica figura nel piano (nel nostro caso utilizzeremo un triangolo), un punto (il centro dell'omotetia) e un numero (il rapporto k dell'omotetia).

Dettagli

SCHEDA. ETA : 4-8 anni SPIEGAZIONE GENERALE LA MACCHINA DELLA CREATIVITA CREATIVITÀ E LOGICA

SCHEDA. ETA : 4-8 anni SPIEGAZIONE GENERALE LA MACCHINA DELLA CREATIVITA CREATIVITÀ E LOGICA CREATIVITÀ E LOGICA LA MACCHINA ETA : 4-8 anni SCHEDA 1 LA MACCHINA SPIEGAZIONE GENERALE UTILIZZO Adatta DELLA a tutte RACCOLTA le età: infanzia, DELLE bambini. IMMAGINI LA MACCHINA permette di comporre,

Dettagli

un rettangolo, due quadrati e un cerchio un cerchio, due triangoli e un quadrato due quadrati, un cerchio, un triangolo

un rettangolo, due quadrati e un cerchio un cerchio, due triangoli e un quadrato due quadrati, un cerchio, un triangolo questa figura è formata da... un rettangolo, due quadrati e un cerchio un cerchio, due triangoli e un quadrato due quadrati, un cerchio, un triangolo osserva la sequenza di numeri 3 6 12 24 in questa sequenza

Dettagli

14 Sulle orme di Euclide. Volume 2

14 Sulle orme di Euclide. Volume 2 PREFAZIONE Il nostro viaggio negli Elementi prosegue con lo studio delle proprietà della circonferenza e dell equivalenza tra poligoni. Le questioni relative alla superficie dei poligoni occupano parte

Dettagli

PROSPETTIVA CENTRALE A2 B2 A2 A B A LT PV AB

PROSPETTIVA CENTRALE A2 B2 A2 A B A LT PV AB PROSPETTIVA CENTRALE immaginiamo di fare scorrere un segmento AB lungo 2 binari (allonandolo sempre di più dall osservatore). la dimensione del segmento diminuisce seguendo l andamento delle due rette

Dettagli

Kangourou Italia Gara del 17 marzo 2005 Categoria Student Per studenti di quarta o quinta superiore. I quesiti dal N. 1 al N. 10 valgono 3 punti

Kangourou Italia Gara del 17 marzo 2005 Categoria Student Per studenti di quarta o quinta superiore. I quesiti dal N. 1 al N. 10 valgono 3 punti _05_D.qp 21/02/2005 16.15 Pagina 28 Kangourou Italia Gara del 17 marzo 2005 Categoria Per studenti di quarta o quinta superiore I quesiti dal N. 1 al N. 10 valgono 3 punti 1. Per quale dei seguenti valori

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

LEGA NAZIONALE PATTINAGGIO SETTORE FORMAZIONE

LEGA NAZIONALE PATTINAGGIO SETTORE FORMAZIONE LEGA NAZIONALE PATTINAGGIO SETTORE FORMAZIONE Coordinatore Settore Formazione Maurizio Cocchi GRUPPI Suggerimenti tecnici (liberamente estratto dalla dispensa della F.I.H.P.) Il Pattinaggio spettacolo

Dettagli

Manuale di KSquares. Matt Williams Revisore: Eugene Trounev Traduzione della documentazione: Federico Zenith

Manuale di KSquares. Matt Williams Revisore: Eugene Trounev Traduzione della documentazione: Federico Zenith Matt Williams Revisore: Eugene Trounev Traduzione della documentazione: Federico Zenith 2 Indice 1 Introduzione 5 2 Come si gioca 6 3 Regole del gioco, strategie e suggerimenti 8 3.1 Regole del gioco.......................................

Dettagli

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica

Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Corso di Laurea in Matematica per l Informatica e la Comunicazione Scientifica Soluzione del compito di Matematica Discreta 1 del 25 luglio 200 1. Qual è il numero di applicazioni f : A = {1,..., 5} B

Dettagli

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. La somma degli

Dettagli

Prima puntata della gara a squadre. 21 Novembre 2002

Prima puntata della gara a squadre. 21 Novembre 2002 Prima puntata della gara a squadre. 1 Novembre 00 Soluzioni. Quesito 1. Nel piano, consideriamo due cerchi di raggio 3 cm e 1 cm tangenti esternamente. Determinare l area del più piccolo insieme convesso

Dettagli

1 L omotetia. i punti O, A e A siano allineati

1 L omotetia. i punti O, A e A siano allineati 1 L omotetia DEFINIZIONE. Dato un punto O ed un numero reale k, si dice omotetia di centro O e rapporto k, quella trasformazione del piano che associa ad ogni punto A il corrispondente punto A tale che

Dettagli

A B C D E F G H I L M N O P Q R S T U V Z

A B C D E F G H I L M N O P Q R S T U V Z IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente

Dettagli

Kangourou Italia Gara del 15 marzo 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado

Kangourou Italia Gara del 15 marzo 2007 Categoria Benjamin Per studenti di prima o seconda della scuola secondaria di primo grado Testi_07.qxp 16-0-2007 12:0 Pagina 10 Kangourou Italia Gara del 15 marzo 2007 Categoria Per studenti di prima o seconda della scuola secondaria di primo grado I quesiti dal N. 1 al N. 10 valgono punti

Dettagli

Kangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016

Kangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016 Kangourou della Matematica 2016 finale nazionale italiana Cervia, 9 maggio 2016 LIVELLO STUDENT Tutte le risposte devono essere giustificate S1. (5 punti ) Per un certo valore di n, 2016 è esprimibile

Dettagli

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale

V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una

Dettagli

Anno 2. Circonferenza e retta: definizioni e proprietà

Anno 2. Circonferenza e retta: definizioni e proprietà Anno 2 Circonferenza e retta: definizioni e proprietà 1 Introduzione I Sumeri furono tra i primi popoli ad occuparsi di matematica, e in particolare di problemi relativi alla. La è una figura geometrica

Dettagli

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 21 marzo 2013 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Quale è il più grande

Dettagli

SUI SISTEMI DI DISEQUAZIONI IN DUE INCOGNITE

SUI SISTEMI DI DISEQUAZIONI IN DUE INCOGNITE SUI SISTEMI DI DISEQUAZIONI IN DUE INCOGNITE.Sistema di disequazioni in due incognite di primo grado Una disequazione di primo grado in due incognite: a b c nel piano cartesiano, rappresenta uno dei due

Dettagli

Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni?

Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? 1 Il Cerchio - la circonferenza.( Teoria 63-65 ; Esercizi 129 138 ) 0) Definizione. Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? Determina l insieme di tutti i punti distanti

Dettagli

Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009

Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009 Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009 LIVELLO JUNIOR J1. (5 punti ) Un asta lunga 10 metri va spezzata in modo che sia possibile riporre (eventualmente

Dettagli

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti

Kangourou della Matematica 2012 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio Quesiti Kangourou della Matematica 0 Coppa a squadre Kangourou Semifinale turno A Cervia, 5 maggio 0 Quesiti. umeri di quest anno Quanti numeri interi positivi n sono tali che entrambi i numeri n 0 e n + 0 siano

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

Ministero della Pubblica Istruzione UFFICIO SCOLASTICO REGIONALE DEL VENETO DIREZIONE DIDATTICA STATALE VIGONZA

Ministero della Pubblica Istruzione UFFICIO SCOLASTICO REGIONALE DEL VENETO DIREZIONE DIDATTICA STATALE VIGONZA UNITÀ DIDATTICA N. 1 IL NUMERO - IL CALCOLO OBIETTIVI DI APPRENDIMENTO Leggere, scrivere e operare con i numeri naturali e decimali avendo la consapevolezza del valore posizionale delle cifre. Saper adottare

Dettagli

Kangourou della Matematica 2017 Coppa Ecolier a squadre Finale Cervia, 8 maggio Quesiti

Kangourou della Matematica 2017 Coppa Ecolier a squadre Finale Cervia, 8 maggio Quesiti Kangourou della Matematica 2017 Coppa Ecolier a squadre Finale Cervia, 8 maggio 2017 Quesiti 1. Il libro di Anna Anna ha notato che la somma dei numeri su due pagine consecutive di un libro è 37. Qual

Dettagli

Le proiezioni ortogonali

Le proiezioni ortogonali Le proiezioni ortogonali principi generali proiezione di figure geometriche piane proiezioni di solidi geometrici proiezioni di pezzi meccanici principi generali delle proiezioni proiettare per rappresentare

Dettagli

Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado

Kangourou Italia Gara del 28 marzo 2008 Categoria Student Per studenti di quarta o quinta della secondaria di secondo grado Testi_08.qxp 9-0-008 :6 Pagina 8 Kangourou Italia Gara del 8 marzo 008 ategoria Per studenti di quarta o quinta della secondaria di secondo grado I quesiti dal N. al N. 0 valgono punti ciascuno. Nelle

Dettagli

ESERCITAZIONE MICROECONOMIA (CORSO B) 21-12-2009 ESEMPI DI ESERCIZI DI TEORIA DEI GIOCHI

ESERCITAZIONE MICROECONOMIA (CORSO B) 21-12-2009 ESEMPI DI ESERCIZI DI TEORIA DEI GIOCHI ESERCITZIONE MICROECONOMI (CORSO ) --009 ESEMPI DI ESERCIZI DI TEORI DEI GIOCHI Questo documento contiene alcuni esempi di esercizi di teoria dei giochi. Gli esercizi presentati non corrispondono esattamente

Dettagli

FINALE 30 agosto 2008

FINALE 30 agosto 2008 FINALE 30 agosto 2008 INIZIO CATEGORIA CE 1- LE SETTE CARTE (coefficiente 1) Matilde ha messo 7 carte sulla tavola una dopo l'altra. In che ordine lo ha fatto? 2 - LE GOBBE (coefficiente 2) Una carovana

Dettagli

DISEGNO E RAPPRESENTAZIONE

DISEGNO E RAPPRESENTAZIONE 29. Osservando la sezione longitudinale dell Auditorium di Ibirapuera costruito da Oscar Niemeyer a San Paolo nel 2005, qual è la corretta disposizione dei piani verticali per ottenere le sezioni trasversali

Dettagli

Test n. 4. Ragionamento matematico. 1 a) = a) 4 16 = a) 100 : 4 = a) 81 9 = a) 15 4 = 60

Test n. 4. Ragionamento matematico. 1 a) = a) 4 16 = a) 100 : 4 = a) 81 9 = a) 15 4 = 60 Test n.4 Ragionamento matematico Individuare i risultati errati. 1 a) 36 + 53 = 79 b) 112 15 = 97 c) 22 3 = 99 d) 81 73 = 8 2 a) 4 16 = 64 b) 8 9 = 76 c) 36 + 15 = 51 d) 42 2 = 84 3 a) 100 : 4 = 25 b)

Dettagli

TRASFORMAZIONE PRIMA SELEZIONE SELEZIONE SUCCESSIVA

TRASFORMAZIONE PRIMA SELEZIONE SELEZIONE SUCCESSIVA Come ottenere la figura immagine di una figura data Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione Clicca sul

Dettagli

GEOMETRIA. Elementi geometrici

GEOMETRIA. Elementi geometrici GEOMETRIA Elementi geometrici Ripasso dei principali elementi geometrici e relative definizioni A)Una scatola di gessetti, un barattolo, una palla sono corpi Ogni cosa che occupa uno spazio è, quindi un

Dettagli

ESERCIZIO N.1 ESERCIZIO N.2. Campire 4 fogli con linee orizzontali, verticali, diagonali, cerchi concentrici.

ESERCIZIO N.1 ESERCIZIO N.2. Campire 4 fogli con linee orizzontali, verticali, diagonali, cerchi concentrici. ESERCIZIO N.1 Realizzare composizioni monocromatiche di punti variando densità e/o dimensioni in modo da ricercare effetti espressivi di dilatazione, contrazione, ascensione, etc. ESERCIZIO N.2 Campire

Dettagli

OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO

OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO OBIETTIVI DI APPRENDIMENTO DI MATEMATICA-SCUOLA SECONDARIA DI PRIMO GRADO OBIETTIVI DELLE INDICAZIONI PER IL CURRICOLO OBIETTIVI DI APPRENDIMENTO ANNUALI Classe prima- secondaria Classe seconda secondaria

Dettagli

Selezione per Operatore di Manutenzione Par. 130 del C.C.N.L. Autoferrotranvieri.

Selezione per Operatore di Manutenzione Par. 130 del C.C.N.L. Autoferrotranvieri. Selezione per Operatore di Manutenzione Par. 130 del C.C.N.L. Autoferrotranvieri. Bari 17 aprile 2013 QUESTIONARIO DI PRESELEZIONE Per ognuna delle seguenti domande solo una delle tre risposte è esatta.

Dettagli

COMPETENZA GEOMETRICA. Descrittori Classe I - Scuola Primaria.

COMPETENZA GEOMETRICA. Descrittori Classe I - Scuola Primaria. COMPETENZA GEOMETRICA Macroindicatori di conoscenze/abilità Esplorazione, descrizione e rappresentazione dello spazio Descrittori dei traguardi per lo sviluppo della competenza geometrica Uscita scuola

Dettagli

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15)

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (vertici, lati, diagonali, convessità, angoli, perimetro) 6.2 I triangoli 6.3 I quadrilateri 6.4 I poligoni regolari 6.5 Le altezze 6.6 Le aree Un poligono è la parte

Dettagli

Tetrapyramis. organizza. Warm up. Gara di giochii logici a squadre per Istituti Scolastici

Tetrapyramis. organizza. Warm up. Gara di giochii logici a squadre per Istituti Scolastici Tetrapyramis organizza Warm up Gara di giochii logici a squadre per Istituti Scolastici Autore: Data: Durata: Categoria: Sito web: ALBERTO FABRIS martedì 25 ottobre 2016, 14.30 16.00 (orario server Italia)

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli