Esame scritto Fisica 1 del 21 giugno soluzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame scritto Fisica 1 del 21 giugno 2006 - soluzione"

Transcript

1 Esame scritto Fisica 1 del 1 giugno soluzione Nota: i valori numerici sono diversi nelle varie copie del compito, e quindi qui vengono indicati i ragionamenti e le formule da utilizzare ma non i risultati numerici. Problema 1 Le forze in gioco sono la forza applicata F, le forze di gravità, le forze normali N A (tra A e B) e N B (tra B e il piano di appoggio), e la forza di attrito F a tra A e B. È fondamentale osservare che sia N A che F a sono forze agenti tra i due corpi interessati A e B, e quindi per esse sarà necessario considerare sia la forza su B causata da A sia quella su A causata da B (coppia di azione-reazione), in quanto entrambe contribuiscono a determinare la dinamica del sistema. Definito un sistema di coordinate in cui x è orizzontale orientato verso destra nella figura e y verticale orientato verso l alto, le equazioni per le accelerazioni lungo x sono F F a = m A a A +F a = m B a B e quelle per le accelerazioni lungo y m A g + N A = 0 m B g N A + N B = m B a B Inoltre, F a e N A sono tra loro legate da Combinando queste equazioni si ottiene F a = µn A F µm A g = m A a A da cui i valori per le accelerazioni dei due corpi µm A g = m B a B a A = F m A µg a B = µ m A m B g. Domanda. Misurando la posizione x dei due blocchi utilizzando come riferimento il loro bordo sinistro e assumento x = 0 per t = 0, le equazioni del moto uniformemente accelerato per A e B sono x A (t) = 1 a At x B (t) = 1 a Bt

2 L allineamento dei bordi destri avviene all istante t o tale che e questo fornisce x A (t o ) = x B (t o ) + L B L A t o = (L B L A ) a A a B Domanda 3. Le equazioni per le velocità in funzione del tempo v A (t) = a A t v B (t) = a B t ci permettono di calcolare l energia cinetica al tempo t o : K = 1 m Aa At o + 1 m Ba Bt o Domanda 4. Per rispondere a questa domanda si impostano le equazioni per le accelerazioni nell assunzione che non vi sia scorrimento, e quindi si impone che il coefficiente di attrito statico µ S sia tale da dare il valore limite per la forza di attrito. Le equazioni di Newton per il moto lungo x diventano F F a = m A a +F a = m B a in cui appare una accelerazione comune a. Quelle per il moto lungo y sono identiche a prima. Otteniamo F a = F m A a = m B a da cui si ricava l accelerazione F a = m A + m B (risultato non inaspettato! F a e N A sono forze interne al sistema costituito da A e B, e non contribuiscono al moto del suo centro di massa che qui si muove in modo solidale con i due blocchi). Nella condizione limite sarà F a = µ S N A = µ S m A g. Dovrà quindi essere F a = F m B m A + m B = µ S m A g e questo ci dà il valore cercato per il minimo coefficiente di attrito statico neccessario per tenere attaccati i due blocchi F m B µ S = m A (m A + m B )g.

3 Problema La potenza meccanica dissipata sarà il lavoro effettuato nell unità di tempo contro la forza di attrito F a : P = F a ds dt dove ds è lo spostamento relativo fra i due corpi avvenuto nel tempo infinitesimo dt. In questo caso ds = ωrdt. La forza di attrito sarà F a = µn = µmg in quanto con la barra in posizione centrata il suo peso mg sarà distribuito equamente tra i due rulli. Quindi P = µmgωr. Un modo ancora più corretto che porta al medesimo risultato è quello di considerare il momento della forza di attrito rispetto all asse di rotazione del cilindro τ a = F a R = µmgr Affinchè il cilindro ruoti a velocità angolare costante nonostante la presenza di τ a, il motore deve fornire un momento della forza uguale ed opposto. La potenza erogata è il prodotto del momento della forza fornito per la velocità angolare (analogo rotazionale di P = F v): P = τ a ω = µmgωr. Domanda. Definiamo un sistema di riferimento in cui l asse x è orizzontale e orientato verso destra, e l asse y verticale e orientato verso l alto. Indichiamo con l indice 1 il rullo di sinistra nella figura, con l indice quello di destra, con F 1 e F le forze orizzontali esercitate dai rulli sulla barra grazie all attrito, con N 1 e N le forze normali verticali esercitate sulla barra. Le equazioni di Newton relative a moti traslazionali della barra sono allora F 1 + F = ma N 1 + N mg = 0 Le forze di attrito sono legate alle forze normali: F 1 = µn 1, F = µn (negativa a causa del diverso verso di rotazione del rullo ). Quindi µn 1 µn = ma N 1 + N = mg Otteniamo una ulteriore equazione imponendo che la barra non ruoti rispetto al punto di contatto col rullo 1: N d mg(d + x 0 ) = 0

4 dove d è il braccio della forza N e d + x 0 il braccio della forza mg che agisce sul centro di massa della barra. Una equazione analoga si ottiene ovviamente imponendo che non vi sia rotazione rispetto al punto di contatto col rullo : La somma di queste due equazioni dà N 1 d + mg(d x 0 ) = 0 N N 1 = mgx 0 d ossia lo spostamento della barra causa uno sbilanciamento nella distribuzione dei carichi, e quindi uno sbilanciamento tra le forze di attrito. Dalle equazioni sopra si ricava F 1 + F = µ(n 1 N ) = µmgx 0 d che è la risposta alla domanda. Domanda 3. Il fatto che l espressione per la forza netta sulla barra sia del tipo F = kx, con k = µmg/d, ci garantisce che il moto orizzontale della barra è un moto armonico, con periodo m d T = π k = π µg Si noti che il periodo non dipende dalla massa della barra, in quanto la costante elastica è proporzionale alla massa! Problema 3 La legge di Newton per i corpi rigidi in rotazione attorno ad un asse ci dice che I d θ dt = Kθ dove τ = Kθ è il momento della forza derivante dalla torsione. Questa è l equazione di un moto armonico con periodo I T = π K Il momento di inerzia di un asta omogenea di massa m a e lunghezza d rispetto a un asse ortogonale all asta passante per il suo centro di massa è e quindi I = m ad 1 T = π m a d 1K

5 Domanda. 1 Il principio di conservazione dell energia ci dice che la somma dell energia cinetica rotazionale e dell energia potenziale elastica resta costante: E = 1 Iω + 1 Kθ = costante All istante iniziale l energia è tutta potenziale e pari a (1/)Kθ0. La velocità angolare massima ω max corrisponderà a θ = 0, in cui l energia potenziale raggiunge il suo valore minimo pari a zero. Quindi 1 Iω max = 1 Kθ 0 da cui ω max = θ 0 K/I. Domanda 3. L intera energia meccanica iniziale (1/)Kθ0 è andata dissipata in calore, risultando in un aumento della temperatura di pendolo e liquido. All equilibrio tutto il sistema deve trovarsi alla stessa temperatura, e quindi sia pendolo che liquido avranno una temperatura finale T 1 = T 0 + T. Dovrà essere 1 Kθ 0 = (m a c a + m L c L ) T da cui si ottiene T e quindi T 1. Domanda 4. Essendo il sistema isolato dall esterno attraverso le pareti adiabatiche, la variazione di entropia complessiva sarà interamente dovuta alla ricezione di calore da parte del pendolo e del liquido. Possiamo calcolare la variazione di entropia del liquido integrando il calore infinitesimo dq = m L c L dt associato ad un aumento di temperatura da T a T + dt dalla temperatura iniziale a quella finale: dq S L = T = T1 T 0 dt m L c L T = m Lc L ln T ( 1 = m L c L ln 1 + T ) T 0 T 0 e analogamente per il pendolo, quindi la variazione di entropia complessiva sarà ( S = (m a c A + m L c L ) ln 1 + T ) T 0 Dato che T/T 0 è molto piccolo, per rispondere a questa domanda si poteva anche assumere che in prima approssimazione il calore Q = (1/)Kθ0 viene trasferito a temperatura costante T 0 dando luogo a una variazione di entropia S Q/T 0. Ciò corrisponde ad approssimare ln(1 + x) x nella formula qui sopra per S. 1 Alcuni studenti hanno risposto a questa domanda scrivendo che la velocità angolare deve essere ω = π/t, dove T è il periodo trovato sopra. Si apprezzi come nei pendoli torsionali esistono una velocità angolare ed una pulsazione del moto oscillatorio che sono grandezze del tutto diverse, ed il fatto che abbiano la stessa unità e si usi spesso indicarle entrambe con la lettera ω non autorizza a confonderle lasciandosi guidare ciecamente dall assonanza delle formule.

6 Problema 4 Come tutte le macchine reversibili operanti tra due temperature, la macchina avrà il rendimento di una macchina di Carnot tra le stesse temperature: η = L Q 1 = 1 T T 1 che è quindi noto dai dati del problema. Il calore Q 1 assorbito dalla sorgente a temperatura T 1 in un ciclo corrisponde al calore latente rilasciato dalla solidificazione di una massa m di stagno nel ciclo: Q 1 = mλ da cui si ottiene quindi L = ηq 1, e anche il calore ceduto Q = L Q 1 = (η 1)Q 1 (negativo). Domanda. L ambiente a temperatura costante T riceve dalla macchina una quantità di calore Q in un ciclo. La variazione di entropia dell ambiente è quindi S = Q /T. Poichè la macchina è reversibile, l entropia della massa di stagno dovrà diminuire della stessa quantità in modo che l entropia complessiva non cambi. Questo è garantito dal fatto che Q / Q 1 = T /T 1 e quindi Q 1 /T 1 = Q /T.

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

Esercitazioni del 09/06/2010

Esercitazioni del 09/06/2010 Esercitazioni del 09/06/2010 Problema 1) Un anello di massa m e di raggio r rotola, senza strisciare, partendo da fermo, lungo un piano inclinato di un angolo α=30 0. a) Determinare la legge del moto.

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

pendolo reversibile TEORIA FISICA

pendolo reversibile TEORIA FISICA pendolo reversibile TEORIA FISICA Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile. Si utilizza un pendolo doppio o

Dettagli

Indice. Grandezze fisiche Introduzione Misura e unità di misura Equazioni dimensionali... 15

Indice. Grandezze fisiche Introduzione Misura e unità di misura Equazioni dimensionali... 15 Indice Grandezze fisiche... 11 1.1 Introduzione... 11 1.2 Misura e unità di misura... 13 1.3 Equazioni dimensionali... 15 Elementi di calcolo vettoriale... 17 2.1 Introduzione... 17 2.2 Vettore e sue rappresentazioni...

Dettagli

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 02 Maggio 2017

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 02 Maggio 2017 Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 02 Maggio 2017 Esercizio 1 1) Sulla tavola agiscono: a) la forza peso, diretta ortogonalmente al moto; b) le reazioni normali

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

Compito 21 Giugno 2016

Compito 21 Giugno 2016 Compito 21 Giugno 2016 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 2015-2016 Compito di Fisica Generale I per matematici 21 Giugno

Dettagli

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU............ Tempo a disposizione (tre esercizi) 2 ore e 30 1 esercizio (esonero) 1 ora

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010

Fisica Generale I (primo e secondo modulo) A.A , 1 Febbraio 2010 Fisica Generale I (primo e secondo modulo) A.A. 2009-0, Febbraio 200 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale e 2 per

Dettagli

Esame scritto Fisica 1 del 13 settembre soluzione

Esame scritto Fisica 1 del 13 settembre soluzione Esame scritto Fisica 1 del 13 settembre 2010 - soluzione Nota: i valori numerici sono diversi nelle varie copie del compito, e quindi qui vengono indicati i ragionamenti e le formule da utilizzare ma non

Dettagli

Lez. 9 Moto armonico

Lez. 9 Moto armonico Lez. 9 Moto armonico Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it +39-081-676137 2 1 Un

Dettagli

Prova in itinere di Fisica (I modulo) Scienze e Tecnologie dell Ambiente. Soluzioni

Prova in itinere di Fisica (I modulo) Scienze e Tecnologie dell Ambiente. Soluzioni Prova in itinere di Fisica (I modulo) Scienze e Tecnologie dell Ambiente 30 Novembre 2007 Soluzioni A) a=2at = 24 m/s 2. a m = v(t 1 + t) v(t 1 ) t = 24.6 m/s 2 3) B) s(t 1 ) = s 0 + t1 0 (At 2 + B)dt

Dettagli

p i = 0 = m v + m A v A = p f da cui v A = m m A

p i = 0 = m v + m A v A = p f da cui v A = m m A Esercizio 1 Un carrello di massa m A di dimensioni trascurabili è inizialmente fermo nell origine O di un sistema di coordinate cartesiane xyz disposto come in figura. Il carrello può muoversi con attrito

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo

Dettagli

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0.

e una frequenza = 0 /2 =1/T (misurata in Hertz). Infine è la fase, cioè un numero (radianti) che dipende dalla definizione dell istante t=0. 8. Oscillazioni Definizione di oscillatore armonico libero Si tratta di un sistema soggetto ad un moto descrivibile secondo una funzione armonica (seno o coseno) del tipo x(t) = Acos( 0 t + ) A è l ampiezza

Dettagli

Meccanica Applicata alle Macchine

Meccanica Applicata alle Macchine Meccanica Applicata alle Macchine 06-11-013 TEMA A 1. Un cilindro ed una sfera omogenei di uguale massa m ed uguale raggio r sono collegati tra loro da un telaio di massa trascurabile mediante coppie rotoidali

Dettagli

Esercitazione N.3 Dinamica del corpo rigido

Esercitazione N.3 Dinamica del corpo rigido Esercitazione N.3 Dinamica del corpo rigido Questi esercizi sono sulle lezioni dalla 12 alla 18 Relativo alla lezione: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso

Dettagli

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2 Esercizio n 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento d'inerzia. Al disco, che può ruotare attorno ad un asse orizzontale passante

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (16 Aprile - 20 Aprile 2012) 1 ESERCIZI SVOLTI AD ESERCITAZIONE Sintesi Abbiamo studiato le equazioni che determinano il moto

Dettagli

Soluzione della prova scritta di Fisica 1 del 12/07/2011. h T. Figure 1: Quesito 1

Soluzione della prova scritta di Fisica 1 del 12/07/2011. h T. Figure 1: Quesito 1 Soluzione della prova scritta di Fisica 1 del 12/07/2011 1 Quesito y d θ x M m P m M P M P M Figure 1: Quesito 1 La risposta alla prima domanda(il valore di all equilibrio e la condizione di esistenza

Dettagli

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

Soluzione della prova scritta di Fisica 1 del 2/03/2010

Soluzione della prova scritta di Fisica 1 del 2/03/2010 Soluzione della prova scritta di Fisica 1 del 2/03/2010 1 Quesito y T2 N 0000000000 1111111111 m T1 x T 2 m B B T1 m Figura 1: Quesito 2 L accelerazione della massa m (che coincide in modulo con l accelerazione

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d.

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d. Esercizio 1 Due blocchi di ugual massa m 1 = m sono collegati ad un filo ideale lungo l. Inizialmente, i due corpi sono mantenuti fermi e in contatto tra loro su un piano inclinato di θ con il quale i

Dettagli

Fisica Generale I (primo e secondo modulo) A.A. 2009-10, 30 Agosto 2010

Fisica Generale I (primo e secondo modulo) A.A. 2009-10, 30 Agosto 2010 Fisica Generale I (primo e secondo modulo) A.A. 009-10, 30 Agosto 010 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e per

Dettagli

ESERCIZIO 1 SOLUZIONI

ESERCIZIO 1 SOLUZIONI - ESERCIZIO - Un corpo di massa m = 00 g si trova su un tavolo liscio. Il corpo m è mantenuto inizialmente fermo, appoggiato ad una molla di costante elastica k = 00 N/m, inizialmente compressa. Ad un

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

Esonero 20 Gennaio 2016

Esonero 20 Gennaio 2016 Esonero 20 Gennaio 2016 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 2015-2016 Esonero 2 - Fisica Generale I per matematici 20 Gennaio

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Soluzione Compito di isica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Esercizio 1 1) Scriviamo le equazioni del moto della sfera sul piano inclinato. Le forze agenti sono il peso

Dettagli

Si assuma per l intensità dell accelerazione gravitazionale sulla superficie terrestre il valore g = 9.81 ms 2.

Si assuma per l intensità dell accelerazione gravitazionale sulla superficie terrestre il valore g = 9.81 ms 2. Compito n 20 Nome Cognome Numero di matricola Compito di Fisica Generale 1 + Esercitazioni del 07/02/2018 Modalità di risposta: si scriva la formula risolutiva nell apposito riquadro e si barri la lettera

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

UNIVERSITA' DEGLI STUDI DI GENOVA - Polo di La Spezia FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015

UNIVERSITA' DEGLI STUDI DI GENOVA - Polo di La Spezia FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015 FISICA GENERALE 1 - Prova parziale di meccanica del 10/02/2015 Lo studente descriva brevemente il procedimento usato e inserisca i valori numerici solo dopo aver risolto il problema con calcoli simbolici,

Dettagli

Soluzione prova scritta Fisica Generale I Ing. Elettronica e TLC 14 Settembre 2018

Soluzione prova scritta Fisica Generale I Ing. Elettronica e TLC 14 Settembre 2018 Soluzione prova scritta Fisica Generale I Ing. Elettronica e LC 14 Settembre 2018 Esercizio 1 1) Per il sistema M + m, includendo la descrizione dell interazione gravitazionale come energia potenziale,

Dettagli

Meccanica 17 Aprile 2019 Problema 1 (1 punto) Soluzione , F r Problema 2 (2 punti) Soluzione

Meccanica 17 Aprile 2019 Problema 1 (1 punto) Soluzione , F r Problema 2 (2 punti) Soluzione Meccanica 17 Aprile 019 Problema 1 (1 punto) Una massa puntiforme di valore m= 1.5 kg, posta nell origine, viene sottoposta all azione di una forza F= 3i + j N, dove i e j sono i versori degli assi del

Dettagli

Esame 24 Luglio 2018

Esame 24 Luglio 2018 Esame 4 Luglio 08 Roberto Bonciani e Paolo Dore Corso di Fisica Generale Dipartimento di Matematica Università degli Studi di Roma La Sapienza Anno Accademico 07-08 Esercizio Una pallina di massa m = 0.5

Dettagli

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto..

Lecce- XI scuola estiva di fisica Mirella Rafanelli. I sistemi estesi. La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli I sistemi estesi La dinamica oltre il punto.. Lecce- XI scuola estiva di fisica - 2018 Mirella Rafanelli Nota bene: quanto segue serve come strumento

Dettagli

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò

LAVORO ED ENERGIA. Dott.ssa Silvia Rainò 1 LAVORO ED ENERGIA Dott.ssa Silvia Rainò Lavoro ed Energia 2 Consideriamo il moto di un oggetto vincolato a muoversi su una traiettoria prestabilita, ad esempio: Un treno vincolato a muoversi sui binari.

Dettagli

17/1/2019 /1998 /2016 /2015

17/1/2019 /1998 /2016 /2015 17/1/2019 2019 /1998 /2016 /2015 /2015 1 /2011 /2008 2 /2009 /2009 T 0 T 1 = mg T 2 = 1 3 mg Si taglia la fune di destra: ma = mg T 0 { ( 1 3 ml2 ) a l/2 = l 2 mg con a si indica la componente dell accelerazione

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO

CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO LEZIONE statica-1 CORPO RIGIDO MOMENTO DI UNA FORZA EQUILIBRIO DI UN CORPO RIGIDO CENTRO DI MASSA BARICENTRO GRANDEZZE SCALARI E VETTORIALI: RICHIAMI DUE SONO LE TIPOLOGIE DI GRANDEZZE ESISTENTI IN FISICA

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accademico 006-007 Esercizio n.: Un punto materiale di massa m e vincolato a muoversi lungo un binario orizzontale scabro. Siano µ s e µ d i coefficienti

Dettagli

Fisica Applicata, Area Tecnica, M. Ruspa. LAVORO ed ENERGIA

Fisica Applicata, Area Tecnica, M. Ruspa. LAVORO ed ENERGIA LAVORO ed ENERGIA F m Δs F s LAVORO F Se la forza e costante durante lo spostamento F Δs F Δs >> Unita di misura nel S.I. ESERCIZIO Un infermiere spinge un paziente di 72 kg su una barella di 15 Kg, conferendo

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

FM210 / MA - Seconda prova pre-esonero ( )

FM210 / MA - Seconda prova pre-esonero ( ) FM10 / MA - Seconda prova pre-esonero (3-5-018) 1. Un sistema meccanico è costituito da due sbarre uguali AB e BC, rettilinee, omogenee, di massa M e lunghezza l, incernierate tra loro in B. Le due sbarre

Dettagli

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015

Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 23 giugno 2015 Prova scritta di Fisica Generale I Corso di Laurea in Astronomia 3 giugno 015 Problema 1 Si consideri un sistema costituito da un cilindro omogeneo di raggio R 1 = 10 cm e altezza h = 0 cm, inserito all

Dettagli

PROVA PARZIALE DEL 19 DICEMBRE 2016 modulo I

PROVA PARZIALE DEL 19 DICEMBRE 2016 modulo I PROVA PARZIALE DEL 19 DICEMBRE 016 modulo I January 8, 017 Si prega di svolgere nella maniera più chiara possibile il compito, di scrivere e risolvere le equazioni in gioco riportando tutti i passaggi

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

Secondo Appello Estivo del corso di Fisica del

Secondo Appello Estivo del corso di Fisica del Secondo Appello Estivo del corso di Fisica del 25.7.2012 Corso di laurea in Informatica A.A. 2011-2012 (Prof. Paolo Camarri) Cognome: Nome: Matricola: Anno di immatricolazione: Problema n.1 Una semisfera

Dettagli

Facoltà di Farmacia e Medicina - A.A giugno 2014 Scritto di Fisica

Facoltà di Farmacia e Medicina - A.A giugno 2014 Scritto di Fisica Facoltà di Farmacia e Medicina - A.A. 2013-2014 10 giugno 2014 Scritto di Fisica Corso di Laurea: Laurea Magistrale in FARMACIA Nome: Matricola Canale: Cognome: Aula: Docente: Riportare sul presente foglio

Dettagli

Compito di Fisica Generale (Meccanica) 10/01/2012

Compito di Fisica Generale (Meccanica) 10/01/2012 Compito di Fisica Generale (Meccanica) 10/01/2012 1) In un piano orizzontale sono assegnati due assi cartesiani x e y. Uno strato di liquido occupa lo spazio fra y = 0 ed y = d e si muove a velocità costante

Dettagli

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI Università degli Studi di Udine, Corso di Laurea in Ingegneria Meccanica Esami di FISICA I 9 CFU) e Fisica Generale 1 12 CFU) A.A. 218/219, Sessione di Gennaio/Febbraio, Primo Appello, 21 Gennaio 219,

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Soluzione della prova scritta di Fisica 1 del 12/01/2010

Soluzione della prova scritta di Fisica 1 del 12/01/2010 Soluzione della prova scritta di Fisica 1 del 12/01/2010 1 Quesito La soluzione alla prima domanda del quesito si ricava imponendo che l energia potenziale complessiva associata al sistema meccanico abbia

Dettagli

PROVA PARZIALE DEL 9 SETTEMBRE 2016 modulo I

PROVA PARZIALE DEL 9 SETTEMBRE 2016 modulo I PROVA PARZIALE DEL 9 SETTEMBRE 2016 modulo I September 28, 2016 Si prega di svolgere nella maniera più chiara possibile il compito, di scrivere e risolvere le equazioni in gioco riportando tutti i passaggi

Dettagli

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio:

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio: Meccanica 24 Aprile 2018 Problema 1 (1 punto) Un blocco di mass M=90 kg è attaccato tramite una molla di costante elastiìca K= 2 10 3 N/m, massa trascurabile e lunghezza a riposo nulla, a una fune inestensibile

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 9 Gennaio 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

5a.Rotazione di un corpo rigido attorno ad un asse fisso

5a.Rotazione di un corpo rigido attorno ad un asse fisso 5a.Rotazione di un corpo rigido attorno ad un asse fisso Un corpo rigido è un corpo indeformabile: le distanze relative tra i punti materiali che lo costituiscono rimangono costanti. Il modello corpo rigido

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 25 agosto 2011

Fisica Generale I (primo e secondo modulo) A.A , 25 agosto 2011 Fisica Generale I (primo e secondo modulo) A.A. 2010-11, 25 agosto 2011 Cognome Nome Matricola Iscritto al Corso di Laurea in Matematica Fisica Anno di Corso primo oltre il primo Tipo di scritto svolto

Dettagli

Nome Cognome Numero di matricola Coordinata posizione

Nome Cognome Numero di matricola Coordinata posizione Nome Cognome Numero di matricola Coordinata posizione Terzo compito di Fisica Generale + Esercitazioni, a.a. 07-08 4 Settembre 08 ===================================================================== Premesse

Dettagli

Esame 28 Giugno 2017

Esame 28 Giugno 2017 Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28

Dettagli

PIANO di LAVORO A. S. 2013/ 2014

PIANO di LAVORO A. S. 2013/ 2014 Nome docente Vessecchia Laura Materia insegnata Fisica Classe Prima E ITIS Previsione numero ore di insegnamento ore complessive di insegnamento 3 ore settimanali di cui in compresenza 1 ora di cui di

Dettagli

PROVA PARZIALE DEL 27 GENNAIO 2016

PROVA PARZIALE DEL 27 GENNAIO 2016 PROVA PARZIALE DEL 27 GENNAIO 2016 February 2, 2016 Si prega di commentare e spiegare bene i vari passaggi, non di riportare solo la formula finale. PROBLEMA 1) Due blocchi, collegati da uno spago privo

Dettagli

Onde meccaniche. 1. Velocità delle onde. 2. Equazione delle onde. 3. Onde di compressione. 4. Soluzioni dell equazione delle onde I - 0

Onde meccaniche. 1. Velocità delle onde. 2. Equazione delle onde. 3. Onde di compressione. 4. Soluzioni dell equazione delle onde I - 0 Onde meccaniche 1. Velocità delle onde 2. Equazione delle onde 3. Onde di compressione 4. Soluzioni dell equazione delle onde I - 0 Onde meccaniche Onde meccaniche: trasporto di oscillazioni da un punto

Dettagli

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006

Università degli Studi Mediterranea di Reggio Calabria Facoltà d Ingegneria Meccanica Razionale A.A. 2005/ Appello del 04/07/2006 Facoltà d Ingegneria Meccanica Razionale A.A. 2005/2006 - Appello del 04/07/2006 In un piano verticale Oxy, un sistema materiale è costituito da un disco omogeneo, di centro Q, raggio R e massa 2m, e da

Dettagli

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a III Appello, 4 febbraio 2014

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a III Appello, 4 febbraio 2014 POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 III Appello, 4 febbraio 2014 Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 14 febbraio 2011 Versione A

Fisica Generale I (primo e secondo modulo) A.A , 14 febbraio 2011 Versione A Fisica Generale I (primo e secondo modulo) A.A. 2010-11, 14 febbraio 2011 Versione A Esercizi di meccanica relativi al primo modulo del corso di Fis. Gen. I: Esercizio I.1 Si consideri un carrello di massa

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

mg 2a 1 tan 2 θ = 3 8 m (6)

mg 2a 1 tan 2 θ = 3 8 m (6) Soluzioni Esercizio 1. All equilibrio la forza elastica, la forza peso e la reazione vincolare del piano si bilanciano: F el + P + R n = 0 (1) Se la massa si trova in A, proiettando lungo la direzione

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola

Terza prova parziale di Fisica Data: 15 Dicembre Fisica. 15 Dicembre Test a risposta singola Fisica 15 Dicembre 2011 Test a risposta singola ˆ Una forza si dice conservativa quando: Il lavoro compiuto dalla forza su un qualsiasi cammino chiuso è nullo Il lavoro compiuto dalla forza su un qualsiasi

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

FM210 / MA - Secondo scritto ( )

FM210 / MA - Secondo scritto ( ) FM10 / MA - Secondo scritto (6-7-017) Esercizio 1. Un asta rigida omogenea di lunghezza l e massa M è vincolata a muoversi su un piano verticale di coordinate x-y (con l asse x orizzontale e l asse y verticale,

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 06 febbraio 01 D Esercizio 1. Nel meccanismo in figura la manovella AB (lunghezza L) ruota a velocità angolare α = costante. Alla sua estremità B un pattino

Dettagli

Meccanica 17 giugno 2013

Meccanica 17 giugno 2013 Meccanica 17 giugno 2013 Problema 1 (1 punto) Un punto si muove nel piano y-x con legge oraria: Con x,y misurati in metri, t in secondi. a) Determinare i valori di y quando x=1 m; b) Determinare il modulo

Dettagli

Il calcolo vettoriale: ripasso della somma e delle differenza tra vettori; prodotto scalare; prodotto vettoriale.

Il calcolo vettoriale: ripasso della somma e delle differenza tra vettori; prodotto scalare; prodotto vettoriale. Anno scolastico: 2012-2013 Docente: Paola Carcano FISICA 2D Il calcolo vettoriale: ripasso della somma e delle differenza tra vettori; prodotto scalare; prodotto vettoriale. Le forze: le interazioni fondamentali;

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido Seminario didattico Ingegneria Elettronica Lezione 3: Dinamica del Corpo Rigido Esercizio n 1 Un cilindro di raggio R e massa M = 2 Kg è posto su un piano orizzontale. Attorno al cilindro è avvolto un

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 4-5 Esercizio 1 Una ruota di massa m = 1 kg e raggio R = 1 m viene tirata contro un gradino di altezza h = 3 cm con una velocità

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

FM210 - Fisica Matematica 1 Tutorato 11 ( )

FM210 - Fisica Matematica 1 Tutorato 11 ( ) Corso di laurea in atematica - Anno Accademico 3/4 F - Fisica atematica Tutorato (--) Esercizio. Si calcolino i momenti principali di inerzia dei seguenti corpi rigidi rispetto al loro centro di massa:.

Dettagli