Esercizi selezionati per l esame scritto del corso di Fotonica. Laser

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi selezionati per l esame scritto del corso di Fotonica. Laser"

Transcript

1 Esercizi selezionati per l esame scritto del corso di Fotonica Laser Si consideri un laser Nd-YAG con cavità ad anello (vedi figura). Il cristallo Nd-YAG ha lunghezza L = 2.5 cm e R A = R C = 100%. Supponendo che il pompaggio crei una inversione di popolazione N2 - N1 = cm -3, e supponendo che la sezione d'urto di emissione stimolata valga σ 21 = cm 2, a) si calcoli quale valore deve avere la riflettività R B dello specchio B perché il guadagno d anello della cavità per l ampiezza del campo elettrico sia uguale a 2, b) supponendo che ABC sia un triangolo equilatero di lato 5 cm e attribuendo il valore n = 1.8 all indice di rifrazione del cristallo, si calcoli la distanza in frequenza Δν fra due autofrequenze adiacenti del laser. A L= 2.5 cm B C Un laser a cavità Fabry-Perot è caratterizzato da specchi con riflettività R 1 = 1, R 2 = 0.8, un mezzo attivo di lunghezza l = 3 cm, e una sezione d urto di assorbimento σ = cm 2. Calcolare l inversione di popolazione N 2 N 1 necessaria per avere un guadagno di anello per il campo elettrico uguale a 2. Si consideri un laser costituito da un cristallo (amplificatore) di lunghezza L = 1 mm e indice di rifrazione n = 3.5, con cavità Fabry-Perot che sfrutti le riflessioni alle interfacce cristallo-aria. a) si calcoli la distanza Δν fra due autofrequenze adiacenti della cavità; b) si calcoli il coefficiente R di riflessione alle interfacce. Si consideri un laser Nd-YAG con cavità ad anello (vedi figura). Il cristallo Nd-YAG ha lunghezza L = 1 cm e R A = R C = 100%. Supponendo che il pompaggio crei una inversione di popolazione N2 - N1 = cm -3, e supponendo che la sezione d'urto di emissione stimolata valga σ 21 = cm 2, a) si calcoli quale valore deve avere la riflettività R B dello specchio B perché il laser sia a soglia, b) supponendo che ABC sia un triangolo equilatero di lato 4 cm e attribuendo il valore n = 1.8 all indice di rifrazione del cristallo, e assumendo che la larghezza di banda del guadagno nel cristallo sia 234 GHz, si calcoli su quante autofrequenze il laser possa emettere. A L= 1 cm B C

2 Fasci gaussiani Un fascio gaussiano ( λ = 1.5 μm ) si propaga lungo l asse z e ha un waist w o = 0.1 mm in z = 0. In z 1 = 25 cm incontra una lente piano-convessa costituita da una calotta sferica di raggio di curvatura 4 cm, fabbricata con un vetro di indice di rifrazione n = 1.8. a) calcolare in quale posizione z 2 viene focalizzato il fascio, e quale è la dimensione della macchia focale in z 2. b) calcolare quale deve essere il diametro della lente perché possa intercettare il 99% della potenza luminosa. Consideriamo un fascio gaussiano con λ = 1 μm e potenza P che si propaga lungo l'asse z e presenta sul piano z = 0 un raggio di curvatura infinito del fronte d'onda ed una dimensione trasversale (waist) wo = 1 mm. Vogliamo focalizzare il fascio su di un bersaglio ad 1 km di distanza ponendo una lente di focale f = 500 m alla coordinata z = 500 m. Calcolare: a) la dimensione w f del fascio laser sul bersaglio. b) il diametro della lente che serve per raccogliere il 99% della potenza P. Un fascio gaussiano ( λ = 1 μm ) si propaga lungo l asse z e ha un waist w o = 0.1 mm in z = 0. In z 1 = 10 cm incontra una lente di focale f = 5 cm. a) Calcolare in quale posizione z 2 viene focalizzato il fascio, e quale è la dimensione della macchia focale in z 2. b) calcolare quale è il valore di w alla coordinata z 3 = 20 cm. Il fascio di uscita di un laser (luce verde, λ = μm ) viene indirizzato verso la luna. Prendiamo l asse z coincidente con la direzione di propagazione. a) Supponendo che il fascio sia un onda sferica gaussiana con waist minimo w o = 0.25 mm sullo specchio di uscita del laser, e assegnando alla distanza terra-luna il valore z L = km, si calcoli il valore del parametro w L sulla luna. b) Per ridurre l area illuminata sulla luna, si interpone sul cammino del fascio una lente convergente con distanza focale f. Chiamando z R la lunghezza di Rayleigh del fascio laser, supponendo che la lente venga posta a distanza f dallo specchio di uscita del laser, ponendo f = 15 z R, calcolare di che fattore si riduce w L. Riflessione, rifrazione e strati Un onda elettromagnetica oscillante alla lunghezza d onda λ = 650 nm è polarizzata linearmente come mostrato in figura, ha una potenza pari a 100 mw e si propaga nel vuoto. Essa incide con un angolo di 30 su una lastra di vetro di indice di rifrazione n = 1.5 e in sequenza attraversa una lamina λ/2 e un polarizzatore. - Che potenza ha il fascio trasmesso nel vetro? La lamina ha l asse ottico inclinato di 30 rispetto alla direzione x del sistema di riferimento solidale con l onda mostrato in figura e l asse di trasmissione del polarizzatore è diretto lungo y del medesimo sistema di riferimento. - Quanta potenza ottica viene trasmessa attraverso il polarizzatore? k E 30 x y z lamina polarizzatore

3 Un fascio di luce incide dall aria su una lastra di vetro di spessore h = 6 mm e indice di rifrazione n = 1.8. La luce incide all angolo di Brewster. Il raggio viene parzialmente riflesso e parzialmente trasmesso alla prima intefaccia aria-vetro. Il fascio trasmesso subisce una ulteriore riflessione sul fondo della lastra e viene nuovamente trasmesso come mostrato in figura. a) Quanto vale la distanza b tra i due fasci trasmessi? b) Il raggio incidente è polarizzato linearmente e ha componenti di ampiezza E π = 10 4 V/m e E σ = V/m. Quanto vale l intensità del fascio dopo la prima riflessione? b h Si consideri un onda piana alla lunghezza d onda di 550 nm che incide perpendicolarmente su di una superficie aria-vetro. a) assumendo che l indice di rifrazione del vetro sia n v = 1.6, si calcoli il coefficiente di riflessione R. b) supponendo di interporre uno strato sottile di solfuro di zinco tra aria e vetro, si calcoli quale spessore deve avere tale strato per massimizzare il coefficiente di riflessione. Si consideri una lamina di vetro di indice di rifrazione n 3 = 1.69, sulla quale viene depositato uno strato antiriflettente di spessore d e indice di rifrazione n 2. Si supponga che d e n 2 siano scelti in modo tale che lo strato sia perfettamente antiriflettente per λ = 500 nm ad incidenza normale. Calcolare per quale lunghezza d onda λ lo strato si comporta come perfettamente antiriflettente se il fascio di luce incide sullo strato formando un angolo di 5º rispetto alla normale. Si consideri un onda piana alla lunghezza d onda di 550 nm che incide perpendicolarmente su di una superficie aria-vetro. a) assumendo che l indice di rifrazione del vetro sia n v = 1.6, si calcoli il coefficiente di riflessione R. b) supponendo di interporre uno strato sottile di solfuro di zinco tra aria e vetro, si calcoli quale spessore deve avere tale strato per massimizzare il coefficiente di riflessione. Polarizzazione Si consideri una lamina di vetro di indice di rifrazione n 3 = 1.55, sulla quale viene depositato uno strato di solfuro di zinco (ZnS) di spessore d. a) Calcolare il valore di d che massimizza il coefficiente di riflessione per un fascio di luce che arriva dall aria con λ = 590 nm ad incidenza normale. b) Calcolare il valore massimo del coefficente di riflessione R del sistema. c) Calcolare per quale lunghezza d onda λ lo strato ha il massimo di riflettività se il fascio di luce incide sullo strato formando un angolo di 5º rispetto alla normale. Consideriamo un fascio di luce che si propaghi nella direzione z e sia polarizzato linearmente nella direzione dell asse x. Il fascio di luce attraversa una lamina quarto d onda con asse ottico che forma un angolo α = π/4 con l asse x, e un polarizzatore con asse nella direzione y. a) Calcolare lo spessore minimo della lamina a quarto d onda, supponendo che sia in calcite, per la lunghezza

4 d onda λ = 589 nm. b) Scrivere la matrice di Jones della lamina riferita agli assi xy. c) Calcolare la frazione di potenza trasmessa dal polarizzatore. Si consideri un onda piana polarizzata linearmente lungo l asse y, che si propaga lungo l asse z, e incontra successivamente una lamina λ/2 con asse ottico che forma un angolo di 30 in senso orario con l asse y, una lamina λ/4 con asse ottico che forma un angolo di 60 in senso orario con l asse y, e un polarizzatore con asse ottico coincidente con l asse x. a) calcolare il rapporto tra la potenza luminosa trasmessa dal polarizzatore e la potenza luminosa entrante, b) calcolare lo stesso rapporto nel caso in cui la lamina λ/2 venga rimossa. Si consideri un onda piana polarizzata linearmente lungo l asse y, che si propaga lungo l asse z, e incontra successivamente una lamina λ/2 con asse ottico che forma un angolo di 15 in senso orario con l asse y, una seconda lamina λ/2 con asse ottico che forma un angolo di 45 in senso orario con l asse y, e un polarizzatore con asse ottico coincidente con l asse x. a) scrivere il vettore di Jones del campo uscente dalla seconda lamina; b) calcolare il rapporto tra la potenza luminosa trasmessa dal polarizzatore e la potenza luminosa entrante; c) calcolare lo stesso rapporto nel caso in cui la posizione delle due lamine sia scambiata. Un isolatore è costituito dalla seguente cascata di componenti: un polarizzatore, un rotatore di Faraday che ruota la polarizzazione di 45 in senso anti-orario, una lamina λ/2 e un secondo polarizzatore. (Lo schema è mostrato in figura). Si supponga che il campo in ingresso sia polarizzato lungo l asse y, e che i due polarizzatori abbiano l asse ottico coincidente con l asse y. calcolare a che angolo deve essere posto l asse ottico della lamina per avere trasmissione T = 1 supponendo che l isolatore non sia stato progettato correttamente e in uscita si abbia una trasmissione pari a T = P 2 /P 1 = 0.95, valutare a che angolo rispetto all asse y si trova l asse ottico della lamina λ/2. y P 1 P 2 z Consideriamo un fascio di luce che si propaghi nella direzione z e sia polarizzato linearmente nella direzione dell asse x. Il fascio di luce attraversa una lamina mezz onda con asse ottico che forma un angolo α con l asse x, e un polarizzatore con asse nella direzione y. a) Calcolare lo spessore minimo della lamina a mezz onda, supponendo che sia in calcite, per la lunghezza d onda λ = 589 nm. b) Dire che valore deve avere l angolo α perché la trasmissione del sistema sia unitaria, c) Scrivere la matrice di Jones della lamina riferita agli assi xy. Misure spettrali Consideriamo un reticolo di ampiezza con un passo d = 2.5 μm, che viene utilizzato sul secondo ordine di diffrazione. Il fascio di ingresso abbia un angolo di incidenza θi = 0. a) che dimensione deve avere il reticolo per presentare un potere risolvente λ/δλ = 10 4? b) verificare se esiste almeno

5 una lunghezza d'onda nel campo del visibile che abbia un angolo di diffrazione coincidente con quello presentato da λ = 0.9 μm al secondo ordine. Si consideri un laser costituito da un mezzo attivo (amplificatore) di lunghezza L = 1 mm e indice di rifrazione n = 2, con cavità Fabry-Perot e specchi posti sulle facce del mezzo attivo, funzionante alla lunghezza d onda λ = 1.3 μm. a) si calcoli la distanza Δν fra due modi longitudinali adiacenti, b) supponendo di inviare il fascio laser su di un reticolo di passo d = 3 μm, si calcoli quale deve essere la dimensione minima del reticolo D perché siano risolti al primo ordine di diffrazione due modi adiacenti. Si consideri un onda piana, composta da due lunghezze d onda λ 1 = 1340 nm e λ 2 = 1341 nm, che incide perpendicolarmente su di un reticolo avente passo d = 3 μm. a) calcolare l angolo Δθ formato dalle due lunghezze d onda al secondo ordine di diffrazione del reticolo. b) calcolare quale deve essere la dimensione trasversale minima del reticolo perché il potere risolvente sia sufficiente a separare le due lunghezze d onda. Consideriamo un fascio gaussiano con λ = 1 μm e potenza P che si propaga lungo l'asse z e presenta sul piano z = 0 un raggio di curvatura infinito del fronte d'onda ed una dimensione trasversale (waist) wo = 0.8 mm. Alla coordinata z 1 = 8 cm incontra una lente convergente con focale f = 5 cm. a) calcolare a quale coordinata z 2 la lente fa convergere il fascio di luce. b) calcolare la frazione della potenza P che attraversa un apertura circolare di diametro d = 30 μm posta alla coordinata z 2. Si consideri un laser Nd-YAG con cavità di tipo Fabry-Perot con distanza fra gli specchi L = 8 cm. Il cristallo Nd-YAG ha lunghezza l = 4 cm. Tenuto conto che l'indice di rifrazione del cristallo è n = 1.8 e che la banda di guadagno del Nd-YAG ha una larghezza Δν12 = 220 GHz, si risponda alle seguenti domande: su quante autofrequenze può funzionare il laser? che caratteristiche deve avere l'interferometro di Fabry-Perot (distanza fra gli specchi, riflettività degli specchi) da utilizzarsi per misurare sperimentalmente il numero di autofrequenze su cui il laser funziona? Consideriamo un reticolo di ampiezza con un passo d = 2 μm, che viene utilizzato sul secondo ordine di diffrazione. Il fascio di ingresso presenti un angolo di incidenza θi = 0. Domande: che dimensione deve avere il reticolo per presentare un potere risolvente λ/δλ = 10 5? verificare se esiste almeno una lunghezza d'onda nel campo del visibile che abbia un angolo di diffrazione coincidente con quello presentato da λ = 0.8 μm al secondo ordine.

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 21 giugno 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 21 giugno 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) giugno 08 Problema Due lenti sottili, biconvesse e simmetriche, hanno raggio di curvatura R = 0.0 cm e indice di rifrazione n =.5. Queste

Dettagli

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione Interferenza Coerenza Diffrazione Polarizzazione Fenomeni interferenziali Interferenza: combinazione di onde identiche provenienti da diverse sorgenti che si sovrappongono in un punto dello spazio costruttiva

Dettagli

4.5 Polarizzazione Capitolo 4 Ottica

4.5 Polarizzazione Capitolo 4 Ottica 4.5 Polarizzazione Esercizio 98 Un reticolo con N fenditure orizzontali, larghe a e con passo p, è posto perpendicolarmente a superficie di un liquido con n =.0. Il reticolo è colpito normalmente alla

Dettagli

nasce la spettroscopia come tecnica di analisi chimica

nasce la spettroscopia come tecnica di analisi chimica sviluppo storico della spettroscopia: il reticolo di diffrazione *1810 Fraunhofer sviluppa il diffrattometro a reticolo e misura ben 700 righe, fra righe chiare (di emissione) e righe scure (di assorbimento);

Dettagli

I Esonero di Elementi di Ottica del 13/06/2011

I Esonero di Elementi di Ottica del 13/06/2011 I Esonero di Elementi di Ottica del 13/06/2011 1) L onda elettromagnetica piana sinusoidale di frequenza f= 100 khz emessa da un sottomarino in superficie, si propaga orizzontalmente sia nell aria che

Dettagli

6) Si considerino due polarizzatori ideali (il primo orientato in direzione verticale e il secondo in

6) Si considerino due polarizzatori ideali (il primo orientato in direzione verticale e il secondo in 1) Un onda monocromatica polarizzata, con componenti del campo elettrico uguali a: E x = (1/2) 1/2 cos(kz - t) E y = (1/2) 1/2 sen(kz - t + /4), passa attraverso polarizzatori ideali, il primo orientato

Dettagli

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Ottica 1. Un fascio di luce di lunghezza λ passa attraverso una fenditura rettangolare di larghezza a. La sua immagine viene

Dettagli

POLARIZZAZIONE. I = < (E 0 cos ϕ) 2 > (1) dove < (E 0 cos ϕ) 2 > è il valore mediato nel tempo.

POLARIZZAZIONE. I = < (E 0 cos ϕ) 2 > (1) dove < (E 0 cos ϕ) 2 > è il valore mediato nel tempo. POLARIZZAZIONE ESERCIZIO 1 Un fascio di luce naturale attraversa una serie di polarizzatori ognuno dei quali ha l asse di polarizzazione ruotato di 45 rispetto al precedente. Determinare quale frazione

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

I esonero di Ottica Geometria a.a compito A

I esonero di Ottica Geometria a.a compito A I esonero di Ottica Geometria a.a. 2016-17 compito A Un onda elettromagnetica piana con frequenza 5x10 12 Hz entra con incidenza normale in un mezzo spesso 10 Km. Sapendo che la luce impiega un tempo t=50

Dettagli

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO 1 INTERFERENZA Massimi di luminosità Onda incidente L onda prodotta alla fenditura S0, che funge da sorgente, genera due onde alle fenditure

Dettagli

Unità didattica 9. Nona unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 9. Nona unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 9 La radiazione visibile.... 2 L ottica.... 3 Velocità della luce... 4 La riflessione.. 5 Riflessione negli specchi piani.. 6 Riflessione negli specchi curvi..... 7 Formazione dell immagine

Dettagli

Esercizi di Fisica Generale

Esercizi di Fisica Generale Esercizi di Fisica Generale 4. ttica prof. Domenico Galli, dott. Daniele Gregori, dott. lessandro Tronconi 27 marzo 202 I compiti scritti di esame del prof. D. Galli e del prof. U. Marconi propongono 3

Dettagli

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE Scopo dell esperimento: studiare l ottica geometrica e i fenomeni di diffrazione MATERIALE A DISPOSIZIONE: 1 banco ottico 1 blocco di plexiglass 2 lenti con

Dettagli

DIFFRAZIONE. deviazione rispetto alla traiettoria rettilinea dell ottica geometrica

DIFFRAZIONE. deviazione rispetto alla traiettoria rettilinea dell ottica geometrica DIFFRAZIONE deviazione rispetto alla traiettoria rettilinea dell ottica geometrica La diffrazione è un particolare fenomeno di deviazione o sparpagliamento che si verifica quando un onda incontra nel suo

Dettagli

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio 1 Calcolare la larghezza della frangia centrale della figura di interferenza

Dettagli

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile)

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile) Ottica geometrica Propagazione per raggi luminosi (pennello di luce molto sottile) All interno di un mezzo omogeneo la propagazione e rettilinea: i raggi luminosi sono pertanto rappresentati da tratti

Dettagli

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione.

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione. FAM Serie 6: Fenomeni ondulatori VI C. Ferrari Esercizio 1 Equazione dell iperbole ed interferenza Considera due sorgenti S 1 e S 2 poste sull asse Ox in x = d 2 e x = d 2. 1. Nel piano Oxy determina le

Dettagli

Fisica Generale B. 3. Esercizi di Ottica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II) ! 1. = v = c 2.

Fisica Generale B. 3. Esercizi di Ottica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II)  ! 1. = v = c 2. Fisica Generale B 3. Esercizi di Ottica http://campus.cib.unibo.it/490/ May 7, 0 Esercizio La fiamma di un fornello, continuamente e regolarmente rifornita di sale da cucina, costituisce una sorgente estesa

Dettagli

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Ottica fisica La natura ondulatoria della luce è stata evidenziata da Young ai primi dell 800 usando l interferenza e confutando l idea corpuscolare di Newton Le onde elettromagnetiche sono state previste

Dettagli

Intensità figura di diffrazione da una fenditura

Intensità figura di diffrazione da una fenditura Intensità figura di diffrazione da una fenditura φ=0 Si suppone di avere la fenditura divisa in un gran numero di piccole strisce di larghezza y. Ogni striscia si comporta Come una sorgente di radiazione

Dettagli

ESPERIMENTO DI YOUNG DOPPIA FENDITURA

ESPERIMENTO DI YOUNG DOPPIA FENDITURA ESPERIMENTO DI YOUNG DOPPIA FENDITURA Larghezza fenditure a > d (L = distanza fenditure - schermo; d = distanza tra le fenditure) Evidenza della natura ondulatoria della luce Luce monocromatica

Dettagli

Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 16 dicembre 2008 Fila A

Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 16 dicembre 2008 Fila A Laurea in Scienza e Tecnologia per i Beni Culturali Esame di Fisica dei Beni Culturali 6 dicembre 008 Fila A Cognome ome Matricola Completare le seguenti equivalenze: (a) 0, g = mg (b) 4,5 0 7 nm = mm

Dettagli

ABERRAZIONI OCULARI MONOCROMATICHE E FILM LACRIMALE

ABERRAZIONI OCULARI MONOCROMATICHE E FILM LACRIMALE Università degli Studi di Padova Facoltà di Scienze MM.FF.NN Corso di Laurea in Ottica e Optometria TESI DI LAUREA ABERRAZIONI OCULARI MONOCROMATICHE E FILM LACRIMALE Monochromatic aberrations and tear

Dettagli

Ottica fisica - Interferenza

Ottica fisica - Interferenza Ottica fisica - Interferenza 1. Principi di sovrapposizione e di Huygens 2. Interferenza 3. Riflessione e trasmissione della luce VIII - 0 Principio di sovrapposizione In un sistema meccanico in cui si

Dettagli

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2)

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica ondulatoria

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica ondulatoria 4 giugno 2013 Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica ondulatoria 1. Un reticolo di diffrazione quadrato, con lato L = 2 cm e 1000 fenditure, è illuminato da una

Dettagli

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Ottica fisica. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Ottica fisica La natura ondulatoria della luce è stata evidenziata da Young ai primi dell 800 usando l interferenza e confutando l idea corpuscolare di Newton Le onde elettromagnetiche sono state previste

Dettagli

Lezioni di illuminotecnica. Fenomeni ottici fondamentali

Lezioni di illuminotecnica. Fenomeni ottici fondamentali 7 Lezioni di illuminotecnica Fenomeni ottici fondamentali Interazione luce-materiali Consideriamo una lastra di materiale immersa in aria. Quando la radiazione lin viaggio nell aria incontra l interfaccia

Dettagli

Cosa si intende per onda?

Cosa si intende per onda? Fenomeni Ondulatori Cosa si intende per onda? si definisce onda una perturbazione che si propaga non si ha propagazione di materia ma solo di energia onde meccaniche (mezzo) onde elettromagnetiche (vuoto,

Dettagli

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo;

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo; Prova scritta di Elettromagnetismo e Ottica (CCS Fisica), 21 gennaio 2013 Nel piano x = 0 giace una lastra conduttrice collegata a terra. Nei punti di coordinate (a, a, 0) e (a, a, 0) si trovano due cariche,

Dettagli

d >> λ rettilinea raggio luminoso riflessione rifrazione

d >> λ rettilinea raggio luminoso riflessione rifrazione Ottica geometrica Proprietà più macroscopiche della luce d >> λ Propagazione rettilinea della luce (no diffrazione) Fondamentale concetto di raggio luminoso il cui percorso è determinato dalle leggi della

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

Cristalli fotonici e loro applicazioni

Cristalli fotonici e loro applicazioni Dipartimento di fisica A. Volta, Università degli studi di Pavia 8 maggio 2009 solidi cristallini = reticolo + base Figura: alcuni reticoli di Bravais 3D con 3 vettori primitivi a,b,c; Figura: alcuni reticoli

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2

FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 FISICA APPLICATA 2 FENOMENI ONDULATORI - 2 DOWNLOAD Il pdf di questa lezione (onde2.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 10/10/2017 LE ONDE NELLO SPAZIO Finora si è considerata

Dettagli

Luce e onde elettromagnetiche

Luce e onde elettromagnetiche Luce e onde elettromagnetiche Rappresentazione classica Rappresentazione quantistica dualità onda/particella. La rappresentazione classica è sufficiente per descrivere la maggior parte dei fenomeni che

Dettagli

Lezione 22 - Ottica geometrica

Lezione 22 - Ottica geometrica Lezione 22 - Ottica geometrica E possibile, in certe condizioni particolari, prescindere dal carattere ondulatorio della radiazione luminosa e descrivere la propagazione della luce usando linee rette e

Dettagli

Principio di Huygens principio di Huygens

Principio di Huygens principio di Huygens Principio di Huygens La propagazione dei fronti d onda (superfici a fase costante) può essere ottenuta supponendo ad ogni istante un fronte d onda come la sorgente dei fronti d onda a istanti successivi

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ

Dettagli

da cui, moltiplicando entrambi i membri per 2π ho che " 2sin# 2 = 1 $

da cui, moltiplicando entrambi i membri per 2π ho che  2sin# 2 = 1 $ Appendice: Reticoli Un reticolo è in generale una struttura regolare e periodica di variazioni di costante dielettrica con passi confrontabili con quelli della lunghezza d onda della luce. Sempre in modo

Dettagli

OTTICA. Piano Lauree Scientifiche 1 febbraio 2013

OTTICA. Piano Lauree Scientifiche 1 febbraio 2013 OTTICA Ottica geometrica Ottica fisica Ignora il carattere ondulatorio della luce e parla di raggi luminosi che si propagano in linea retta. Fenomeni descritti dall ottica geometrica: riflessione e rifrazione

Dettagli

Principio di Huygens (1678)

Principio di Huygens (1678) Principio di Huygens (1678) Tutti i punti di un fronte d onda possono essere considerati come sorgenti secondarie di onde sferiche; in un generico punto P l onda risultante si può ottenere come sovrapposizione

Dettagli

LASER. Proprietà dei fasci laser

LASER. Proprietà dei fasci laser LASER Proprietà dei fasci laser Sorgenti di luce: Proprietà dei fasci laser lampade (alogena, a tungsteno, a kripton, lampadina ad incandescenza): emettono luce bianca e calda su tutto l angolo solido;

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica geometrica

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica geometrica Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull ottica geometrica 23-maggio-2013 1. Un corpo umano di area 1.8 m 2 e coefficiente di emissività e=0.7 ha una temperatura esterna

Dettagli

Profili di trasmissione dei filtri interferenziali del telescopio PSPT

Profili di trasmissione dei filtri interferenziali del telescopio PSPT I.N.A.F Osservatorio Astronomico di Roma Profili di trasmissione dei filtri interferenziali del telescopio PSPT Mauro Centrone Fabrizio Giorgi Nota tecnica - 2003 1 Introduzione I filtri interferenziali

Dettagli

Richiamare alcuni concetti fondamentali relativi alla luce intesa come onda elettromagnetica.

Richiamare alcuni concetti fondamentali relativi alla luce intesa come onda elettromagnetica. Richiami di Fisica Obiettivo Richiamare alcuni concetti fondamentali relativi alla luce intesa come onda elettromagnetica. Caratteristiche di un onda elettromagnetica: Frequenza e lunghezza d onda Potenza

Dettagli

Introduzione ai fenomeni di polarizzazione. Lezioni d'autore di Claudio Cigognetti

Introduzione ai fenomeni di polarizzazione. Lezioni d'autore di Claudio Cigognetti Introduzione ai fenomeni di polarizzazione Lezioni d'autore di Claudio Cigognetti VIDEO POLARIZZAZIONE IN UN IPAD, RICAPITOLANDO Impiegando occhiali aventi lenti polaroid e un display a cristalli liquidi

Dettagli

Dopo una distanza di propagazione z = 1 km, il raggio dello spot size vale. *, m # 0,8 ( 0,633 # 0,8. (0) rispetto a k è quindi

Dopo una distanza di propagazione z = 1 km, il raggio dello spot size vale. *, m # 0,8 ( 0,633 # 0,8. (0) rispetto a k è quindi ESERCIZIO 1 Si consideri la radiazione emessa da un laser elio-neon, costituita da un fascio gaussiano al waist con = 0,5 mm e lunghezza d onda λ = 633 nm. Si calcolino: - la divergenza del fascio; - il

Dettagli

Fisica Generale T2 - Prof. M. Villa CdL in Ingegneria Elettronica e Telecomunicazioni 11 Novembre 2013 Primo parziale - Compito A

Fisica Generale T2 - Prof. M. Villa CdL in Ingegneria Elettronica e Telecomunicazioni 11 Novembre 2013 Primo parziale - Compito A 11 Novembre 2013 Primo parziale - Compito A 1) Un filo conduttore è schematizzabile come un cilindro di lunghezza L=30 m e raggio R e =2 mm ed è costituito da un anima metallica di sezione circolare, raggio

Dettagli

Gruppo A (indicativamente dopo le prime 2-3 settimane di lezione

Gruppo A (indicativamente dopo le prime 2-3 settimane di lezione Gruppo A (indicativamente dopo le prime 2-3 settimane di lezione 1) Un prisma retto di vetro con indice di rifrazione n=1.55. ha come base un triangolo retto isoscele, la cui ipotenusa misura 8 cm. Un

Dettagli

ESERCIZI DI OTTICA GEOMETRICA

ESERCIZI DI OTTICA GEOMETRICA ESERCIZI DI OTTICA GEOMETRICA Prima di ogni argomento sono raccolte alcune formule utili, e non banali, per lo svolgimento degli esercizi. Si presuppongono lo studio e la comprensione teorica delle stesse.

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 13/6/2011 - NOME 1) Un gas perfetto monoatomico con n= 2 moli viene utilizzato in una macchina termica

Dettagli

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici

Fisica II - CdL Chimica. Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Formazione immagini Superfici rifrangenti Lenti sottili Strumenti ottici Ottica geometrica In ottica geometrica si analizza la formazione di immagini assumendo che la luce si propaghi in modo rettilineo

Dettagli

La luce. Quale modello: raggi, onde, corpuscoli (fotoni)

La luce. Quale modello: raggi, onde, corpuscoli (fotoni) La luce Quale modello: raggi, onde, corpuscoli (fotoni) Le onde luminose onde elettromagnetiche con frequenza compresa tra 4. 10 14 e 8. 10 la lunghezza d onda e compresa fra 400nm e 750nm 10 14 Hz 14

Dettagli

E t e j(k txx+k ty y) k ix = k rx = k tx ; (3.2) k iy = k ry = k ty. (3.3)

E t e j(k txx+k ty y) k ix = k rx = k tx ; (3.2) k iy = k ry = k ty. (3.3) Capitolo 3 Riflessione e rifrazione Cosa fa un onda piana nel passaggio da un mezzo all altro? Come superficie di separazione S si consideri un piano (x, y). Sia ẑ la normale al piano. Poichè S è un piano,

Dettagli

Indice. Introduzione 13

Indice. Introduzione 13 Indice Introduzione 13 1 Le guide d onda 17 1.1 I modi di una guida d onda................................ 18 1.2 Calcolo delle funzioni di modo............................... 19 1.3 Potenza trasportata

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE B B o E o E v z y x B E o B o E T λ t x E = E(x,t) v = B = B(x,t) λ T = λf VELOCITA DELLA LUCE NEL VUOTO nel vuoto (unità S.I.) v c c = 3 10 8 m s 1 velocità

Dettagli

Guida alle esperienze di laboratorio

Guida alle esperienze di laboratorio LABORATORIO III Corso di Laurea in Fisica (Orientamento Generale) Guida alle esperienze di laboratorio Anno accademico 2008 09 (October 2, 2011) La descrizione di ogni esperienza è pensata come una scheda

Dettagli

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1 La diffrazione Il fenomeno della diffrazione si incontra ogni volta che la luce incontra un ostacolo o un apertura di dimensioni paragonabili alla sua lunghezza d onda. L effetto della diffrazione è quello

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli

CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A MARCO BRESSAN 1. J o conduttore perfetto

CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A MARCO BRESSAN 1. J o conduttore perfetto CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 217-18 - MARCO BREAN 1 Diffusione da corpi metallici i consideri il campo monocromatico ( E, H) irraggiato dalla distribuzione di corrente impressa J o, in un

Dettagli

INDICE OSCILLAZIONI CAPITOLO 1

INDICE OSCILLAZIONI CAPITOLO 1 INDICE CAPITOLO 1 OSCILLAZIONI Compendio 1 1-1 Introduzione 2 1-2 Moti periodici e moti armonici 3 1-2-1 Moto oscillatorio armonico 4 1-3 Dinamica dell oscillatore armonico 6 1-3-1 Forze elastiche 7 1-3-2

Dettagli

TAGLIO E SALDATURA LASER

TAGLIO E SALDATURA LASER TAGLIO E SALDATURA LASER Ultimo aggiornamento: 18/9/08 Prof. Gino Dini Università di Pisa Lavorazioni tramite energia termica Laser Beam Machining (LBM) fotoni gas d apporto lente di focalizzazione pezzo

Dettagli

LASER PRINCIPI FISICI

LASER PRINCIPI FISICI Corso di Tecnologie Speciali I LASER PRINCIPI FISICI Università degli Studi di Napoli Federico II Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale LASER Light Amplification

Dettagli

La luce Pagina 1 di 12. I raggi di luce

La luce Pagina 1 di 12. I raggi di luce La luce Pagina di I raggi di luce L ottica è quella parte della fisica che studia la propagazione della luce e la sua interazione con i corpi materiali. L esperienza comune ci consente di affermare che

Dettagli

Esercizi Ottica: la rifrazione

Esercizi Ottica: la rifrazione Esercizi Ottica: la rifrazione " = = = "# "# 1) Scrivere la legge di snell tra due superfici di indice di rifrazione n1 (mezzo dove parte l onda) e n2 (mezzo dove l onda arriva). Se l indice di rifrazione

Dettagli

5 Fondamenti di Ottica

5 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 5 Fondamenti di Ottica Formazione immagini Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Ottica geometrica In ottica geometrica si analizza la formazione

Dettagli

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Laboratorio di didattica della Fisica (III modulo): Metodologie di insegnamento del Laboratorio di Ottica Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali 5

Dettagli

Riassunto lezione 14

Riassunto lezione 14 Riassunto lezione 14 Onde meccaniche perturbazioni che si propagano in un mezzo Trasversali Longitudinali Interferenza (principio di sovrapposizione) Onde elettromagnetiche (si propagano anche nel vuoto)

Dettagli

(1) 1. Calcolare lo spessore minimo di una lamina a quarto d onda avente indice di rifrazione veloce n = 1 + ξ /1000 e indice di

(1) 1. Calcolare lo spessore minimo di una lamina a quarto d onda avente indice di rifrazione veloce n = 1 + ξ /1000 e indice di III proa parziale di Fisica Generale L-B Corsi di laurea in Ingegneria Aerospaziale e Meccanica II Facoltà di Ingegneria, sede di Forlì Prof. D. Galli 12 giugno 2003 (1) Cognome e nome: Numero di matricola

Dettagli

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore Capitolo 15 L interferenza e la natura ondulatoria della luce 15.2 Il principio di sovrapposizione e l interferenza della luce Quando due onde luminose passano per uno stesso punto, i loro effetti si sommano

Dettagli

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria?

4) Un punto materiale si muove nel piano con legge oraria data dalle due relazioni: x=3t+1, y=2t. Qual è l equazione della traiettoria? Esercizi 1) Il modulo della differenza dei due vettori indicati nella figura vale a) 10 b) 3 d) 2 1 1 2) Siano dati due vettori di modulo pari a 3 e 6. Se l angolo tra di essi è di π/3 rad, il loro prodotto

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche 24 ordini di grandezza in f (o λ) si propagano nel vuoto con velocita c = 299,792,458m/s in mezzi trasparenti, leggermente meno veloci 206 Origini delle onde elettromagnetiche Legge

Dettagli

La Polarizzazione della luce

La Polarizzazione della luce La Polarizzazione della luce Applet Java sulle OEM Le Onde Elettromagnetiche Sono onde trasversali costituite dalle vibrazioni del vuoto quantistico. Hanno velocità c=3.0 10 8 m/s. In ogni istante E è

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente OTTICA FISICA Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente gli effetti sperimentali non sono spiegabili

Dettagli

Diffusione dei raggi X da parte di un elettrone

Diffusione dei raggi X da parte di un elettrone Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un

Dettagli

Liceo Pedagogico- Artistico G. Pascoli di Bolzano VERIFICA DI FISICA IN SOSTITUZIONE DELL ORALE CLASSE 5a B- FILA A 15/03/2010

Liceo Pedagogico- Artistico G. Pascoli di Bolzano VERIFICA DI FISICA IN SOSTITUZIONE DELL ORALE CLASSE 5a B- FILA A 15/03/2010 Liceo Pedagogico- Artistico G. Pascoli di Bolzano VERIFICA DI FISICA IN SOSTITUZIONE DELL ORALE CLASSE 5a B- FILA A 15/03/2010 1. Secondo le conoscenze più recenti: a) la luce si comporta soltanto come

Dettagli

PRINCIPI DI FISICA DEGLI ULTRASUONI. Renato Spagnolo Torino, 10 Maggio 2012

PRINCIPI DI FISICA DEGLI ULTRASUONI. Renato Spagnolo Torino, 10 Maggio 2012 PRINCIPI DI FISICA DEGLI ULTRASUONI Renato Spagnolo r.spagnolo@inrim.it Torino, 10 Maggio 2012 Segnale sinusoidale Frequenza f numero di oscillazioni al secondo (Hz) Periodo T durata di un oscillazione

Dettagli

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2 Corso di Laurea in Astronomia Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA A.A. 01-013 Indice 1 Introduzione 5 1.1 Indice di rifrazione.............................. 5 1. Riflessione e rifrazione............................

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

1 LENTE SPESSA Calcoliamo la matrice dei raggi di una lente spessa, ovvero di una lente in cui non sia possibile trascurare la propagazione interna tr

1 LENTE SPESSA Calcoliamo la matrice dei raggi di una lente spessa, ovvero di una lente in cui non sia possibile trascurare la propagazione interna tr 1 LENTE SPESSA Calcoliamo la matrice dei raggi di una lente spessa, ovvero di una lente in cui non sia possibile trascurare la propagazione interna tra le due rifrazioni. In analogia al caso di lente sottile,

Dettagli

Telescopi ed aberrazioni ottiche

Telescopi ed aberrazioni ottiche Centro Osservazione e Divulgazione Astronomica Siracusa Emanuele Schembri Telescopi ed aberrazioni ottiche Siracusa,, 30 aprile 2010 Definizione Le aberrazioni ottiche sono difetti apparenti del comportamento

Dettagli

Esperimento sull ottica

Esperimento sull ottica Esperimento sull ottica Gruppo: Valentina Sotgiu, Irene Sini, Giorgia Canetto, Federica Pitzalis, Federica Schirru, Jessica Atzeni, Martina Putzu, Veronica, Orgiu e Deborah Pilleri. Teoria di riferimento:

Dettagli

OTTICA & TELESCOPI Junior2 & Senior

OTTICA & TELESCOPI Junior2 & Senior Olimpiadi Italiane di Astronomia 2019 OTTICA & TELESCOPI Junior2 & Senior Olimpiadi di Astronomia 2019 Selezione Interregionale Lazio astrolimpiadi.lazio@iaps.inaf.it Valeria Mangano INAF IAPS Roma Programma

Dettagli

Fenomeni ottici fondamentali

Fenomeni ottici fondamentali 7 Interazione luce-materiali Lezioni di illuminotecnica Fenomeni ottici fondamentali Consideriamo una lastra di materiale immersa in aria. Quando la radiazione lin viaggio nell aria incontra l interfaccia

Dettagli

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi

FISICA. CdS Scienze Biologiche. Stefania Spagnolo. Dip. di Matematica e Fisica Ennio De Giorgi FISICA CdS Scienze Biologiche Stefania Spagnolo Dip. di Matematica e Fisica Ennio De Giorgi http://www.dmf.unisalento.it/~spagnolo stefania.spagnolo@le.infn.it (please, usate oggetto/subject: CdSBiologia)

Dettagli

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date ESPERIMENTO SULL OTTICA Introduzione L ottica geometrica può essere considerata un metodo per la costruzione di immagini date da sistemi ottici quali lenti e specchi. Essa costituisce una teoria approssimata,

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

Ottica. A. Romero Fisica dei Beni Culturali - Ottica 1

Ottica. A. Romero Fisica dei Beni Culturali - Ottica 1 Ottica Newton teoria corpuscolare con cui spiega leggi di riflessione e rifrazione (con ipotesi errata). Respinse la teoria ondulatoria anche se spiegava passaggio luce attraverso lamine sottili perché

Dettagli

Principio di Huygens

Principio di Huygens Ottica fisica La luce è stata considerata una particella da Newton fino a Young (inizi XIX secolo) Nell'800 si sono studiati i fenomeni ondulatori associati alla luce Nel secolo scorso alcuni effetti (fotoelettrico,

Dettagli

Ottica. A. Romero Fisica dei Beni Culturali - Ottica 1

Ottica. A. Romero Fisica dei Beni Culturali - Ottica 1 Ottica Newton teoria corpuscolare con cui spiega leggi di riflessione e rifrazione (con ipotesi errata). Respinse la teoria ondulatoria anche se spiegava passaggio luce attraverso lamine sottili perché

Dettagli

Fisica Generale B. 14. Interferenza. Interferenza. L Esperimento di Young. Fallimento dell Ipotesi Corpuscolare.

Fisica Generale B. 14. Interferenza. Interferenza. L Esperimento di Young. Fallimento dell Ipotesi Corpuscolare. Fisica Generale B 14. Interferenza Interferenza Generalmente, sovrapponendo due onde di uguale intensità, si ottiene un onda di intensità doppia. Se la frequenza delle due onde è la stessa, il piano di

Dettagli

ONDE ELETTROMAGNETICE OTTICA LEZIONE 33

ONDE ELETTROMAGNETICE OTTICA LEZIONE 33 ONDE ELETTROMAGNETICE OTTICA LEZIONE 33 L'Ottica Geometrica è la più antica branca dell'ottica: essa studia i fenomeni ottici assumendo che la luce si propaghi mediante raggi rettilinei. Dal punto di vista

Dettagli

Principio di Huygens

Principio di Huygens Ottica fisica La luce è stata considerata una particella da Newton fino a Young (inizi XIX secolo) Nell'800 si sono studiati i fenomeni ondulatori associati alla luce Nel secolo scorso alcuni effetti (fotoelettrico,

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT Ottica geometrica e polarizzazione. Misura della distanza focale di una lente sottile; 2. misura

Dettagli

LA RIFRAZIONE E LA RIFLESSIONE DELLA LUCE. IV^C 2016/2017 Lepore Gianluca Ianniciello Antonio

LA RIFRAZIONE E LA RIFLESSIONE DELLA LUCE. IV^C 2016/2017 Lepore Gianluca Ianniciello Antonio LA RIFRAZIONE E LA RIFLESSIONE DELLA LUCE IV^C 2016/2017 Lepore Gianluca Ianniciello Antonio INTRODUZIONE La riflessione e la rifrazione della luce si possono spiegare utilmente supponendo che la luce

Dettagli

Onde elettromagnetiche. Propagazione delle onde Riflessione e rifrazione

Onde elettromagnetiche. Propagazione delle onde Riflessione e rifrazione Onde elettromagnetiche Propagazione delle onde Riflessione e rifrazione Arcobaleno di Maxwell La luce visibile è solo una piccola regione dello spettro elettromagnetico. Alcune radiazioni si producono

Dettagli

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2 OTTICA GEOMETRICA L ottica geometrica si occupa di tutta quella branca della fisica che ha a che fare con lenti, specchi, vetri e cose simili. Viene chiamata geometrica in quanto non interessa la natura

Dettagli