Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Spin. La hamiltoniana classica di una particella di massa m e carica q in presenza di un potenziale elettromagnetico (Φ, A) si scrive."

Transcript

1 Spin La hamiltoniana lassia di una partiella di massa m e aria q in presenza di un potenziale elettromagnetio Φ, A si srive Sviluppando il quadrato si ha H = H = p q A 2 + qφ p 2 + A 2 2q A p + qφ 2 Se il ampo magnetio é omogeneo, in una gauge opportuna, il potenziale vettore si puó srivere ome é possibile verifiare dall identitá A = 2 B r 3 X Y = Y X X Y 4 Inserendo l eq.3 nell eq.2 il terzo termine del lato destro dell equazione si srive q m A p = dove abbiamo usato l identitá vettoriale q B r p = q B l 5 B r p = B r p 6 ed abbiamo indiato on l = r p il momento angolare. L eq.5 ha la forma dell energia d interazione di un momento di dipolo magnetio µ = q l on un ampo magnetio B. L eq. puó essere sritta per N partielle di uguale aria e massa nella forma H = N i { p i q A i 2 + qφi } dove abbiamo indiato on Φ i, A i il potenziale elettromagnetio nella posizione r i della i-ma partiella di momento p i. Sviluppando il quadrato, nella gauge eq.3, si ha H = p 2 i + A 2 i + qφ i µ B L 8 i dove L = i l i é il momento angolare totale e µ = q/. In presenza di un ampo magnetio inomogeneo il dipolo magnetio é soggetto ad una forza 7 F = µ B 9

2 2 Se lungo l asse z é presente un ampo magnetio non uniforme, un dipolo magnetio é soggetto ad una forza F z = µ z z B z = µ os θ z B z Quindi un insieme di dipoli on momento magnetio orientato a aso, in presenza di un ampo magnetio non uniforme, vengono separati in maniera ontinua, seondo il valore di os θ, dove θ é l angolo di orientazione del momento magnetio rispetto all asse z. Passando ad un sistema quantistio, la trattazione rimane analoga, ma adesso nello sviluppare il quadrato della hamiltoniana eq. dobbiamo fare attenzione perhé p é adesso un operatore e vale [ A, p] = i h A La trattazione svolta su rimane invariata se siamo nella gauge di Coulomb Il potenziale vettore data dall eq.3 soddisfa tale ondizione A = 2 A = r B B r = 3 Inoltre adesso il momento angolare L é un operatore e gli autovalori di L z sono diseti. Quindi un fasio di atomi on valore del momento angolare L in presenza di un ampo magnetio non uniforme si separa in 2L + fasi ioé per L Z + in un numero dispari di fasi. Nel 922 Stern e Gerlah feero un esperimento on un atomo di argento la ui distribuzione elettronia é a simmetria sferia piú un elettrone on l = = L =. Contrariamente alle previsioni di nessuna separazione, osservarono he il fasio si separava in due fasi. Il risultato sperimentale si puó apire attribuendo all elettrone un momento angolare intrinseo SPIN di valore S = h/2. Se introduiamo le matrii 2x2 hermitiane, a traia nulla di Pauli i σ x = σ y = σ i z = he soddisfano i, j, k = x, y, z, 2, 3 Dall equazione preedente si dedue immediatamente Eútile la seguente identitá, he si riava failmente dall eq.4 σ i σ j = δ ij + iε ijk σ k 4 [σ i, σ j ] = 2iε ijk σ k 5 σ a σ b = a b + i σ a b 6 dove a e b sono due qualunque vettori tridimensionali. Le matrii di Pauli formano un insieme ompleto per le matrii 2x2 a traia nulla ed insieme alla matrie identitá formano un insieme ompleto delle matrii 2x2. Inoltre ogni ogni operatore unitario nello spazio a 2 dimensioni si puó srivere nella forma U n = e i n σ 7

3 3 Usando lo sviluppo in serie dell operatore esponenziale e l eq.4 l equazione preedente si puṕ srivere U n = os θ 2 + i n σ sin θ 2 8 Gli operatore di spin si srivono S i = h 2 σ i 9 in uno spazio a due dimensioni in ui i vettori di base sono χ + = e soddisfano, dall eq.5, S ± = S ± is 2 Si ha χ = [S i, S j ] = iε ijk h S k [S +, S + ] = 2 h S 3 [S 3, S ± ] = ± h S ± 2 S 3 χ ± = ± 2 h χ ± S ± χ ± = S ± χ = h χ ± 2 Il prodotto salare tra due spinori χ e ϕ χ = a b ϕ = d é definito da χ, ϕ = a b d Tale definizione soddisfa tutte le proprietá del prodotto salare = a + b d C 22 χ, ϕ = ϕ, χ χ, χ = a 2 + b 2 23 La forma piú generale di uno spinore normalizzato é χ = os θ sin θe iϕ = os θ + sin θe iϕ Gli stati χ ± sono ortonormalizzati rispetto al prodotto salare riga per olonna χ +, χ = = χ +, χ + = = 24

4 4 Il valore medio di un osservabile S i su uno spinore χ si alola a χ, S i χ = a b S i b 25 dove S i é la matrie 2x2 rappresentante l osservabile S i nella base dei χ ±. Per esempio χ, S x χ = a b h a = h 2 b 2 a b + ab 26 Per tenere onto dei risultati dell esperienza di Stern-Gerlah all elettrone si attribuise un momento magnetio dato µ = qg S 27 dove g 2 é hiamato il fattore giromagnetio. Le funzioni d onda he desrivono un elettrone appartengono ad un spazio d Hilbert H he é il prodotto diretto di uno spazio d Hilbert H e delle funzioni d onda dipendenti dalle variabili spaziali e di uno spazio d Hilbert H i delle funzioni dipendenti dalla variabile interna spin. Quindi per desrivere lo stato dell elettrone in un punto r dello spazio dobbiamo assegnare due funzioni d onda ψ ± r, il modulo quadro della funzione ψ + r rispettivamente ψ r i da la probabilitá di trovare l elettrone nel punto r on valore della omponente z dello spin uguale a /2 h, he hiameremo spin in su, rispettivamente /2 h, spin in giú. Possiamo srivere ψ r = ψ + r χ + + ψ r χ = ψ + r + ψ r = ψ+ r ψ r 28 dove ψ r H = H e H i, ψ ± r H e e χ ± H i. Il prodotto salare in H si srive ψ, φ = d 3 r ψ+ r φ + r + ψ r φ r 29 Gli operatori di spin ommutano on gli operatori di posizione, momento e paritá [ S, r] = [ S, p] = [ S, P ] = = [ S, L] = 3 Nel formalismo di Dira i due vettori di base della funzione d onda di spin o spinore si denotano on > χ + > χ 3 Lo stato generio di spin dove ± α 2 α > = + α > + α > + α é la probabilitá ho lo spin sia in su + o in giú -, se lo stato é normalizzato, ioé se La ompletezza, di ui si é fatto uso per srivere l eq.32, si srive α 32 + α 2 + α 2 = 33 = >< + >< 34

5 5 L hamiltoniana di un elettrone in ampo magnetio esterno, onsiderando lo spin, si srive µ B = e h/ magnetone di Bohr H = p e A 2 + eφ + µb σ B 35 ed agise su un vettore olonna a 2 righe, vedi eq.28. Dall eq.35 per ampi magnetii omogenei, espliitando il quadrato e trasurando il termine nel quadrato del potenziale vettore, si dedue l equazione di dipendente dal tempo, nota oma equazione di Pauli ψ+ r i h t ψ r = [ h2 2 + eφ + µ B h l B + µ B σ B ] ψ+ r ψ r 36 dobe abbiamo indiato o la matrie identitá 2x2. Si noti he l esistenza di un momento magnetio orbitale; proporzionale a l, e di un momento magnetio di spin, proporzionale a S, introdue un interazione aoppiamento spin-orbita he é stato trasurato nell eq.36.

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI

Enrico Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI Enrio Borghi L EQUAZIONE DI DIRAC NELLA APPROSSIMAZIONE DI PAULI E. Borghi - L equazione di Dira nella approssimazione di Pauli Rihiami a studi presenti in fisiarivisitata Leggendo L equazione di Dira

Dettagli

Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico

Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico Lagrangiana e Hamiltoniana i una partiella aria in ampo elettromagnetio L equazione el moto i una partiella i massa m e aria q in un ampo elettrio E e magnetio B é t m v = q E + q ) v B 1) NOTA -Nel sistema

Dettagli

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1

Effetto Stark (1) H 0 nlm > = E n nlm > (4) Ricordiamo che. E n = me4 2 h 2 n 2 = E 1 Effetto Stark Studiamo l equazione di Schrödinger per l atomo di idrogeno in presenza di un campo elettrico costante e diretto lungo l asse z, E = E k. La hamiltoniana di Schrödinger per l atomo di idrogeno

Dettagli

Enrico Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON

Enrico Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON Enrio Borghi QUANTIZZAZIONE DEL CAMPO DI KLEIN-GORDON Rihiami a studi presenti in fisiarivisitata Leggendo la Quantizzazione del ampo di Klein-Gordon si inontrano rihiami ai seguenti studi: a) Introduzione

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2)

Effetto Zeeman. p q c A) 2. i h ψ t. = Hψ (2) Effetto Zeeman Effetto Zeeman normale La hamiltoniana di una particella in presenza di un campo elettromagnetico, descritto dal potenziale vettore A e dal potenziale scalare Φ é H = 2M e l euazione di

Dettagli

Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello

Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello Invarianze e leggi di conservazione: definizioni generali Teorema di Noether Invarianze e costanti del moto Traslazioni nello spazio Rotazioni nello spazio. Il momento angolare. Lo spin Il gruppo SU(2)

Dettagli

1 Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico

1 Lagrangiana e Hamiltoniana di una particella carica in campo elettromagnetico 1 Lagrangiana e Hamiltoniana i una partiella aria in ampo elettromagnetio L equazione el moto i una partiella i massa m e aria q in un ampo elettrio E e magnetio B é t m v = q E + q ) v B 1) Determiniano

Dettagli

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO SCALARE REALE E. Borghi - Variabili dinamihe del ampo salare reale Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo salare

Dettagli

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare

Momento angolare. l = i h ( x ) li = i h ε ijk x j x k. Calcoliamo le relazioni di commutazione tra due componenti del momento angolare 1 Momento angolare. Il momento della quantitá di moto (momento angolare) é definito in fisica classica dal vettore (nel seguito usiamo la convenzione che gli indici ripetuti vanno intesi sommati) l = x

Dettagli

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017

Fisica Moderna: Corso di Laurea Scienze dei Materiali Prova scritta: 16/06/2017 Fisica Moderna: Corso di aurea Scienze dei Materiali Prova scritta: 16/6/17 Problema 1 Una particella di spin 1/ è soggetta ad un campo magnetico uniforme B = B ẑ diretto lungo l asse delle z. operatore

Dettagli

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma

Quantum Computing. Esercizi. Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma Quantum Computing Esercizi 1 Qubit Esercizio 1.1 Mostra che lo stato di un qubit può essere espresso nella forma ψ = e iγ ( cos(θ/) 0 + e iφ sin(θ/) 1 ), dove γ, θ e φ sono numeri reali. Il fattore di

Dettagli

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi

Problemi di Meccanica Quantistica. Capitolo IX. Spin. a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi Problemi di Meccanica Quantistica Capitolo IX Spin a cura di Fedele Lizzi, Gennaro Miele e Francesco Nicodemi http://people.na.infn.it/%7epq-qp Problema IX.1 Un sistema consiste di due particelle distinguibili

Dettagli

Interazione luce- atomo

Interazione luce- atomo Interazione luce- atomo Descrizione semiclassica L interazione predominante è quella tra il campo elettrico e le cariche ASSORBIMENTO: Elettrone e protone formano un dipolo che viene messo in oscillazione

Dettagli

Struttura del sistema periodico Stato fondamentale degli elementi

Struttura del sistema periodico Stato fondamentale degli elementi Struttura del sistema periodico Stato fondamentale degli elementi Singolo elettrone: 1)Numero quantico principale n 2)Numero quantico del momento angolare orbitale l = 0, 1,, n-1 3)Numero quantico magnetico

Dettagli

FAM. Il sistema spin 1/2. Christian Ferrari. Liceo di Locarno

FAM. Il sistema spin 1/2. Christian Ferrari. Liceo di Locarno FAM Il sistema spin 1/2 Christian Ferrari Liceo di Locarno L esperienza di Stern Gerlach 1 1922: Stern e Gerlach Misura del momento magnetico di atomi di argento con un campo magnetico fortemente inomogeneo.

Dettagli

Teoria perturbativa semiclassica dell interazione radiazione-materia (parte I : regole di selezione)

Teoria perturbativa semiclassica dell interazione radiazione-materia (parte I : regole di selezione) Teoria perturbativa semilassia dell interazione radiazione-materia (parte I : regole di selezione) (vedi Cohen-Tannoudji II, Capitolo XIII e Complemento AXIII) Abstrat L approio uantistio all interazione

Dettagli

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d.

Stati Coerenti. Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana. p = i d. 1 Stati Coerenti Definizione di stato coerente Consideriamo un oscillatore 1-dimensionale descritto dalla hamiltoniana H = 1 m p + 1 m ω x (1) Per semplicitá introduciamo gli operatori autoaggiunti adimensionali

Dettagli

Programma della I parte

Programma della I parte Programma della I parte Cenni alla meccanica quantistica: il modello dell atomo Dall atomo ai cristalli: statistica di Fermi-Dirac il modello a bande di energia popolazione delle bande livello di Fermi

Dettagli

Enrico Borghi QUANTIZZAZIONE DEL CAMPO SCALARE HERMITIANO

Enrico Borghi QUANTIZZAZIONE DEL CAMPO SCALARE HERMITIANO Enrio Borghi QUANTIZZAZIONE DEL CAMPO SCALARE HERMITIANO Rihiami a studi presenti in fisiarivisitata Leggendo la Quantizzazione del ampo salare hermitiano si inontrano rihiami ai seguenti studi: a Introduzione

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4

con la direzione ad essa normale. In corrispondenza del punto A, immediatamente all interno del corpo, tale angolo vale θ 1 = π 4 Esame sritto di Elettromagnetismo del 16 Luglio 2012 - a.a. 2011-2012 proff. F. Laava, F. Rii, D. Trevese Elettromagnetismo 10 o 12 rediti: eserizi 1,2,3 tempo 3 h e 30 min; Reupero di un esonero: eserizi

Dettagli

A Formule utili. A.1 Integrali di uso frequente. A.1.1 Integrali Gaussiani. π a (A.1) I 0 (α) = dx e ax2 = Per n =1, 2,... si ha (A.

A Formule utili. A.1 Integrali di uso frequente. A.1.1 Integrali Gaussiani. π a (A.1) I 0 (α) = dx e ax2 = Per n =1, 2,... si ha (A. A Formule utili A.1 Integrali di uso frequente A.1.1 Integrali Gaussiani Per n =1, 2,... si ha I (α) = dx e ax2 = π a (A.1) I 2n+1 (α) =, I 2n (α) = dx x 2n e ax2 =( 1) n n π α n a (A.2) I(α, β) = = 1

Dettagli

Figura 7.1: Ipotesi di Heisenberg

Figura 7.1: Ipotesi di Heisenberg Capitolo 7 Isospin nei nuclei Nel 9 Heisenberg scrisse tre articoli sulla forza nucleare, trattando neutrone e protone come due stati della stessa particella, il nucleone, distinti dal valore assunto da

Dettagli

Compito di recupero del giorno 27/11/2015

Compito di recupero del giorno 27/11/2015 Compito di recupero del giorno 27/11/2015 Esercizio n. 1 Una particella di massa m e spin 1/2 si muove in due dimensioni nel piano xy ed è soggetta alla seguente Hamiltoniana: H = 1 2m (p2 x + p 2 y) +

Dettagli

= M di 1 dt = MI 0ω cos( ωt)

= M di 1 dt = MI 0ω cos( ωt) del ompito di isia 17 febbraio 1 (Pordenone) Elettrodinamia Due bobine sono disposte una di fronte all altra. La loro induttanza mutua è M. 1 - H. L intensità di orrente nella bobina 1 osilla sinusoidalmente

Dettagli

24.1. Ritorno al gruppo delle trasformazioni di Möbius Lo spazio proiettivo degli stati di un qubit.

24.1. Ritorno al gruppo delle trasformazioni di Möbius Lo spazio proiettivo degli stati di un qubit. 4.1. Ritorno al gruppo delle trasformazioni di Möbius. 4.1.1. Lo spazio proiettivo degli stati di un qubit. Il qubit è il sistema quantistico più semplice che esista: un sistema i cui stati possibili possono

Dettagli

Metalli come gas di elettroni liberi

Metalli come gas di elettroni liberi Metalli come gas di elettroni liberi I metalli sono caratterizzati da elevata conducibilità elettrica e termica. La conducibilità elettrica in particolare (o il suo inverso, la resistività) è una delle

Dettagli

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico

Esercizio III Data una particella di massa m in due dimensioni soggetta a un potenziale armonico Tema d esame di Elementi di MQ. Prova I Dato il potenziale monodimensionale V (x) = 2 γδ(x), con γ positivo, trovare l energia dello stato fondamentale la probabilità che una particella nello stato fondamentale

Dettagli

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA)

Lagrangiana del campo elettromagnetico. Il campo elettromagnetico nel vuoto è descritto dalle equazioni di Maxwell (in unità MKSA) Lagrangiana del ampo elettromagnetio Il ampo elettromagnetio nel vuoto è desritto dalle equazioni di Maxwell (in unità MKSA) B = 0 () E = B (2) E = ϱ (3) ɛ 0 B = µ 0 j + µ 0 ɛ 0 E L equazione di ontinuità

Dettagli

3. Si descrivano lo schema di Schroedinger e lo schema di Heisenberg per rappresentare l evoluzione temporale di un sistema quantistico.

3. Si descrivano lo schema di Schroedinger e lo schema di Heisenberg per rappresentare l evoluzione temporale di un sistema quantistico. 1 Fisica Matematica Avanzata, 11 9 2009 [ ] 1. Sia A = 1 i 1 2 la matrice che rappresenta una osservabile A di i 1 un sistema quantistico nello spazio di Hilbert H = C 2. a) Trovare la risoluzione dell

Dettagli

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda Compito I di MQ. Febbraio 0 Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda ψ( x = f(r (r + ix con Hamiltoniana H = µbl y determinare la funzione d onda al tempo

Dettagli

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i.

Corso di Laurea in Chimica e Tecnologie Chimiche - A.A Chimica Fisica II. Esame scritto del 25 Febbraio P = i. 1 Corso di Laurea in Chimica e Tecnologie Chimiche - A.A. 212-213 Chimica Fisica II Esame scritto del 25 Febbraio 213 Quesiti d esame: 1. Definire gli operatori componente del momento cinetico P x e del

Dettagli

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore)

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore) Compito di MQ. Gennaio 204 Determinare i livelli energetici di un sistema di due particelle che interagiscono col potenziale 3 4 mω2 (x 2 + x 2 2) 5 2 mω2 x x 2 Determinare il più generale stato compatibile

Dettagli

Appello di Meccanica Quantistica I

Appello di Meccanica Quantistica I Appello di Meccanica Quantistica I Facoltà di Scienze M.F.N. Università degli Studi di Pisa gennaio 007 (A.A. 06/07) Tempo a disposizione: 3 ore. Problemi e per il recupero Compitino I; problemi e 3 per

Dettagli

CMP-II Equazioni di Hartree-Fock

CMP-II Equazioni di Hartree-Fock CMP-II Equazioni di Hartree-Fock Dipartimento di Fisica, UniTS 9 marzo 019 1 Equazioni di Hartree-Fock 1.1 Funzioni d onda a singolo determinante di Slater (Fermioni) Consideriamo un Hamiltoniana di Fermioni

Dettagli

E = ŷ E 0 e i(kx ωt)

E = ŷ E 0 e i(kx ωt) Equilibrio osillatore ario radiazione nera Consideriamo dapprima un onda piana, monoromatia e polarizzata linearmente, he attraversi un sottile strato (dx) di dielettrio omogeneo ed isotropo a bassa densità

Dettagli

Gli integrali indefiniti

Gli integrali indefiniti Gli integrali indefiniti PREMESSA Il problema del alolo dell area del sotto-grafio di f() Un problema importante, anhe per le appliazioni in fisia, è quello del alolo dell area sotto a al grafio di una

Dettagli

Campi e Particelle. Prima Parte: Campi. Esercizi e Soluzioni

Campi e Particelle. Prima Parte: Campi. Esercizi e Soluzioni Campi e Particelle. Prima Parte: Campi. Esercizi e Soluzioni Alexandre Kamenchtchik Problema No 1 Trovare una soluzione statica (cioè indipendente dal tempo) dell equazione di Klein-Gordon per un campo

Dettagli

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( )

Algoritmo di best-fit (o fitting) sinusoidale a 3 parametri ( ) ( ) Algoritmo di best-it (o itting) sinusoidale a 3 parametri Supponiamo di disporre della versione digitalizzata di un segnale sinusoidale di ampiezza di pio A, requenza nota, ase assoluta ϕ e on omponente

Dettagli

SECONDA PARTE anno accademico

SECONDA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA SECONDA PARTE anno accademico 2018-2019 (1) Per un sistema meccanico d-dimensionale determinare: (a) gli elementi di matrice dell operatore posizione

Dettagli

Non c è alcuna possibilità che gli uomini un giorno accedano all energia. Robert Millikan Premio Nobel per la Fisica 1923

Non c è alcuna possibilità che gli uomini un giorno accedano all energia. Robert Millikan Premio Nobel per la Fisica 1923 Capitolo 3 Atomi Non c è alcuna possibilità che gli uomini un giorno accedano all energia atomica. Robert Millikan Premio Nobel per la Fisica 1923 3.1 Potenziali a simmetria sferica In problemi a simmetria

Dettagli

FAM. 1. Determina la forza risultante sulla spira, cosa puoi dedurre sull equilibrio della spira?

FAM. 1. Determina la forza risultante sulla spira, cosa puoi dedurre sull equilibrio della spira? FAM Serie 33: Elettrodinamica VIII C. Ferrari Eserciio Momento meccanico su una spira: motore elettrico Una spira conduttrice quadrata di lato 0cm si trova nel piano. Una corrente di 0A la percorre nel

Dettagli

Il momento angolare e l atomo di Idrogeno

Il momento angolare e l atomo di Idrogeno Il momento angolare e l atomo di Idrogeno Corso di Fisica Matematica 3, a.a. 2017-2018 Dipartimento di Matematica, Università di Milano 10/4/2018 Il testo (di L. Picasso) che stiamo seguendo discute in

Dettagli

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica

Esercizi di Fisica Matematica 3, anno , parte di meccanica hamiltoniana e quantistica Esercizi di Fisica Matematica 3, anno 014-015, parte di meccanica hamiltoniana e quantistica Dario Bambusi 09.06.015 Abstract Gli esercizi dei compiti saranno varianti dei seguenti esercizi. Nei compiti

Dettagli

PARITA. Parità Parità intrinseca Conservazione della Parità

PARITA. Parità Parità intrinseca Conservazione della Parità PARITA Parità Parità intrinseca Conservazione della Parità PARITÀ L operatore di inversione spaziale è una trasformazione discreta che inverte il segno delle tre coordinate spaziali: P x, y, z -x, -y,

Dettagli

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno:

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: Vedi documento Atomo di Bohr.pdf sul materiale didattico per la derivazione di queste equazioni Livelli Energetici dell Atomo di Idrogeno

Dettagli

Campo elettromagnetico

Campo elettromagnetico Campo elettromagnetico z y Classicamente, è formato da un campo elettrico E e da un campo magnetico B oscillanti B E λ E = E 0 cos 2π(νt x/λ) B = B 0 cos 2π(νt x/λ) νλ = c ν, frequenza x λ, lunghezza d

Dettagli

L equazione di Schrödinger

L equazione di Schrödinger 1 Forma dell equazione L equazione di Schrödinger Postulato - ψ r, t 0 ) definisce completamente lo stato dinamico del sistema al tempo t 0. L equazione che regola l evoluzione di ψ r, t) deve essere:

Dettagli

Gli accoppiamenti di spin. e i sistemi di spin nucleari

Gli accoppiamenti di spin. e i sistemi di spin nucleari Gli accoppiamenti di spin e i sistemi di spin nucleari l momento magnetico di un nucleo interagisce con i momenti magnetici dei nuclei vicini. sistono due tipi di interazioni: nterazione diretta, anisotropa

Dettagli

GLI ORBITALI ATOMICI

GLI ORBITALI ATOMICI GLI ORBITALI ATOMICI Orbitali atomici e loro rappresentazione Le funzioni d onda Ψ n che derivano dalla risoluzione dell equazione d onda e descrivono il moto degli elettroni nell atomo si dicono orbitali

Dettagli

Oscillatore armonico tridimensionale

Oscillatore armonico tridimensionale Oscillatore armonico isotropo Oscillatore armonico tridimensionale L oscillatore armonico isotropo in 3 dimensioni é descritto dall hamiltoniana con H = m p + m ω r = h m + m ω r ) [ p, H ] 0 [ L, H ]

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2014-2015 (1) Per un sistema meccanico n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione

Dettagli

Enrico Borghi INTRODUZIONE ALLA QUANTIZZAZIONE DEI CAMPI

Enrico Borghi INTRODUZIONE ALLA QUANTIZZAZIONE DEI CAMPI Enrio Borghi INTRODUZIONE ALLA QUANTIZZAZIONE DEI CAMPI Rihiami a studi presenti in fisiarivisitata Leggendo la Introduzione alla quantizzazione dei ampi si inontrano rihiami ai seguenti studi (a) Le variabili

Dettagli

1 La Lagrangiana di una particella in una campo di forze potenziale

1 La Lagrangiana di una particella in una campo di forze potenziale Introduzione alle equazioni di Eulero-Lagrange e ai potenziali generalizzati G.Falqui, Dipartimento di Matematia e Appliazioni, Università di Milano Bioa. Corso di Sistemi Dinamii e Meania Classia, a.a.

Dettagli

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore)

Compito di MQ. Gennaio Risolvere i seguenti esercizi (tempo: tre ore) Compito di MQ. Gennaio 0 Vecchio Ordinamento o Applicativo: Risolvere gli esercizi I e II (tempo: due ore Siano date due particelle (non identiche di spin /. A t =0lospindellaprimapunti nella direzione

Dettagli

Atomi a più elettroni

Atomi a più elettroni Chapter 7 Atomi a più elettroni 7.1 Lo spin Gli esperimenti indicano che alle particelle si deve associare un momento angolare intrinseco, o spin, indipendentemente dalla loro natura (particelle elementari

Dettagli

Misura del momento magnetico dell elettrone

Misura del momento magnetico dell elettrone FACOLTÀ Università degli Studi di Roma Tre DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Fisica Misura del momento magnetico dell elettrone Candidato: Andrea Sciandra Matricola 4480 Relatore:

Dettagli

Compito Scritto Meccanica Quantistica, 30/01/2018

Compito Scritto Meccanica Quantistica, 30/01/2018 Compito Scritto Meccanica Quantistica, 30/01/2018 Esercizio 1. Si considerino due particelle indistinguibili, A e B, di spin 1/2, soggette alla Hamiltoniana H = H 0 (p A, r A )+H 0 (p B, r B )+ h L zs

Dettagli

Comunicazioni Docente - Studenti

Comunicazioni Docente - Studenti Comunicazioni Docente - Studenti 1. Lista di distribuzione: francesco.musiani.chimgenbiotech 2. Scrivere (moderatamente) a: francesco.musiani@unibo.it 3. Avvisi sul sito del docente: https://www.unibo.it/sitoweb/francesco.musiani

Dettagli

Esercitazione su DOA (18 Giugno 2008)

Esercitazione su DOA (18 Giugno 2008) Eseritazione su DOA (8 Giugno 8) D. Donno Eserizio : DOA e periodogramma Si onsideri una shiera di N7 sensori (antenne omnidirezionali) on spaziatura su ui inide un onda elettromagnetia ( 3 8 m/s) monoromatia

Dettagli

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO DI MAXWELL

Enrico Borghi LE VARIABILI DINAMICHE DEL CAMPO DI MAXWELL Enrio Borghi LE VARIABILI DINAMICHE DEL CAMPO DI MAXWELL E. Borghi - Le variabili dinamihe del ampo di Maxwell Rihiami a studi presenti in fisiarivisitata Leggendo Le variabili dinamihe del ampo di Maxwell

Dettagli

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin

Interazioni Elettrodeboli. Lezione n. 3. Equazione di Dirac 2 Descrizione relativistica dello spin Interazioni Elettrodeboli prof. Francesco Ragusa Università di Milano Lezione n. 3 10.10.2017 Equazione di Dirac 2 Descrizione relativistica dello spin anno accademico 2017-2018 Operatore di spin L operatore

Dettagli

Fisica Generale Modulo di Fisica II Ingegneria Meccanica - Edile - Informatica Esercitazione 8 ONDE ELETTROMAGNETICHE

Fisica Generale Modulo di Fisica II Ingegneria Meccanica - Edile - Informatica Esercitazione 8 ONDE ELETTROMAGNETICHE OND LTTROMAGNTICH Gb. Si onsideri un onda elettromagnetia piana sinusoidale he si propaga nel vuoto nella direione positiva dell asse x. La lunghea d onda è 5. m e l ampiea massima del ampo elettrio è.

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. MECCANICA QUANTISTICA anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA MECCANICA QUANTISTICA anno accademico 2012-2013 (1) Per un sistema n-dimensionale si scrivano: (a) gli elementi di matrice dell operatore posizione x

Dettagli

Interazione radiazione materia Equazioni del LASER. Simone Cialdi

Interazione radiazione materia Equazioni del LASER. Simone Cialdi Interazione radiazione materia Equazioni del LASER Simone Cialdi Outline Proessi fondamentali Emissione ed assorbimento stimolati (teoria perturbativa al primo ordine) Emissione spontanea (modello di Einstein)

Dettagli

Esercizio III Data a tempo t = 0 una particella di spin uno con Hamiltoniana

Esercizio III Data a tempo t = 0 una particella di spin uno con Hamiltoniana Compitino I di MQ. Dicembre 04 Risolvere due dei seguenti esercizi (tempo: due ore Esercizio I Siano date due particelle di massa m interagenti col potenziale V (x, x = mω ( 5x + 5x + 8x x trovare i livelli

Dettagli

Analisi 1 e 2 - Quarto compitino Soluzioni proposte

Analisi 1 e 2 - Quarto compitino Soluzioni proposte Analisi 1 e 2 - Quarto ompitino Soluzioni proposte 23 maggio 2017 Eserizio 1. Risolvere il problema di Cauhy y = x(4 y2 ) y y(0) = α al variare di α R, α 0 Soluzione proposta. Se α = 2 oppure α = 2 abbiamo

Dettagli

Gli approcci alla programmazione dinamica: alcuni esempi

Gli approcci alla programmazione dinamica: alcuni esempi Gli approi alla programmazione dinamia: aluni esempi Franeso Menonin February, 2002 Ottimizzazione dinamia Il problema he qui si onsidera è quello di un soggetto he intende massimizzare (o minimizzare)

Dettagli

Esercizi di Fisica Matematica 3, anno

Esercizi di Fisica Matematica 3, anno Esercizi di Fisica Matematica 3, anno 01-013 Dario Bambusi, Andrea Carati 5.06.013 Abstract Tra i seguenti esercizi verranno scelti gli esercizi dell esame di Fisica Matematica 3. 1 Meccanica Hamiltoniana

Dettagli

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico

PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA. SECONDA PARTE anno accademico PROBLEMI DI FISICA MODERNA E MECCANICA QUANTISTICA SECONDA PARTE anno accademico 2016-2017 (1) Per un sistema meccanico n-dimensionale scrivere: (a) gli elementi di matrice dello operatore posizione x

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

FACOLTÀ DI INGEGNERIA. V ESERCITAZIONE DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/12/2012

FACOLTÀ DI INGEGNERIA. V ESERCITAZIONE DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meccanica PROF. A. PRÁSTARO 21/12/2012 FACOLTÀ DI INGEGNERIA V ESERCITAZIONE DI MECCANICA RAZIONALE Corso di Laurea in Ingegneria Meania PROF. A. PRÁSTARO 1/1/01 Fig. 1. Diso D, ruotante, on rihiamo elastio radiale in un piano vertiale π, e

Dettagli

Lezioni di Meccanica Quantistica

Lezioni di Meccanica Quantistica Luigi E. Picasso Lezioni di Meccanica Quantistica seconda edizione Edizioni ETS www.edizioniets.com Copyright 2015 EDIZIONI ETS Piazza Carrara, 16-19, I-56126 Pisa info@edizioniets.com www.edizioniets.com

Dettagli

Operatori C, P e T { } Stati Fisici. Osservabili. Osservabili (II) prof. Domenico Galli

Operatori C, P e T { } Stati Fisici. Osservabili. Osservabili (II) prof. Domenico Galli Stati Fisici Operatori C, P e T prof. Domenico Galli Fisica delle Alte Energie agli Acceleratori Dottorato di Ricerca in Fisica Uno stato fisico è rappresentato da un vettore di stato (ket) in uno spazio

Dettagli

Formalismo della Meccanica Quantistica

Formalismo della Meccanica Quantistica Formalismo della Meccanica Quantistica Le funzioni d onda devono appartenere allo spazio delle funzioni a quadrato sommabile, denotato con L 2 ψ L 2 = ψ( r) 2 d 3 r ψ < () Lo spazio delle funzioni a quadrato

Dettagli

Esercizio 1 Scrivere le equazioni di Eulero-Lagrange per il sistema bidimensionale di Lagrangiana. = q 2 2q 2. L = q 1 d L. = q 2. = q 1 2q 1.

Esercizio 1 Scrivere le equazioni di Eulero-Lagrange per il sistema bidimensionale di Lagrangiana. = q 2 2q 2. L = q 1 d L. = q 2. = q 1 2q 1. 1 4 o tutorato - FM210/MA - 17/4/2017 Eserizio 1 Srivere le equazioni di Eulero-Lagrange per il sistema bidimensionale di Lagrangiana L(q, q) = q 2 q 1 q 1 q 2 2q 1 q 2 e trovarne espliitamente la soluzione.

Dettagli

1.3 L effetto tunnel (trattazione semplificata)

1.3 L effetto tunnel (trattazione semplificata) 1.3 L effetto tunnel (trattazione semplificata) Se la parete di energia potenziale non ha altezza infinita e E < V, la funzione d onda non va rapidamente a zero all interno della parete stessa. Di conseguenza,

Dettagli

Eccitazioni nucleari

Eccitazioni nucleari 1 Spettro rotazionale Lezione 28 Eccitazioni nucleari Consideriamo un nucleo pari pari, con spin zero, che abbia però una deformazione permanente. Supponiamo inoltre che il nucleo goda di una simmetria

Dettagli

Eccitazioni nucleari. Capitolo Spettro rotazionale

Eccitazioni nucleari. Capitolo Spettro rotazionale Capitolo 1 Eccitazioni nucleari 1.1 Spettro rotazionale Consideriamo un nucleo pari pari, con spin zero, che abbia però una deformazione permanente. Supponiamo inoltre che il nucleo goda di una simmetria

Dettagli

Effetto Compton. Nicola Cabibbo 27 Novembre 2000

Effetto Compton. Nicola Cabibbo 27 Novembre 2000 Effetto Compton Nicola Cabibbo 27 Novembre 2000 In questa nota consideriano il processo Compton di diffusione di un fotone su un elettrone,γ + e γ + e. La nota integra la trattazione che si trova in Mandl

Dettagli

Esercizi FisMat3 MQ. 24 Aprile 2018

Esercizi FisMat3 MQ. 24 Aprile 2018 Esercizi FisMat3 MQ 24 Aprile 2018 Gli esercizi proposti sono quasi tutti estratti dalla collezione di esercizi (con soluzioni) a cura di E. d Emilio e L. Picasso (ETS, 2011). Alcuni di questi sono stati

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 6 Giugno 08 (usare fogli diversi per esercizi diversi) Primo Esercizio i) Assumiamo che Q sia un punto di un corpo rigido piano

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013

L atomo di idrogeno. R. Dovesi, M. De La Pierre, C. Murace. Chimica Fisica II. Corso di Laurea in Chimica A.A. 2012/2013 L atomo di idrogeno R. Dovesi, M. De La Pierre, C. Murace Corso di Laurea in Chimica A.A. 2012/2013 Chimica Fisica II Modello per l atomo di idrogeno Modello: protone fisso nell origine ed elettrone in

Dettagli

Elementi di struttura della materia

Elementi di struttura della materia Elementi di struttura della materia Luigi Sangaletti Università Cattolica del Sacro Cuore Dipartimento di Matematica e Fisica a.a. 2004-2005 Quantizzazione delle energie Tracciare ed identificare i primi

Dettagli

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione

ESAME SCRITTO DI FISICA MODERNA. 22 giugno Traccia di soluzione ESAME SCRITTO DI FISICA MODERNA giugno 08 Traccia di soluzione ) Ponendo α = /σ ), il valore medio della posizione è + ψ ˆx ψ = dx ψ ˆx x x ψ = dx ψ x)xψx) = α + dx x e αx x 0), ) e con un semplice cambio

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x 4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto

Dettagli

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica,

Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, Consideriamo un sistema composto da due particelle identiche. Due particelle sono identiche se hanno le stesse proprietà intrinseche (massa, carica, spin, ). Esempi: due elettroni, due protoni, due neutroni,

Dettagli

Funzione d onda dello stato fondamentale (trascurando l interazione elettrone-elettrone)

Funzione d onda dello stato fondamentale (trascurando l interazione elettrone-elettrone) -e -e +2e ATOMO DI ELIO. Considero il nucleo fisso (sistema di riferimento del centro di massa, circa coincidente col nucleo). I due elettroni vanno trattati come indistinguibili. -e -e +2e SENZA il termine

Dettagli

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti).

Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti). 4. ORBITALI ATOMICI Energia degli orbitali atomici Nell'atomo l'energia dell'elettrone varia per quantità discrete (quanti). Il diagramma energetico dell'atomo di idrogeno: i livelli (individuati da n)

Dettagli

Lo spin dell elettrone

Lo spin dell elettrone Lo spin dell elettrone Abbiamo visto che un elettrone che ruota intorno al nucleo possiede un momento angolare orbitale, con il quale è associato anche un momento magnetico. Ci sono evidenze sperimentali

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Interazione Radiazione materia (intro) Sistema a due livelli e coefficienti di Einstein. Assorbimento

Interazione Radiazione materia (intro) Sistema a due livelli e coefficienti di Einstein. Assorbimento Interazione Radiazione materia (intro) Sistema a due livelli e coefficienti di Einstein Emissione Spontanea b Assorbimento b Emissione Stimolata b a a a -Energia del fotone (Emesso/Assorbito) uguale alla

Dettagli

LO SPIN. Facciamo riferimento agli stati dell elettrone ottico di un sistema idrogenoide o di un metallo alcalino.

LO SPIN. Facciamo riferimento agli stati dell elettrone ottico di un sistema idrogenoide o di un metallo alcalino. 8/ / Effetti di un campo magnetico sugli stati a un elettrone Facciamo riferimento agli stati dell elettrone ottico di un sistema idrogenoide o di un metallo alcalino. Gli effetti di un campo magnetico

Dettagli

Capitolo 4. Momento angolare e Sistemi Tridimensionali

Capitolo 4. Momento angolare e Sistemi Tridimensionali Capitolo 4 Momento angolare e Sistemi Tridimensionali 111 112 CAPITOLO 4. MOMENTO ANGOLARE E SISTEMI TRIDIMENSIONALI 4.1 Momento Angolare Nei problemi tridimensionali una variabile dinamica importante

Dettagli

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone

Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Dalla struttura fine delle transizioni atomiche allo spin dell elettrone Evidenze sperimentali Struttura fine delle transizioni atomiche (doppietto( del sodio) Esperimento di Stern-Gerlach Effetto Zeeman

Dettagli