3. Segni della funzione (positività e negatività)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "3. Segni della funzione (positività e negatività)"

Transcript

1 . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della funzione) al variare della variabile indipendente x. Tale studio diventa importante poiché consente di stabilire le parti di piano che interessano la funzione e quelle in cui il grafico non c è. Per comodità, convenzionalmente, si studia la positività della funzione risolvendo la disequazione y > 0 ovvero f(x) > 0 ma è possibile utilizzare anche procedimenti grafici o regole pratiche. Ovviamente, nel campo di esistenza, si avrà un intervallo di negatività dove la funzione non è positiva. L'intervallo di positività (negatività) di una funzione è l'insieme dei valori di x per i quali la variabile y è positiva (negativa). Per riportare nel piano cartesiano il risultato di questo studio si anneriscono le parti in cui il grafico della funzione non può passare: negli intervalli in cui la funzione è positiva il grafico è situato sopra l'asse x, quindi si annerisce la zona corrispondente di piano sotto l'asse x; negli intervalli in cui la funzione è negativa il grafico è al di sotto dell'asse x, quindi si annerisce la zona corrispondente di piano sopra l'asse x. Nota: Per una funzione continua è importante determinare sempre i valori di x per cui si annulla, perché questi sono i punti in cui la funzione potrebbe cambiare di segno. 8

2 Sintesi dei segni di alcune funzioni di base: Polinomio di 1 grado se a > 0 se a < 0 Polinomio di grado se a > 0 e > 0 ax + b x x 1 ax + bx + c x x 1 se a < 0 e > 0 se a > 0 e = 0 se a < 0 e = 0 se a > 0 e < 0 se a < 0 e < x x x 1 0 x Radicale n f ( x) Con indice n pari: sempre positivo dove non si annulla. Con indice n dispari: stessi segni del radicando f (x). Logaritmo log n f ( x) (si annulla quando f ( x) = 1). Con base n maggiore di 1 è positivo quando f ( x) > 1, negativo altrove. Con base n minore di 1 è positivo quando f ( x) < 1, negativo altrove. f ( x) Esponenziale n Sempre positivo. Potenza di funzione [ f ( x) ] n Con esponente n è pari: sempre positiva dove non si annulla. Con esponente n dispari: stessi segni di f (x). Quando possibile: - scrivere la funzione come prodotto di funzioni di base, - studiare il segno di ogni fattore, - fare il prodotto dei segni in verticale in ogni intervallo. Fare sempre attenzione al campo di esistenza. 9

3 Esempi: Funzione polinomiale di 1 grado y = ax + b y = x 6 (coefficiente di x positivo) D = R Determino dove la funzione si annulla (cioè troviamo gli zeri della funzione) risolvendo l equazione x 6 = 0 che, essendo di primo grado, ha sempre una e una sola soluzione, in questo caso x =. Posso già mettere il punto 0 nel grafico dei segni in corrispondenza del valore x =. 1 modo: algebrico Trovo dove la funzione è positiva risolvendo la disequazione x 6 > 0 che ha soluzione x >. La funzione è negativa per i rimanenti valori di x cioè per x < modo: grafico La funzione di 1 grado rappresenta sempre una retta, in questo caso di coefficiente angolare positivo () che interseca l asse x nel punto x = A destra dell intersezione il grafico sta al di sopra dell asse x, quindi la funzione è positiva, a sinistra dell intersezione il grafico sta al di sotto dell asse x, quindi la funzione è negativa. metodo: pratico Regola generale per i polinomi: si considera solo il termine in x di grado massimo; nell intervallo più a destra il segno è uguale a quello del coefficiente di x; nell intervallo più a sinistra il segno è uguale se l esponente di x è pari, diverso se l esponente di x è dispari. In questo caso il termine di grado massimo è x Il coefficiente è positivo (), quindi a destra metto i segni + L esponente di x è dispari (1) quindi a sinistra metto i segni contrari, cioè In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano: 10

4 y = x + 6 (coefficiente di x negativo) D = R Risolvo l equazione x 6 = 0 che ha come soluzione x =. Metto il punto 0 nel grafico dei segni in corrispondenza del valore x =. 1 modo: algebrico La funzione è positiva quando x + 6 > 0 cioè per x < ; ed è negativa per i rimanenti valori di x cioè per x > modo: grafico La funzione rappresenta una retta di coefficiente angolare negativo ( ) che interseca l asse x nel punto x = A destra dell intersezione il grafico sta al di sotto dell asse x, quindi la funzione è negativa, a sinistra dell intersezione il grafico sta al di sopra dell asse x, quindi la funzione è positiva. metodo: pratico Il termine di grado massimo è x. Il coefficiente è negativo ( ), quindi a destra metto i segni L esponente di x è dispari (1) quindi a sinistra metto i segni contrari, cioè Riporto nel piano cartesiano: 11

5 Funzione polinomiale di grado y = ax + bx + c y = x + x 4 (coefficiente di x positivo e > 0) D = R Cerco gli zeri del polinomio risolvendo l equazione x + x 4 = 0 che in questo caso ha due soluzioni x 1 = 1 e x = 4. Metto gli 0 nel grafico dei segni in corrispondenza dei valori trovati: in questo caso si formano tre intervalli modo: algebrico Risolvo la disequazione x + x 4 > 0 per trovare dove la funzione è positiva: la soluzione è x > 1 o x < 4. La funzione è negativa per i rimanenti valori di x cioè per 4 < x < modo: grafico La funzione di grado rappresenta sempre una parabola con asse di simmetria parallelo all asse y, nel nostro caso con concavità verso l alto (a > 0) che interseca l asse x nei due punti x 1 = 1 e x = 4. 1 x x 1 A destra di x 1 e a sinistra di x il grafico sta al di sopra dell asse x, quindi la funzione è positiva, tra le due intersezioni il grafico sta al di sotto dell asse x, quindi la funzione è negativa modo: pratico Il termine di grado massimo è x. Il coefficiente è positivo (1), quindi a destra metto i segni + L esponente di x è pari () quindi a sinistra metto i segni uguali, cioè + Nell intervallo intermedio metto i segni contrari, quindi (ottengo il grafico dei segni come sopra) Riporto i segni nel piano cartesiano: 1

6 y = x + x + (coefficiente di x negativo e > 0) D = R La funzione si annulla quando x + x + = 0 cioè per x 1 = e per x = 1; Metto gli 0 nel grafico dei segni in corrispondenza dei valori trovati: si formano tre intervalli. Metodo algebrico La funzione è positiva quando x + x + > 0 cioè per 1 > x > ; è negativa per i rimanenti valori di x cioè per x < 1 o x >. Grafico dei segni: Metodo grafico La parabola rappresentata dalla funzione di ha concavità verso il basso (a < 0) e interseca l asse x nei due punti x 1 = e x = 1. x x 1 A destra di x 1 e a sinistra di x il grafico sta al di sotto dell asse x, quindi la funzione è negativa, tra le due intersezioni il grafico sta al di sopra dell asse x, quindi la funzione è positiva Metodo pratico Il termine di grado massimo è x. Il coefficiente è negativo ( 1), quindi a destra metto i segni L esponente di x è pari () quindi a sinistra metto i segni uguali, cioè Nell intervallo intermedio metto i segni contrari, quindi + (ottengo il grafico dei segni come sopra) Riporto i segni nel piano cartesiano: 1

7 y = x + 4x + 4 (coefficiente di x positivo e = 0) D = R La funzione si annulla quando x + 4x + 4 = 0 cioè solo per x =. Metto lo 0 nel grafico dei segni in corrispondenza del valore trovato x = ; in questo caso si formano due intervalli. 0 Metodo algebrico La funzione è positiva quando x + 4x + 4 > 0 cioè per x ; è negativa per i rimanenti valori di x cioè mai Metodo grafico La funzione una parabola con concavità verso l alto (a > 0) che interseca l asse x solo nel punto x =. Sia a destra che a sinistra di il grafico sta al di sopra dell asse x, quindi la funzione è positiva, il grafico non sta mai al di sotto dell asse x Metodo pratico Il termine di grado massimo è x. Il coefficiente è positivo (1), quindi a destra metto i segni + L esponente di x è pari () quindi a sinistra metto i segni uguali, cioè + Non c è intervallo intermedio Riporto nel piano cartesiano: 14

8 y = x + x 1 (coefficiente di x negativo e = 0) D = R La funzione si annulla quando x + x 1 = 0 cioè solo per x = 1. Metto lo 0 nel grafico dei segni in corrispondenza del valore trovato x = ; si formano due intervalli. 0 Modo algebrico La funzione è positiva quando x + x 1 > 0 cioè mai; è negativa per tutti gli altri valori, quindi per x Metodo grafico La funzione una parabola con concavità verso il basso (a < 0) che interseca l asse x solo nel punto x = 1. 1 Sia a destra che a sinistra di 1 il grafico sta al di sotto dell asse x, quindi la funzione è negativa, il grafico non sta mai al di sopra dell asse x. 0 Metodo pratico Il termine di grado massimo è x. Il coefficiente è negativo ( 1), quindi a destra metto i segni L esponente di x è pari () quindi a sinistra metto i segni uguali, cioè Non c è intervallo intermedio. 0 1 Riporto nel piano cartesiano: 15

9 y = x x + 4 (coefficiente di x positivo e < 0) D = R La funzione si annulla quando x x + 4 = 0 cioè mai ( < 0). Non ci sono zeri: l intervallo è unico. Metodo algebrico La funzione è positiva quando x x + 4 > 0 cioè sempre; è negativa per i rimanenti valori di x cioè mai Metodo grafico La funzione una parabola con concavità verso l alto (a > 0) che non interseca l asse x. Il grafico sta sempre al di sopra dell asse x, quindi la funzione è sempre positiva Metodo pratico Il termine di grado massimo è x. Il coefficiente è positivo (1), quindi (a destra) metto i segni + Non ci sono altri intervalli Riporto nel piano cartesiano: 16

10 y = x + x (coefficiente di x negativo e < 0) D = R La funzione si annulla quando x + x = 0 cioè mai ( < 0). Non ci sono zeri: l intervallo è unico. Metodo algebrico La funzione è positiva quando x + x > 0 cioè mai; è negativa per i rimanenti valori di x cioè sempre. Metodo grafico La funzione una parabola con concavità verso il basso (a < 0) che non interseca l asse x. Il grafico sta sempre al di sotto dell asse x, quindi la funzione è sempre negativa. Metodo pratico Il termine di grado massimo è x. Il coefficiente è negativo ( 1), quindi (a destra) metto i segni Non ci sono altri intervalli. Riporto nel piano cartesiano: 17

11 Funzione polinomiale di grado superiore a Si riscrive la funzione come prodotto di polinomi (o potenze) ciascuno di grado non superiore a, si studia il segno di ogni fattore poi si effettua il prodotto dei segni in ogni intervallo trovato. y = x x x + Scomponendo in fattori la funzione si può scrivere come y = ( x ) ( x 1) Il fattore x (polinomio di 1 grado con a > 0) si annulla quando x = è positivo quando x > è negativo quando x < Il fattore x 1 ( grado con a > 0 e > 0) si annulla per x = ± 1 è positivo per x > 1 o x < 1 è negativo per 1 < x < 1 Il segno della funzione è il prodotto (fatto in verticale) dei segni dei suoi fattori x x 1 y Piano cartesiano: 18

12 Funzione irrazionale Se il radicale ha indice pari: - esiste solo quando il radicando non è negativo; - si annulla quando si annulla il radicando; - è positiva per tutti gli altri valori del suo dominio; - non è mai negativa Se il radicale ha indice dispari: - è sempre definito; - ha gli stessi segni del radicando. y = x (radicale con indice pari) D = [ ; + ) si annulla quando x = 0 cioè per x = ; è positiva per x ; è negativa mai. Grafico dei segni: Piano cartesiano: y = x (radicale con indice dispari) D = ( ; + ) Ha lo stesso segno di x si annulla quando x = 0 cioè per x = ; è positiva quando x > 0 cioè per x > ; è negativa quando x < 0 cioè per x <. Grafico dei segni: Piano cartesiano:

13 Funzione logaritmica Se la base è maggiore di 1: - esiste solo quando l argomento è positivo; - si annulla quando l argomento è 1; - è positiva quando l argomento è maggiore di 1; - è negativa quando l argomento è minore di 1. Se la base è minore di 1: - esiste solo quando l argomento è positivo; - si annulla quando l argomento è 1; - è positiva quando l argomento è minore di 1; - è negativa quando l argomento è maggiore di 1. = log( x ) y (base maggiore di 1) D = ( ; + ) si annulla quando x = 1 cioè per x = ; è positiva quando x > 1 cioè per x > ; è negativa quando x < 1 cioè per x <. Grafico dei segni: Piano cartesiano: x Funzione esponenziale - esiste quando la base è positiva; - non si annulla mai; - è positiva in tutto il suo dominio. y = 5 x+ D = ( ; + ) si annulla mai è positiva sempre è negativa mai Grafico dei segni: Piano cartesiano:

14 Potenza di funzione y = [ f ( x) ] n Se l esponente è pari: - si annulla quando si annulla la base; - è positiva per tutti gli altri valori del dominio; - non è mai negativa. Se l esponente è dispari: - ha gli stessi segni della base. 4 y = ( x ) (esponente pari) si annulla quando x = 0 cioè per x = ; è positiva per x ; è negativa mai. Grafico dei segni: Piano cartesiano: y = ( x ) (esponente dispari) Ha gli stessi segni di x si annulla quando x = 0 cioè per x = ; è positiva quando x > 0 cioè per x > ; è negativa quando x < 0 cioè per x <. Grafico dei segni: Piano cartesiano:

15 Funzione scomponibile in fattori Si studia il segno di ogni fattore poi si effettua il prodotto dei segni in verticale in ogni intervallo trovato. Attenzione: quando ci sono denominatori, occorre eliminare i valori in cui questi si annullano. (La discussione dovrebbe essere già stata fatta nello studio del dominio) ( x + )( x) y = x 4 ( ; 4) ( 4 ; + ) D = U Numeratore: Il fattore x + (polinomio di 1 grado con a > 0) si annulla quando x = è positivo quando x > è negativo quando x < x Il fattore x (polinomio di 1 grado con a < 0) si annulla per x = è positivo per x < è negativo per x < Denominatore: Il fattore 4 si annulla quando x = 4 è positivo quando x > 4 è negativo quando x < 4 x (polinomio di 1 grado con a > 0) x x 4 x Il segno della funzione è il prodotto (fatto in verticale) dei segni dei suoi fattori. Piano cartesiano: y x x

16 y = x ( x ) (1 x ) 5 Il fattore x (potenza dispari) ha lo stesso segno di x (polinomio di 1 grado con a > 0) si annulla quando x = 0 è positivo quando x > 0 è negativo quando x < 0 Il fattore ( ) si annulla per x = è positivo per x è negativo mai x (potenza pari) Il fattore ( 1 x) (potenza dispari) ha lo stesso segno di 1 x (polinomio di 1 grado con a < 0) si annulla quando x = 1 è positivo quando x < 1 è negativo quando x > 1 Il segno della funzione è il prodotto (fatto in verticale) dei segni dei suoi fattori. x (x ) (1 x) y Piano cartesiano:

17 ( x + ) x 4 4x x ( x + ) x 4 Scompongo in fattori il denominatore y = x (4 x) Determino il dominio: x 4 0 D : x 0 D = [ ; 4) U ( 4 ; + ) 4 x 0 y = Studio i segni dei fattori facendo attenzione alle condizioni del dominio: Numeratore: Il fattore ( x + ) (potenza dispari) ha lo stesso segno di x + (polinomio di 1 grado con a > 0) si annulla quando x = è positivo quando x > è negativo quando x < Il fattore x 4 (radice con indice pari) si annulla per x = è positivo per gli altri valori del dominio è negativo mai Denominatore: Il fattore x (potenza pari) si annulla per x = 0 è positivo per gli altri valori del dominio è negativo mai Il fattore x si annulla quando x = 4 è positivo quando x < 4 è negativo quando x > 4 4 (polinomio di 1 grado con a < 0) Il segno della funzione è il prodotto dei segni dei suoi fattori (x + ) x x 4 4 x y x x x Riporto nel piano cartesiano: x 4

18 Funzione non scomponibile in fattori di base y = x x D = [ 0 ; + ) La funzione si annulla quando x x = 0 Risolvo l equazione: isolo il radicale x = x poiché entrambi i membri non sono negativi (vedi dominio) li elevo al quadrato risolvo l equazione di secondo grado trovata x x = 0 che ha soluzione x 1 = 0 e x = 1. La funzione è positiva quando x x > 0 Con considerazioni analoghe all equazione trovo la soluzione x > 1. La funzione è negativa per gli altri valori del dominio, cioè 0 < x < 1. x = x 1 y = 1 log x D = ( 0 ; + ) La funzione si annulla quando 1 log x = 0 cioè log x = 1, quindi x = 10. La funzione è positiva quando 1 log x > 0 cioè log x < 1, quindi x < 10. La funzione è negativa per gli altri valori del dominio, cioè x > 10. x 10 5

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano:

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano: Funzione polinomiale di 1 grado y = ax + b y = x 6 (coefficiente di x positivo) D = R Determino dove la funzione si annulla (cioè troviamo gli zeri della funzione) risolvendo l equazione x 6 = 0 che, essendo

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

Esercizi di Matematica. Studio di Funzioni

Esercizi di Matematica. Studio di Funzioni Esercizi di Matematica Studio di Funzioni CONSIDERAZIONI GENERALI Ad ogni funzione corrisponde un grafico, quindi studiare una funzione significa determinare il suo grafico. Per le conoscenze fin qui acquisite,

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA III Parziale - Compito C 6/5/5 A. A. 4 5 ) Studiare la seguente funzione polinomiale:

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi

Esercizi 2016/17 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizi 06/7 - Analisi I - Ing. Edile Architettura Esponenziali e logaritmi Esercizio. Risolvere la seguente equazione: Soluzione. ) x+ ) x 7 x = 0 7 L equazione è definita per ogni x 0, valore in cui

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3)

Matematica 2. Derivate Esercizi. y=sen( x 4 3x) y' =cos(x 4 3x)(4x 3 3) y=logsen( x x) y' = sen(x 4 +3x) cos(x4 +3x)(4x 3 +3) Matematica 2 Derivate Esercizi y=sen( 4 3) y' =cos( 4 3)(4 3 3) y=logsen( 4 1 3) y' = sen( 4 +3) cos(4 +3)(4 3 +3) y=sen 2 ( 4 3) y' =2sen( 4 3 )cos( 4 3)(4 3 3) Funzioni ad una sola variabile y=f() è

Dettagli

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi

Dettagli

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz

MATEMATICA MATURITA LINGUISTICA. Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz MATEMATICA MATURITA LINGUISTICA Istituto Paritario A.Ruiz Istituto Paritario A.Ruiz 1 MATEMATICA MATURITA LINGUISTICA 1. CLASSIFICAZIONE FUNZIONI FUNZIONI ALGEBRICHE (in cui compaiono le quattro operazioni):

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 2 Dicembre Dominio di Funzioni Esercitazioni di Matematica Generale A.A. 06/07 Pietro Pastore Lezione del Dicembre 06 Dominio di Funzioni Determinare il dominio delle seguenti funzioni ) x +3x. fx) =. Il dominio si trova considerando

Dettagli

CLASSIFICAZIONE DELLE FUNZIONI - TEORIA

CLASSIFICAZIONE DELLE FUNZIONI - TEORIA CLASSIFICAZIONE DELLE FUNZIONI - TEORIA Razionali Intere Fratte 9 9 6 Intere Algebriche indice pari Fratte Irrazionali Intere Funzioni indice dispari Fratte log( 1 logaritmiche ) Goniometriche sen cos

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente quando esiste un legame di natura qualsiasi che ad ogni valore di faccia corrispondere uno e uno solo

Dettagli

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo

Dettagli

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente)

f : A B NOTAZIONE DELLE FUNZIONI x associa A D y è l immagine di x : y = f (x) (variabile dipendente) Funzioni Dati due insiemi non vuoti A e B, si chiama funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B NOTAZIONE DELLE FUNZIONI

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.

ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R. ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

Studio di funzione. Studio di funzione: i passi iniziali

Studio di funzione. Studio di funzione: i passi iniziali Studio di funzioni Studio di funzione Si dice che una variabile dipendente y è funzione di una variabile indipendente x quando esiste un legame di natura qualsiasi che ad ogni valore di x faccia corrispondere

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2018/19 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2018/19 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C

PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado. Il piano cartesiano. Distanza tra

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

Esercitazione 2 - Soluzioni

Esercitazione 2 - Soluzioni Esercitazione - Soluzioni Francesco Davì ottobre 0 Esercizio (a) Si deve avere + x 0 x, che è verificato x R, in quanto il valore del modulo di un espressione non è mai negativo. L espressione al numeratore

Dettagli

5. EQUAZIONI e DISEQUAZIONI

5. EQUAZIONI e DISEQUAZIONI 5. EQUAZIONI e DISEQUAZIONI 1. Per ognuna delle affermazioni seguenti, indicare se e vera o falsa, motivando la risposta (a) L equazione di primo grado (1 2)x = 2 ha soluzione x = 2(1+ 2). V F (b) La disequazione

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri,

Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 2012/2013 docente: Elena Polastri, Metodi Matematici per l Economia A-K Corso di Laurea in Economia - anno acc. 202/203 docente: Elena Polastri, plslne@unife.it Studio di funzione con indicazione degli asintoti e grafico probabile Studiare

Dettagli

Disequazioni razionali (in una variabile)

Disequazioni razionali (in una variabile) 5 settembre 8 Disequazioni razionali (in una variabile) Forma normale: f f f < f > Disequazioni razionali intere Nelle disequazioni razionali intere la funzione f è un polinomio. Disequazioni di grado

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa):

DISEQUAZIONI DI SECONDO GRADO. Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono ad essa): P. \ Disequazioni di secondo grado Maggio 0 Copyright-I.S. DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI INTERE DI SECONDO GRADO Le disequazioni di secondo grado intere si presentano nella forma (o equivalgono

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 4 Novembre Trinomi di secondo grado

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 4 Novembre Trinomi di secondo grado Esercitazioni di Matematica Generale AA 016/017 Pietro Pastore Lezione del 4 Novembre 016 Trinomi di secondo grado Possiamo usare le soluzioni dell equazione di secondo grado per scomporre il trinomio

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Studio di funzione. numeri.altervista.org

Studio di funzione. numeri.altervista.org Studio di funzione 1. Determinazione del campo di esistenza CONDIZIONE DI ESISTENZA intera: FUNZIONE RAZIONALE se è del tipo f(x)=p(x) dove P(x) e' un polinomio nella variabile x --------------------------------------------------------------------

Dettagli

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Disequazioni 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Date due espressioni algebriche A e B contenenti numeri e lettere

Dettagli

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata Classe TERZA A inf. MATEMATICA attività di rinforzo anno 011/1 Nella verifica di settembre dovrai dimostrare di riconoscere l'equazione della retta, della circonferenza, della parabola con asse parallelo

Dettagli

EQUAZIONI DISEQUAZIONI

EQUAZIONI DISEQUAZIONI EQUAZIONI DISEQUAZIONI Indice 1 Background 1 1.1 Proprietà delle potenze................................ 1 1.2 Prodotti notevoli................................... 1 2 Equazioni e disequazioni razionali

Dettagli

FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione f(x), l'insieme di tutti i valori reali che assegnati alla variabile indipendente x permettono

Dettagli

Ricerca di massimi e minimi col metodo della derivata prima

Ricerca di massimi e minimi col metodo della derivata prima Massimi e minimi con la derivata prima pag. 1 di 6 Ricerca di massimi e minimi col metodo della derivata prima Ricordiamo che il significato geometrico della derivata prima è quello di coefficiente angolare

Dettagli

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1 Matematica 2. e quadratiche Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A. 2018-19

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 20/202. Esercizi: lezione 8 novembre 20 Studio di funzione con indicazione degli asintoti e grafico probabile Studiare completamente

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Intervalli limitati e illimitati in R Saper riconoscere intervalli

Dettagli

Programmazione disciplinare: Matematica 4 anno

Programmazione disciplinare: Matematica 4 anno Programmazione disciplinare: Matematica 4 anno CONTENUTI Intervalli limitati e illimitati in R RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Saper riconoscere intervalli

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

DOCENTE: P.Locatelli MATERIA : Matematica CLASSE 1 Sezione B A.S. 2018/2019 PROGRAMMA EFFETIVAMENTE SVOLTO

DOCENTE: P.Locatelli MATERIA : Matematica CLASSE 1 Sezione B A.S. 2018/2019 PROGRAMMA EFFETIVAMENTE SVOLTO Indirizzo Internet: https://www.istitutoalgarotti.edu.it e-mail: VETN0100N@istruzione.it DOCENTE: P.Locatelli MATERIA : Matematica CLASSE 1 Sezione B A.S. 2018/2019 PROGRAMMA EFFETIVAMENTE SVOLTO CALCOLO

Dettagli

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi

LICEO LINGUISTICO NINNI CASSARÁ. Classe VA. Studio di Funzioni. prof. Alessio Cangemi LICEO LINGUISTICO NINNI CASSARÁ Classe VA Studio di Funzioni prof. Alessio Cangemi Di seguito saranno schematizzati gli step fondamentali per tracciare il grafico probabile di una funzione f(x). 1 Ricerca

Dettagli

PROGRAMMA SVOLTO. Classe 1G Matematica Anno scolastico:

PROGRAMMA SVOLTO. Classe 1G Matematica Anno scolastico: Classe 1G Matematica Anno scolastico: 2018-2019 Gli insiemi numerici e le operazioni: Gli insiemi: intersezione ed unione. Gli insiemi numerici: N, Z, Q e R. Le operazioni con i numeri interi, espressioni

Dettagli

Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA

Istituto Tecnico Statale per il Turismo Francesco Algarotti Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA Classe: 3 Sez. A A. S. 2017/18 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi

Dettagli

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco

Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco Programma svolto a.s. 2018/2019 Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN

Dettagli

1 Funzioni algebriche fratte

1 Funzioni algebriche fratte 1 Funzioni algebriche fratte 1.1 Esercizio svolto y = x 1 x 11x + 10 (generalizzazione) La funzione è del tipo y = f(x) g(x) con f(x) e g(x) polinomi reali in x. Per determinare il dominio D della funzione

Dettagli

Classe TERZA A inf. MATEMATICA : COMPITI VACANZE E SOSPENSIONE DEL GIUDIZIO

Classe TERZA A inf. MATEMATICA : COMPITI VACANZE E SOSPENSIONE DEL GIUDIZIO Classe TERZA A inf. MATEMATICA : COMPITI VACANZE E SOSPENSIONE DEL GIUDIZIO RICORDA: Nelle disequazioni di primo grado a>b o a

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

DOMINIO E IMMAGINE DI UNA FUNZIONE REALE DI VARIABILE REALE

DOMINIO E IMMAGINE DI UNA FUNZIONE REALE DI VARIABILE REALE OMINIO E IMMAGINE I UNA FUNZIONE REALE I VARIABILE REALE La prima operazione che dobbiamo fare quando ci accingiamo a studiare una funzione (per poterne poi determinare il grafico) è quella di individuare

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

1 Fattorizzazione di polinomi

1 Fattorizzazione di polinomi 1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale

Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Mauro Saita Grafici qualitativi di funzioni reali di variabile reale Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Ottobre 2017 1 Indice 1 Qual è il grafico della

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione.

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione. Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 icembre 2016 Studio di Funzione 1. Si consideri la funzione f : R R così definita f(x) 1 2 log x x 2. (a) eterminare il

Dettagli

PROGRAMMA SVOLTO A.S. 2018/2019 Classe: 1^A Amministrazione Finanza e Marketing Disciplina: Matematica Prof. Andrea Vianello

PROGRAMMA SVOLTO A.S. 2018/2019 Classe: 1^A Amministrazione Finanza e Marketing Disciplina: Matematica Prof. Andrea Vianello Classe: 1^A Amministrazione Finanza e Marketing Mod.1 Calcolo numerico Insiemistica: significato di insieme, intersezione, unione, appartenenza. Gli insiemi numerici N, Z, Q e R. Multipli e divisori di

Dettagli

Esercizi sul dominio di funzioni e limiti

Esercizi sul dominio di funzioni e limiti Esercizi sul dominio di funzioni e iti Esercizio 1. Determinare il dominio D, studiare il segno e calcolare il ite ai suoi estremi delle seguenti funzioni: (a) y = e ; (b) y = 4 2 + 9; (c) y = 16 4 ; 2

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Lezione 6. Sistemi di equazioni lineari Parabola

Lezione 6. Sistemi di equazioni lineari Parabola Lezione 6 Sistemi di equazioni lineari Parabola Altro metodo per trovare l equazione di una retta che passa per due punti dati Siano A e B due punti di coordinate rispettivamente A = (x A, y A ) e B =

Dettagli

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte):

MATEMATICA. a.a. 2014/15. 1a. Funzioni (II parte): MATEMATICA a.a. 014/15 1a. Funzioni (II parte): Funzioni iniettive, suriettive, bigettive. Funzioni reali. Campo di esistenza. Funzioni pari e dispari Funzione iniettiva y=f() 1 3 X 4 y 6 Y y y 1 y 3 y

Dettagli

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2 QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 27/8 23 LUGLIO 28 CORREZIONE Esercizio ) Considerate la funzione f definita da f(x) = x 2 + x 2. Trovatene il dominio

Dettagli

Argomento 7. Studio di funzione

Argomento 7. Studio di funzione Argomento 7 Studio di funzione Studiare una funzione significa ottenere, mediante strumenti analitici (iti, derivate, ecc.) informazioni utili a disegnare un grafico qualitativo della funzione data. I

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 7 Novembre Disequazioni irrazionali

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 7 Novembre Disequazioni irrazionali Esercitazioni di Matematica Generale AA 016/017 Pietro Pastore Lezione del 7 Novembre 016 Disequazioni irrazionali Risolvere le seguenti disequazioni 1 3x + 1 < x + 7 La disequazione é equivalente al seguente

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Daniela TONDINI Parziale n. - Compito II A.

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

Lo studio di funzione. 18 febbraio 2013

Lo studio di funzione. 18 febbraio 2013 Lo studio di funzione 18 febbraio 2013 1 Indice 1 Lo studio di funzione 3 1.1 Dominio di funzioni......................... 3 1.1.1 Domini di funzioni elementari............... 3 1.1.2 Funzioni composte,

Dettagli

Appunti di Matematica

Appunti di Matematica Appunti di Matematica Studio della funzione irrazionale 9 x 2 f(x) = x 1 Massimo Pasquetto I.P.S.E.O.A. Angelo Berti classe 5AS 23 Settembre 2016 massimo dot pasquetto at infinitum dot it Appunti di Matematica

Dettagli

Parte I. Matematica per le Applicazioni Economiche

Parte I. Matematica per le Applicazioni Economiche Parte I Matematica per le Applicazioni Economiche Capitolo 1 Disequazioni 1.1. Definizioni Una disequazione è una disuguaglianza fra due espressioni contenenti una o più incognite. Nel caso di una sola

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata

Δ > 0, f(x)<0 quindi valori interni 0<x<4. Δ <0 f(x)>0 quindi sempre verificata Classe TERZA A inf. MATEMATICA : SOSPENSIONE DEL GIUDIZIO Devi svolgere su di un quaderno tutti gli esercizi di queste pagine, anche quelli già risolti come esempio e consegnarmelo il giorno della prova

Dettagli

Esercizi. 1. Disegnare il grafico qualitativo della seguente funzione:

Esercizi. 1. Disegnare il grafico qualitativo della seguente funzione: Esercizi. Disegnare il grafico qualitativo della seguente funzione: f(x) = x 2 per x 0 x per x > 0 e determinarne gli eventuali punti di massimo e minimo assoluti e relativi nell intervallo (,4]. Esercizi

Dettagli

LE DISEQUAZIONI DI SECONDO GRADO. Prof. Stefano Spezia

LE DISEQUAZIONI DI SECONDO GRADO. Prof. Stefano Spezia LE DISEQUAZIONI DI SECONDO GRADO 1. L EQUAZIONE ASSOCIATA 4x + 3x 2 + 6 > + 2x 3x 2 + 4x + 6 > + 2x 3x 2 + 4x 2x + 6 > 0 3x 2 + 2x + 6 > 0 Forma normale Ogni disequazione di secondo grado può essere ricondotta

Dettagli

Verica di Matematica su dominio e segno di una funzione [TEST 1]

Verica di Matematica su dominio e segno di una funzione [TEST 1] Verica di Matematica su dominio e segno di una funzione [TEST 1] 1. Esporre le principali caratteristiche della funzione logaritmica dopo averla denita. y = log a x 2. Spiegare come si calcola il dominio

Dettagli

STUDIO DEL SEGNO DI UN POLINOMIO

STUDIO DEL SEGNO DI UN POLINOMIO STUDIO DEL SEGNO DI UN POLINOMIO Risolvere un'equazione vuol dire trovare il valore della X che annulla il polinomio al primo membro. Esempio X + 1 = 0 Trova il valore che sostituito alla X rende vera

Dettagli

Breve formulario di matematica

Breve formulario di matematica Luciano Battaia a 2 = a ; lim sin = 1, se 0; sin(α + β) = sin α cos β + cos α sin β; f() = e 2 f () = 2e 2 ; sin d = cos + k; 1,2 = b± ; a m a n = 2a a n+m ; log a 2 = ; = a 2 + b + c; 2 + 2 = r 2 ; e

Dettagli

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17

IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 IIS Via Silvestri 301. Plesso Volta. Programma di Matematica Indirizzo Elettronica ed Elettrotecnica a.s. 2016/17 Classe 1A MODULO 1: I NUMERI NATURALI 1. Le operazioni definite nell insieme dei numeri

Dettagli

Esercitazione 6 - Soluzioni

Esercitazione 6 - Soluzioni Esercitazione 6 - Soluzioni Francesco Davì 9 novembre 01 Soluzioni esercizio 1 (a) Dominio: Il dominio della funzione è D f = R, in quanto la funzione è definita R o, equivalentemente, (, + ). Intersezioni

Dettagli

Funzioni. Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi

Funzioni. Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi Funzioni Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi Materia: Matematica Autore: Mario De Leo Definizioni Una quantità il cui valore può essere cambiato

Dettagli

Esercitazioni di Matematica Generale

Esercitazioni di Matematica Generale Esercitazioni di Matematica Generale Corso di laurea in Economia e Management Numeri Complessi - Funzioni Reali di Variabile Reale 05 Ottobre 017 Esercizio 1 Scrivere in forma algebrica (z = a + ib, a,

Dettagli

Sistemi di equazioni di secondo grado

Sistemi di equazioni di secondo grado 1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

dato da { x i }; le rette verticali passanti per

dato da { x i }; le rette verticali passanti per Schema riepilogativo per lo studio di una funzione reale di una var. reale. Studio grafico-analitico delle funzioni reali di variabile reale y = f ( Sequenza dei passi utili allo studio di una funzione

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli