OPERAZIONE PROIETTIVA

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "OPERAZIONE PROIETTIVA"

Transcript

1 centro di proiezione centro di proiezione di 9

2 DI UNA ROIEZIONE ROIEZIONE Con la geometria descrittiva si risolvono problemi di passaggio dalle 3 alle 2 dimensioni. L operazione proiettiva è l elemento fondamentale del passaggio. I risultati sono proiezioni o sezioni bidimensionali. GLI ONO TRE: iano di proiezione raggio proiettante i UNTO DI ROIEZIONE O CENTRO DI ROIEZIONE O UNTO DI VITA O ORGENTE DEI RAGGI OGGETTO punto di proiezione dal quale escono i raggi (rette) proiettanti. uò essere a distanza finita o infinita dall oggetto. l elemento reale dal quale con l operazione proiettiva si costruisce sul piano quadro una immagine bidimensionale. IANO DI ROIEZIONE O IANO QUADRO O QUADRO oggetto punto immagine 2 di 9 dove per mezzo delle rette proiettanti si trasferiscono le informazioni dei punti caratteristici dell elemento reale, formando l immagine bidimensionale. Il raggio proiettante parte dal centro di proiezione passa nei punti caratteristici della realtà, interferisce con (punto traccia) lasciando i punti immagine.

3 I tre elementi possono assumere infinite posizioni spaziali, che possono essere riconducibili a DUE CLAI : ROIEZIONE punto di proiezione raggio proiettante centro di proiezione oggetto piano di quadro i forma sul piano di quadro una ROIEZIONE : un raggio proiettante uscente dal centro di proiezione e passante per il punto reale traccia sul piano il punto immagine I. oggetto i punto immagine punto di proiezione raggio proiettante centro di proiezione piano di quadro oggetto Il piano di quadro INTERCETTA il raggio proiettante uscente dal centro di proiezione e passante per il punto reale. Il piano di quadro EZIONA il raggio proiettante tracciando il i punto immagine punto immagine I su di esso. oggetto 3 di 9

4 O CENTRALI E CILINDRICHE O ARALLELE La posizione nello spazio del CENTRO DI ROIEZIONE differenzia una proiezione dall altra. Il centro di proiezione, cioè il punto di origine delle rette proiettanti, come tutti i punti può avere infinite posizioni spaziali. Ci sono due categorie di posizioni: 4 di 9 punto di proiezione Ogni punto dell oggetto è raggiunto da un singolo raggio proiettante. Nel caso del centro di proiezione posto a distanza FINITA dall oggetto, ogni raggio proiettante ha una direzione propria (infiniti punti-oggetto, un centro di proiezione infiniti raggi e infinite direzioni). Il centro di proiezione è come il vertice di un CONO e i raggi proiettanti ne definiscono la superficie laterale. figura oggettiva O CENTRALI ROETTICHE figura proiettata Ogni punto dell oggetto è raggiunto da un singolo raggio proiettante. Nel caso del centro di proiezione posto a distanza INFINITA dall oggetto, ogni raggio proiettante è parallelo ad una medesima direzione (infiniti punti-oggetto, un centro di proiezione all infinito proiettanti ne definiscono la superficie laterale. CILINDRICHE O ARALLELE AONOMETRICHE (in particolare ORTOGONALI) punto di proiezione figura oggettiva figura proiettata una sola direzione per tutti i raggi proiettanti). Il centro di proiezione è come il vertice di un CONO spostato all infinito: il cono diventa un CILINDRO, i raggi

5 UN IMMAGINE DI UL IANO QUADRO er rappresentare sul piano quadro un immagine che suggerisca l idea della FORMA REALE dell oggetto si possono utilizzare i metodi delle: AONOMETRICHE ROETTICHE In entrambi i casi gli ELEMNTI dell operazione proiettiva ( - - ) assumono una relazione spaziale tale che i raggi proiettanti interferiscano con. Centro di proiezione iano quadro Oggetto 5 di 9

6 CENTRO DI ROIEZIONE A DITANZA FINITA ROETTIVE Raggi proiettanti divergenti Da un centro di proiezione posto a distanza finita i raggi proiettanti escono divergenti come dal vertice del cono. centro di proiezione L immagine che si forma sul quadro interposto fra il centro di proiezione e l oggetto ha DIMENIONI MINORI dell oggetto reale. L immagine che si forma sul quadro oltre l oggetto ha DIMENIONI MAGGIORI dell oggetto reale. La prospettiva realizza le immagini più verosimili, ma con rapporti metrici variabili in funzione della posizione di (distanza e giacitura) rispetto a e. 6 di 9

7 CENTRO DI ROIEZIONE A DITANZA INFINITA AONOMETRIE Raggi proiettanti paralleli centro di proiezione Da un centro di proiezione posto a distanza infinita i raggi proiettanti escono paralleli come le generatrici della superficie laterale del cilindro. L immagine che si forma sul quadro interposto fra il centro di proiezione e l oggetto, e su quello oltre l oggetto, ha le DIMENIONI AGEVOLMENTE RAORTABILI A QUELLE DELL OGGETTO (utilizzando per le trasformazioni dimensionali le opportunità offerte dal parallelismo dei raggi proiettanti, e si vedrà, da eventuali parallelismi). La assonometria realizza immagini con RAORTI DI E DI FORMA (di quantità e di qualità) agevolmente calcolabili ma meno verosimili di quelle prospettiche, essendo condizionate dalla posizione all infinito di, non realizzabile nella visione naturale. 7 di 9

8 MIURE Dalla proiezione parallela di un oggetto qualsiasi su di un piano quadro qualsiasi è impossibile misurare la posizione Q R OCCUATA DALL OGGETTO NELLO AZIO. Q I R I I er misurare e per avere quindi la OIBILITA DI AARE DALL OGGETTO ALLA UA IMMAGINE, e da questa all oggetto (corrispondenza biunivoca oggettoimmagine), si utilizza una terna cartesiana di assi, TERNA TRIORTOGONALE di assi x y z con origine in O, che individuano i piani, 2 3, alla quale riferire l oggetto che si deve rappresentare e il piano di quadro. rima di proiettare l oggetto qualsiasi, è necessario stabilire come si deve misurare, quindi come si deve modellare. MODELLARE L OGGETTO QUALIAI COME OMMATTORIA ( ) DI FINITI. 8 di 9

9 MODELLO DELL OGGETTO z MODELLARE L OGGETTO QUALIAI COME OMMATTORIA ( ) DI FINITI. 9 di 9 x 3 ELEMENTO: è un cubetto di spigolo pari a una unità di misura; FINITO: l unità di misura si considera indivisibile e quindi individua la classe di precisione con la quale si opera, la discretizzazione del modello. Ogni elemento finito è sistemato con le facce parallele ai piani individuati dalla terna cartesiana scelta per la rappresentazione. O 2 oggetto modellato come di elementi finiti y

10 RELAZIONE TRA MIURE NELLA REALTÀ E NELL IMMAGINE AONOMETRICA La misura nell oggetto reale modellato è trasferita nell immagine assonometrica. In entrambi i casi ci si riferisce ad una sola terna di assi cartesiani. La giacitura di e la direzione dei raggi proiettanti determinano la trasformazione delle misure. GIACITURA DI RIETTO ALLA TERNA CARTEIANA er qualsiasi direzione dei raggi proiettanti si possono fissare i gradi di libertà della giacitura di x 3 rispetto alla terna cartesiana: z O O z 2 y 3 GRADI (può muoversi rispetto a x,y,z): parallelo a nessuno degli assi; 2 GRADI (può muoversi rispetto 2 assi): parallelo ad un asse; a z, verticale, ortogonale al piano orizzontale x,y, detto a x, a y, ortogonale al piano 0 di 9 x y verticale y,z, detto 2

11 O z GRADO (può muoversi rispetto un asse): parallelo ad una coppia di assi; a y, z (ma anche a x, z ) VERTICALE ortogonale al piano orizzontale x,y, detto z x y Il parallelismo (o meno) tra il piano di quadro e gli assi x, y, z (con cui si misurano le coordinate dei punti caratterizzanti l oggetto reale) determina la regola del trasferimento delle misure tra realtà e immagine. In caso di parallelismo tra quadro e asse la misura nell immagine è uguale a quella della realtà. In caso di non parallelismo, la misura si trasforma in funzione della giacitura del quadro e della direzione dei raggi proiettanti rispetto al quadro. MONOMETRICITÀ: x O y a x, y ORIZZONTALE ortogonale al piano orizzontale x,y, detto OLA REGOLA DI TRAFORMAZIONE valida su tutti e tre gli assi; di 9 DIMETRICITÀ: TRIMETRICITÀ: 2 REGOLE DI TRAFORMAZIONE una per un asse e l altra per la coppia di assi rimanenti; 3 REGOLE DI TRAFORMAZIONE una per ogni asse.

12 QUADRO RIETTO Le categorie delle posizioni reciproche dei raggi proiettanti e del piano di quadro sono due: RAGGI ERENDICOLARI AL IANO DI QUADRO piano quadro AONOMETRIA ORTOGONALE Monometrica (molto usata) Dimetrica (poco o nulla usata) Trimetrica RAGGI INCLINATI RIETTO AL IANO DI QUADRO piano quadro AONOMETRIA OBLIQUA Monometrica (molto usata) Dimetrica (poco o nulla usata) Trimetrica 2 di 9 (poco o nulla usata) (poco o nulla usata)

13 AONOMETRIA ORTOGONALE NEL CAO DI ARALLELO A NEUN AE DELLA TERNA CARTEIANA C z C z z.v..l..v. O.L. x A Il piano quadro interferisce con, 2 e 3 individuati dalla terna cartesiana. Le tracce di, 2 e 3 con formano un triangolo. In funzione della giacitura di rispetto alla terna cartesiana, il triangolo delle tracce è:. EQUILATERO.O. O=O B y assonometria ortogonale monometrica x A x O.O. O B y y 2. IOCELE assonometria ortogonale dimetrica 3 di 9 3. CALENO assonometria ortogonale trimetrica

14 AONOMETRIA ORTOGONALE MONOMETRICA x I AONOMETRIA ORTOGONALE DIMETRICA z I ul piano quadro si hanno:. TRIANGOLO DELLE TRACCE IOCELE 2. DUE ANGOLI UGUALI tra le proiezioni degli assi cartesiani 3. COEFFICIENTE DI TRAFORMAZIONE DELLE MIURE UGUALE ER UNA COIA DI AI 20 y I ul piano quadro si hanno:. TRIANGOLO DELLE TRACCE EQUILATERO 2. TRE ANGOLI UGUALI ( ) tra le proiezioni degli assi cartesiani 3. COEFFICIENTE DI TRAFORMAZIONE DELLE MIURE UGUALE ER TUTTI GLI AI (0.86 approssimato a ) AONOMETRIA ORTOGONALE TRIMETRICA ul piano quadro si hanno:. TRIANGOLO DELLE TRACCE CALENO 2. TRE ANGOLI DIFFERENTI tra le proiezioni degli assi cartesiani 3. COEFFICIENTE DI TRAFORMAZIONE DELLE MIURE DIVERO ER OGNI AE 4 di 9

15 AONOMETRIA OBLIQUA Nelle assonometrie oblique il piano quadro può essere disposto rispetto alla terna cartesiana in posizione: genericamente obliqua LE AONOMETRIE ONO CAUALI NELLA FORMA E NELLA (poco verosimili) parallela a uno degli assi parallela a una coppia di assi AONOMETRIA OBLIQUA A ROETTO INDEFORMAT0 il piano quadro è posto ARALLELAMENTE AD UNO DEI IANI DI RIFERIMENTO VERTICALI 2 3 Monometrica vera Monometrica convenzionale Dimetrica cavaliera AONOMETRIA OBLIQUA A IANTA INDEFORMATA il piano quadro è posto ARALLELAMENTE AL IANO ORIZZONTALE Monometrica Rapida Dimetrica militare 5 di 9

16 AONOMETRIA OBLIQUA A ROETTO INDEFORMATO AONOMETRIA OBLIQUA A IANTA INDEFORMATA il piano quadro è posto ARALLELAMENTE AD UNO DEI IANI DI RIFERIMENTO VERTICALI il piano quadro è posto ARALLELAMENTE AL IANO ORIZZONTALE 2 o 3 z.v. z x.o. Qualunque sia l inclinazione del fascio di raggi proiettanti, tutti gli elementi presenti su 2 o 3, o su piani paralleli a questi, NON UBICONO DEFORMAZIONI NÉ ULLE.L. y.v..o. Qualunque sia l inclinazione del fascio di raggi proiettanti, tutti gli elementi presenti su, o su piani paralleli a questo, NON UBICONO DEFORMAZIONI NÉ ULLE.L. x y MIURE LINEARI, NÉ ULLE MIURE MIURE LINEARI, NÉ ULLE MIURE ANGOLARI. ANGOLARI. 6 di 9

17 AONOMETRIE QUALIAI 7 di 9 AONOMETRIA OBLIQUA ARALLELO A UNA COIA DI AI ARALLELO A XY assonometria obliqua a pianta indeformata ARALLELO A ZY assonometria obliqua a prospetto indeformato MONOMETRICA VERA MONOMETRICA CONVENZIONALE DIMETRICA MILITARE MONOMETRICA RAIDA DIMETRICA CAVALIERA

18 AONOMETRIA OBLIQUA Z MONOMETRICA VERA x O 90 y 8 di 9 ARALLELO A UNA COIA DI AI ARALLELO A XY assonometria obliqua a pianta indeformata ARALLELO A ZY assonometria obliqua a prospetto indeformato MONOMETRICA CONVENZIONALE DIMETRICA MILITARE MONOMETRICA RAIDA DIMETRICA CAVALIERA x x x O O Z 2/3 Z 20 O 90 Z y y y

19 Tino Bertoldo, Tecnica grafica, Edizioni Atlas, Bergamo, 989. Maurizio Bocconcino, Anna Osello, Chiara Vernizzi, Disegno e l'ingegnere (il) disegno e geometria. rinciples of engineering drawings, Levrotto & Bella, Torino, Normativa UNI 9 di 9

Il disegno spiega su una superficie piana un oggetto tridimensionale

Il disegno spiega su una superficie piana un oggetto tridimensionale Università degli Studi Laboratorio Di Disegno -- dl..e.g.a. Prof. A. Petino Annotazioni er gli studenti Il disegno siega su una suerficie iana un oggetto tridimensionale Differenti modi di raresentare

Dettagli

Proiezioni Assonometriche

Proiezioni Assonometriche Sistemi di Rappresentazione Proiezioni Assonometriche prof. Denis Benasciutti denis.benasciutti@unife.it A.A. 017/018 Classificazione dei sistemi di rappresentazione I metodi di proiezione sono definiti

Dettagli

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario

PREREQUISITI. Rette e piani (parallelismo, perpendicolarità, incidenza) Proiezioni ortogonali Componenti Direzione Seno, coseno e tangente Glossario Appunti corso di Fisica, Facoltà di Agraria, Docente Ing. Francesca Todisco REREQUISITI Rette e piani (parallelismo, perpendicolarità, incidenza) roiezioni ortogonali Componenti Direzione Seno, coseno

Dettagli

ASSONOMETRIA E PROSPETTIVA

ASSONOMETRIA E PROSPETTIVA ASSONOMETRIA E PROSPETTIVA 2 Assonometria: trasformazione di uno spazio vettoriale a tre dimensioni in uno a due, in modo che i raggi di proiezione siano paralleli tra loro. Prospettiva: trasformazione

Dettagli

COMUNICAZIONE N.14 DEL

COMUNICAZIONE N.14 DEL COMUNICAZIONE N.14 DEL 13.03.20131 1- SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (13): ESEMPI 109-116 2 - TERZO MODULO - DISEGNI A MANO LIBERA (10): DISEGNI 91-100 I disegni di questa sezione

Dettagli

L P R P OIEZI Z ONI N A S A S S O S NO N METRICHE

L P R P OIEZI Z ONI N A S A S S O S NO N METRICHE LE PROIEZIONI ASSONOMETRICHE La proiezione assonometrica fa parte delle proiezioni parallele, o cilindriche. Essa è caratterizzata quindi dall avere il centro di proiezione all infinito (S ), per cui è

Dettagli

Università degli Studi di Catania

Università degli Studi di Catania Università degli Studi di Catania Dipartimento di Ingegneria Industriale e Meccanica Corso di Laurea in Ingegneria Elettrica CORSO DI: Laboratorio di Disegno per l'ingegneria Elettrica Anno Accademico

Dettagli

Proiezioni. IUAV Disegno digitale. Camillo Trevisan

Proiezioni. IUAV Disegno digitale. Camillo Trevisan Proiezioni IUAV Disegno digitale Camillo Trevisan IUAV Disegno digitale - Proiezioni 2 Segmenti reali appartenenti al Quadro non sono scorciati in prospettiva; Segmenti paralleli al Quadro mantengono la

Dettagli

M to t d o i d d i d p ro r i o ezion o e n. c rr r i r spo p ndenza z b univo v ca ope p ra r zi z oni d i p r p o r iezi z one e s ezi z one

M to t d o i d d i d p ro r i o ezion o e n. c rr r i r spo p ndenza z b univo v ca ope p ra r zi z oni d i p r p o r iezi z one e s ezi z one Metodi di proiezione. I sistemi di rappresentazione geometrica consentono di rappresentare un oggetto tridimensionale su un piano bidimensionale, mediante un immagine che abbia con l oggetto originale

Dettagli

Proiezioni. IUAV Laboratorio Multimedia. Camillo Trevisan

Proiezioni. IUAV Laboratorio Multimedia. Camillo Trevisan Proiezioni IUAV Laboratorio Multimedia Camillo Trevisan IUAV Laboratorio Multimedia Camillo Trevisan Proiezioni 2 Segmenti reali appartenenti al Quadro non sono scorciati in prospettiva; Segmenti paralleli

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria A.A. 2009/10

UNIVERSITÀ DEGLI STUDI DI PADOVA Facoltà di Ingegneria A.A. 2009/10 UNIVERSITÀ DEGLI STUDI DI PDOV Facoltà di Ingegneria Corso di Disegno Tecnico Industriale per i Corsi di Laurea triennale in Ingegneria Meccanica e in Ingegneria dell Energia Costruzioni geometriche in

Dettagli

tecniche di simulazione del paesaggio _ fabio bianconi / 2004_2005 Per v edere questa immagine occorre QuickTime e un decompressore Photo - JPEG.

tecniche di simulazione del paesaggio _ fabio bianconi / 2004_2005 Per v edere questa immagine occorre QuickTime e un decompressore Photo - JPEG. tecniche di simulazione del paesaggio _ fabio bianconi / 2004_2005 Per v edere questa immagine occorre QuickTime e un decompressore Photo - JPEG. Il Progetto è un insieme di documenti che DESCRIVONO RAPPRESENTANO

Dettagli

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva

Corso di Laurea in Scienze dell Architettura. Corso di Fondamenti e Applicazioni di Geometria Descrittiva Università degli Studi di Roma Facoltà di Architettura Ludovico Quaroni - AA 2014-2015 Corso di Laurea in Scienze dell Architettura Corso di Fondamenti e Applicazioni di Geometria Descrittiva Riccardo

Dettagli

SISTEMI DI RAPPRESENTAZIONE LE PROIEZIONI ASSONOMETRICHE

SISTEMI DI RAPPRESENTAZIONE LE PROIEZIONI ASSONOMETRICHE SISTEMI DI RAPPRESENTAZIONE LE PROIEZIONI ASSONOMETRICHE METODI DI PROIEZIONE Le proiezioni si distinguono in 2 grandi gruppi, che si differenziano per la posizione del centro di proiezione: - le Proiezioni

Dettagli

ASSONOMETRIA O PROIEZIONE ASSONOMETRICA

ASSONOMETRIA O PROIEZIONE ASSONOMETRICA ASSONOMETRIA O PROIEZIONE ASSONOMETRICA Il termine proviene dal greco áxon = asse e métron = misura, cioè misura in base agli assi. È un metodo di grafica tra:ato dalla geometria descri;va. Fu introdo:a

Dettagli

Comunicazione 8 del 26 novembre 2014 *

Comunicazione 8 del 26 novembre 2014 * Università degli Studi Mediterranea di Reggio Calabria Dipartimento di Architettura e Territorio Corso di Laurea Magistrale in Architettura A.A. 2014-2015 - primo semestre Corso di Fondamenti della Rappresentazione

Dettagli

(Dagli scritti seicenteschi Exercitationes Geometrical del matematico Bonaventura Francesco Cavalieri)

(Dagli scritti seicenteschi Exercitationes Geometrical del matematico Bonaventura Francesco Cavalieri) Disegno Tecnico Proiezioni Ortogonali, Assonometria, Prospettiva. Una retta è composta da punti come un rasario da grani. Un piano è composto da rette come una stoffa da fili. Un volume è composto da aree

Dettagli

CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 3 ASSONOMETRIE

CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 3 ASSONOMETRIE PERCORSI ABILITANTI SPECIALI (PAS) - A.A. 2013-2014 UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE (DICI) CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 3 ASSONOMETRIE 1 il metodo delle

Dettagli

Rappresentazione di figure solide Unità 3

Rappresentazione di figure solide Unità 3 NOTA BENE: Questa unità è riservata al Liceo Artistico. OBIETTIVI INTERMEDI DI APPRENDIMENTO (I numeri e le lettere indicate a fianco contrassegnano le conoscenze, le abilità finali specifiche e quelle

Dettagli

Abilità Informatiche. Lezione III. Metodi di rappresentazione. Lo spazio carta. arch. Gabriella Rendina

Abilità Informatiche. Lezione III. Metodi di rappresentazione. Lo spazio carta. arch. Gabriella Rendina Abilità Informatiche Lezione III Metodi di rappresentazione Lo spazio carta arch. Gabriella Rendina Assonometria Obliqua Quando il centro di proiezione assonometrico assume una posizione che non è né parallela

Dettagli

Programmazione finale della classe IIA Discipline Geometriche a.s

Programmazione finale della classe IIA Discipline Geometriche a.s Programmazione finale della classe IIA Discipline Geometriche a.s. 2012-13 Il programma di Disegno Geometrico è stato svolto in due ambiti: quello teorico che - dall analisi dei segni convenzionali, degli

Dettagli

Rappresentazione grafica delle ombre delle figure disegnate

Rappresentazione grafica delle ombre delle figure disegnate Rappresentazione grafica delle ombre delle figure disegnate BERTOLDO T. E., Tecnica grafica. I - II tomo. Istituto Italiano Edizioni Atlas (Biblioteca Architettura ) Teoria delle ombre applicata alle proiezioni

Dettagli

Programmazione finale classe II L B a.s. 2015/2016 Materia: Discipline Geometriche Docente: Antonio Caputo

Programmazione finale classe II L B a.s. 2015/2016 Materia: Discipline Geometriche Docente: Antonio Caputo 1. MODULI DISCIPLINARI PERIODO / DURATA Modulo n. 1 Proiezioni Ortogonali - Approfondimento U.D. Introduttiva - Il ripasso del sistema di rappresentazione studiato nell anno scolastico precedente: le proiezioni

Dettagli

Dalle Proiezioni Ortogonali all Assonometria

Dalle Proiezioni Ortogonali all Assonometria Dalle Proiezioni Ortogonali all Assonometria Il metodo delle PO fornisce una rappresentazione competa degli oggetti scomposta in più viste, ma non dà una visione unitaria degli oggetti. L assonometria

Dettagli

Programmazione finale classe II L A a.s. 2015/2016 Materia: Discipline Geometriche Docente: Antonio Caputo

Programmazione finale classe II L A a.s. 2015/2016 Materia: Discipline Geometriche Docente: Antonio Caputo 1. MODULI DISCIPLINARI PERIODO / DURATA Modulo n. 1 Proiezioni Ortogonali - Approfondimento U.D. Introduttiva - Il ripasso del sistema di rappresentazione studiato nell anno scolastico precedente: le proiezioni

Dettagli

PROIEZIONI ASSONOMETRICHE E PROIEZIONI ORTOGONALI

PROIEZIONI ASSONOMETRICHE E PROIEZIONI ORTOGONALI PROIEZIONI ASSONOMETRICHE E PROIEZIONI ORTOGONALI Le Proiezioni Assonometriche (o Assonometrie), costituiscono un metodo sintetico del disegno tecnico che permette di avere una visione generale di un oggetto

Dettagli

dello spazio architettonico. Assonometria e prospettiva, Napoli,

dello spazio architettonico. Assonometria e prospettiva, Napoli, PROIEZIONE PARALLELA Riferimento spaziale e riferimento piano; Costruzione dell assonometria obliqua cavaliera con l omologia di ribaltamento; Assonometria obliqua cavaliera militare; Applicazioni grafiche.

Dettagli

gino copelli lezioni di scienza della rappresentazione appunti 2012

gino copelli lezioni di scienza della rappresentazione appunti 2012 gino copelli lezioni di scienza della rappresentazione appunti 2012 Simbologia Il punto, la linea e la superficie sono enti geometrici fondamentali. I punti si indicano con lettere maiuscole dell alfabeto

Dettagli

UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM

UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM Esercitazione n. 1 da eseguire a mano libera SCRITTURA, NOMENCLATURA E CONVENZIONI GRAFICHE ELEMENTARI A. Inserire nella tavola un prova di scrittura, e la nomenclatura degli enti Fondamentali 1. Asse

Dettagli

UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM

UNIVERSITÀ DEGLI STUDI DI CASSINO - DICeM Esercitazione n. 1 da eseguire a mano libera SCRITTURA, NOMENCLATURA E CONVENZIONI GRAFICHE ELEMENTARI A. Inserire nella tavola un prova di scrittura, e la nomenclatura degli enti Fondamentali 1. Asse

Dettagli

Corso di Fondamenti e Applicazioni di Geometria Descrittiva b

Corso di Fondamenti e Applicazioni di Geometria Descrittiva b http://host.uniroma3.it/docenti/canciani/ Corso di Fondamenti e Applicazioni di Geometria Descrittiva b A.A. 2012-2013 Prof. M. Canciani, Arch. V. Gori 1 Proiettare.. 2/22 3 4/22 5/22 6/22 Albrecht Dürer,

Dettagli

PROIEZIONI ASSONOMETRICHE

PROIEZIONI ASSONOMETRICHE 1 ci permettono di disegnare un solido, che ha 3 dimensioni, su un foglio che ha 2 dimensioni PROIEZIONI ORTOGONALI PROIEZIONI ASSONOMETRICHE PROIEZIONI PROSPETTICHE Libro consigliato: Disegno Laboratorio

Dettagli

PROGRAMMAZIONE Anno scolastico Classe 1 A. Prof. Antonio Caffarella DISCIPLINE GEOMETRICHE OBIETTIVI DIDATTICO EDUCATIVI

PROGRAMMAZIONE Anno scolastico Classe 1 A. Prof. Antonio Caffarella DISCIPLINE GEOMETRICHE OBIETTIVI DIDATTICO EDUCATIVI PROGRAMMAZIONE Anno scolastico 2016-2017 Classe 1 A Prof. Antonio Caffarella DISCIPLINE GEOMETRICHE OBIETTIVI DIDATTICO EDUCATIVI Una qualsiasi situazione scolastica può diventare situazione di apprendimento

Dettagli

MODULO DI DISEGNO C.D.L. INGEGNERIA CIVILE, AMBIENTALE E EDILE

MODULO DI DISEGNO C.D.L. INGEGNERIA CIVILE, AMBIENTALE E EDILE MODULO DI DISEGNO C.D.L. INGEGNERIA CIVILE, AMBIENTALE E EDILE PROVA GRAFICA DEL 13/01/2014 ESERCIZIO 1/2 Disegnare, in I e II proiezione ortogonale, un quadrato, ABCD, appartenente ad un piano verticale

Dettagli

TUTORIAL SULLE ASSONOMETRIE

TUTORIAL SULLE ASSONOMETRIE TUTORIAL SULLE ASSONOMETRIE 1 Le viste assonometriche Le viste assonometriche si basano sulla proiezione parallela di un oggetto tridimensionale con la direzione di un punto improprio, detto centro di

Dettagli

DISEGNO E RAPPRESENTAZIONE

DISEGNO E RAPPRESENTAZIONE 29. Osservando la sezione longitudinale dell Auditorium di Ibirapuera costruito da Oscar Niemeyer a San Paolo nel 2005, qual è la corretta disposizione dei piani verticali per ottenere le sezioni trasversali

Dettagli

Metodi di Proiezione

Metodi di Proiezione Metodi di Proiezione A cosa servono le proiezioni? I mondo reale è 3D, ma i supporti (carta, schermo, etc.. ) sono bi-dimensionali! La storia Il problema della rappresentazione su un piano di oggetti tridimensionali

Dettagli

Corso multimediale di matematica

Corso multimediale di matematica 2006 GEOMETRIA ANALITICA Il piano cartesiano rof. Calogero Contrino iano cartesiano Su un piano, si considerino due rette incidenti, sulle quali siano fissati due sistemi di ascisse. Si trasli una delle

Dettagli

COMUNICAZIONE N.15 DEL

COMUNICAZIONE N.15 DEL COMUNICAZIONE N.15 DEL 16.03.2011 1 1 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (14): ESEMPI 129-133. USO DELL'ASSONOMETRIA NEL DISEGNO DI ARCHITETTURA - CENNI STORICI 2 - QUARTO MODULO

Dettagli

LE PROIEZIONI ASSONOMETRICHE

LE PROIEZIONI ASSONOMETRICHE La rappresentazione assonometrica si basa sulla proiezione di un ogge0o tridimensionale da un centro di proiezione posto all infinito (centro improprio) sopra un piano di rappresentazione quadro (= foglio)

Dettagli

CAP 5: INTRODUZIONE ALLA GEOMETRIA DESCRITTIVA

CAP 5: INTRODUZIONE ALLA GEOMETRIA DESCRITTIVA CAP 5: INTRODUZIONE ALLA GEOMETRIA DESCRITTIVA Non deve essere sottovalutata l importanza del disegno nella nostra civiltà caratterizzata dalla tecnica e dall immagine, perché esso rappresenta il primo

Dettagli

Teoria delle ombre in prospettiva

Teoria delle ombre in prospettiva Teoria delle ombre in prospettiva A p p r o f o n d i m e n t o APPROFONDIMENTO Teoria delle ombre in prospettiva Ombre in prospettiva Nella determinazione delle ombre in prospettiva si possono presentare

Dettagli

LA SUA PROIEZIONE ORTOGONALE E SEMPRE UGUALE AD ESSA

LA SUA PROIEZIONE ORTOGONALE E SEMPRE UGUALE AD ESSA PROIEZIONI ORTOGONALI DI FIGURE PIANE Per figura piana si intende una parte di piano delimitata da una linea chiusa. Poiché questo contorno è riconducibile ad un insieme di punti, si può ottenere la proiezione

Dettagli

LA RETTA NEL PIANO CARTESIANO

LA RETTA NEL PIANO CARTESIANO LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;

Dettagli

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali

Dettagli

(Dagli scritti seicenteschi Exercitationes Geometrical del matematico Bonaventura Francesco Cavalieri)

(Dagli scritti seicenteschi Exercitationes Geometrical del matematico Bonaventura Francesco Cavalieri) Disegno Tecnico Proiezioni Ortogonali, Assonometria, Prospettiva. Una retta è composta da punti come un rasario da grani. Un piano è composto da rette come una stoffa da fili. Un volume è composto da aree

Dettagli

Comunicazione 4 del 6 novembre 2013 *

Comunicazione 4 del 6 novembre 2013 * Università degli Studi Mediterranea di Reggio Calabria Dipartimento di Architettura e Territorio Corso di studio in Architettura Quinquennale A.A. 2013-2014 - primo semestre Corso di Fondamenti della Rappresentazione

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

GEOMETRIA ANALITICA Prof. Erasmo Modica

GEOMETRIA ANALITICA Prof. Erasmo Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

FONDAMENTI ED APPLICAZIONI DELLA GEOMETRIA DESCRITTIVA

FONDAMENTI ED APPLICAZIONI DELLA GEOMETRIA DESCRITTIVA BARBARA ATERJNI APPUNTI DALLE LEZIONI DEL CORSO DI FONDAMENTI ED APPLICAZIONI DELLA GEOMETRIA DESCRITTIVA IUAV - VENEZIA AREA SERV. BIBLIOGRAFICI E DOCUMENTALI H 8829 BIBLIOTECA CENTRALE _... hl IUAV -

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Soluzioni. 1. Disegnare il grafico della funzione f : R 2 R, nei casi:

Soluzioni. 1. Disegnare il grafico della funzione f : R 2 R, nei casi: Soluzioni. Disegnare il grafico della funzione f : R 2 R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano (vedi figura). (b) f(, ) = 2.

Dettagli

Superfici e solidi di rotazione. Cilindri indefiniti

Superfici e solidi di rotazione. Cilindri indefiniti Superfici e solidi di rotazione Consideriamo un semipiano α, delimitato da una retta a, e sul semipiano una curva g; facendo ruotare il semipiano in un giro completo attorno alla retta a, la curva g descrive

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

test verifica 05/2010 nome e cognome sono gli elementi geometrici definiti da tre dimensioni e rappresentabili come insieme di punti

test verifica 05/2010 nome e cognome sono gli elementi geometrici definiti da tre dimensioni e rappresentabili come insieme di punti test verifica 05/2010 nome e cognome anno di frequenza indirizzo di studi elementi impropri: sono gli elementi geometrici definiti da tre dimensioni e rappresentabili come insieme di punti sono gli elementi

Dettagli

Disegno di Macchine. corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana

Disegno di Macchine. corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana Disegno di Macchine corso per I anno della laurea in ing. meccanica Docente: ing. Francesca Campana Lezione n 2 Principi di disegno tecnico: Ruolo della normativa Assonometrie Proiezioni Il Disegno Tecnico

Dettagli

Le proiezioni ortogonali

Le proiezioni ortogonali Le proiezioni ortogonali principi generali proiezione di figure geometriche piane proiezioni di solidi geometrici proiezioni di pezzi meccanici principi generali delle proiezioni proiettare per rappresentare

Dettagli

CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 1 METODI DI RAPPRESENTAZIONE

CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 1 METODI DI RAPPRESENTAZIONE PERCORSI ABILITANTI SPECIALI (PAS) - A.A. 2013-2014 UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE (DICI) CORSO DI FONDAMENTI DI DISEGNO TECNICO LEZIONE 1 METODI DI RAPPRESENTAZIONE

Dettagli

GLI ENTI GEOMETRICI NELLO SPAZIO EUCLIDEO

GLI ENTI GEOMETRICI NELLO SPAZIO EUCLIDEO GLI ENTI GEOMETRICI NELLO SPAZIO EUCLIDEO PUNTI Ciò che non ha parte LINEE Linea è ciò che ha lunghezza senza larghezza Estremi di una linea sono punti RETTE Ciò che giace uniformemente rispetto ai suoi

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13

Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano

Dettagli

La pianta 1. Rilievo Le regole della rappresentazione grafica Geometria descrittiva rappresentare un oggetto su un piano bidimensionale Concetti base proiezione e sezione Tipologia delle rappresentazioni

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

Applicazioni ed esercitazioni

Applicazioni ed esercitazioni Applicazioni ed esercitazioni Università Mediterranea di Reggio Calabria Facoltà di Architettura Corso di DISEGNO Modulo 1 Prof. Franco Prampolini Unità didattica n. 5 Fondamenti di Geometria Descrittiva

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

Presentazione del corso

Presentazione del corso Presentazione del corso Il nuovo corso Idea segno e progetto intende rispondere alle nuove esigenze formative e didattiche Interne alla disciplina proponendosi alcuni obiettivi: Favorire un utilizzo flessibile

Dettagli

PROGRAMMA SVOLTO DI TECNOLOGIA E TECNICHE DI RAPPRESENTAZIONE GRAFICA I.I.S.S. VOLTA CLASSE 1 A ANNO SCOLASTICO

PROGRAMMA SVOLTO DI TECNOLOGIA E TECNICHE DI RAPPRESENTAZIONE GRAFICA I.I.S.S. VOLTA CLASSE 1 A ANNO SCOLASTICO PROGRAMMA SVOLTO DI TECNOLOGIA E TECNICHE DI RAPPRESENTAZIONE GRAFICA I.I.S.S. VOLTA Prof.ssa Ester SANTELLA CLASSE 1 A ANNO SCOLASTICO 2015-2016 MODULO 1 - La Geometria Piana o Gli strumenti per il disegno

Dettagli

Indice. Parte prima Metodi. XI Gli autori

Indice. Parte prima Metodi. XI Gli autori XI Gli autori XIII Prefazione Parte prima Metodi 5 Capitolo 1 Elementi di geometria proiettiva 5 1.1 Gli enti geometrici 6 1.2 Convenzioni 7 1.3 L operazione di proiezione 9 1.4 L ampliamento proiettivo

Dettagli

Introduzione al Disegno Tecnico Metodi di Rappresentazione

Introduzione al Disegno Tecnico Metodi di Rappresentazione Knowledge Aided Engineering Manufacturing and Related Technologies Laboratorio del Disegno Introduzione al Disegno Tecnico Metodi di Rappresentazione Politecnico di MILANO 1... in questa lezione... il

Dettagli

ASSONOMETRIA OBLIQUA MILITARE Esempio di rappresentazione

ASSONOMETRIA OBLIQUA MILITARE Esempio di rappresentazione Università Sapienza di Roma, Facoltà di Architettura Corso di laurea in Gestione del processo edilizio Project Management, a.a. 2014-2015 Corso di Disegno tecnico e automatico Docente: Arch. Jessica Romor

Dettagli

Fondamenti e applicazioni di geometria descrittiva

Fondamenti e applicazioni di geometria descrittiva Le ombre La teoria delle ombre si basa sull'ormai noto concetto di proiezione: in questo caso il centro di proiezione è la sorgente luminosa (il sole o la lampadina) da cui si dipartono i raggi luminosi

Dettagli

Verifica finale MODULO D. Esercizio 16. fig. 5

Verifica finale MODULO D. Esercizio 16. fig. 5 l l h III PRESENTAZIONE Questa quarta edizione ampliata di Spazio Immagini condivide i tratti essenziali del progetto originario, conservati nelle diverse edizioni dell opera: la concezione della geometria

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

INTRODUZIONE AL DISEGNO TECNICO METODI DI RAPPRESENTAZIONE. Ing. Davide Russo Dipartimento di Ingegneria Industriale

INTRODUZIONE AL DISEGNO TECNICO METODI DI RAPPRESENTAZIONE. Ing. Davide Russo Dipartimento di Ingegneria Industriale INTRODUZIONE AL DISEGNO TECNICO METODI DI RAPPRESENTAZIONE Ing. Davide Russo Dipartimento di Ingegneria Industriale ... IN QUESTA LEZIONE... il Disegno Tecnico ruolo tipologia Normazione (cenni) Metodi

Dettagli

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo)

Calcolo vettoriale. Versore: vettore u adimensionale di modulo unitario (rapporto tra un vettore e il suo modulo) Grandezze scalari: caratterizzate da un valore numerico in una unità di misura scelta (ex: massa, temperatura, ecc) Grandezze vettoriali: oltre al valore numerico necessitano della definizione di una direzione

Dettagli

La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : ax + by + c = 0 ( 1 ) Forma implicita

La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : ax + by + c = 0 ( 1 ) Forma implicita Prof. Marco La Fata La Retta nel piano Cartesiano La retta nel piano cartesiano è rappresentata da un'equazione di primo grado a due incognite del tipo : a + b + c = 0 ( ) Forma implicita Questa è in forma

Dettagli

Il valore assoluto (lunghezza, intensita )

Il valore assoluto (lunghezza, intensita ) Il valore assoluto (lunghezza, intensita ) = se 0 - se < 0 = 5 5-0, = 0 3, = 3 Il valore assoluto di un numero reale è quindi sempre un numero positivo. Geometricamente rappresenta la misura della distanza

Dettagli

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte. Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:

Dettagli

LEZIONE 2 TEORIA DELLE OMBRE

LEZIONE 2 TEORIA DELLE OMBRE TIROCINIO FORMATIVO ATTIVO (TFA) - A.A. 2014 2015 DISEGNO TECNICO EDILE UNIVERSITÀ DI PISA LEZIONE 2 1 non abbiate mai paura dell ombra... è lì a significare che vicino, da qualche parte, c è una luce

Dettagli

TIPI DI LINEA E LORO APPLICAZIONI

TIPI DI LINEA E LORO APPLICAZIONI TIPI DI LINEA E LORO APPLICAZIONI Tipo di Linea Descrizione Applicazione A B D E Continua grossa Continua fine Continua fine irregolare Tratteggiata grossa Contorni e spigoli in vista Linee di costruzione

Dettagli

DISEGNO PROSPETTICO CAPITOLO 1 METODI DI RAPPRESENTAZIONE PER IL DISEGNO TECNICO: QUADRO GENERALE PROIEZIONI ORTOGRAFICHE PROIEZIONI ASSONOMETRICHE

DISEGNO PROSPETTICO CAPITOLO 1 METODI DI RAPPRESENTAZIONE PER IL DISEGNO TECNICO: QUADRO GENERALE PROIEZIONI ORTOGRAFICHE PROIEZIONI ASSONOMETRICHE CAPITOLO DISEGNO PROSPETTICO METODI DI RAPPRESENTAZIONE PER IL DISEGNO TECNICO: QUADRO GENERALE La norma UNI EN ISO 0209-2 raccoglie i principali metodi di rappresentazione raccomandati per il disegno

Dettagli

LE COORDINATE CARTESIANE

LE COORDINATE CARTESIANE CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

FORMULE per la rappresentazione assonometrica della sfera e delle sue sezioni piane. 1 PREMESSE e convenzioni.

FORMULE per la rappresentazione assonometrica della sfera e delle sue sezioni piane. 1 PREMESSE e convenzioni. Paolo Uccello. Studio prospettico. Galleria degli Uffizi, Firenze. FORMULE per la rappresentazione assonometrica della sfera e delle sue sezioni piane. 1 PREMESSE e convenzioni. È dato nello spazio un

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

PROIEZIONI ORTOGONALI NEL DISEGNO TECNICO

PROIEZIONI ORTOGONALI NEL DISEGNO TECNICO CdL in INGEGNERIA DELLE TECNOLOGIE PER LA SALUTE PROIEZIONI ORTOGONALI NEL DISEGNO TECNICO Prof. Daniele Regazzoni University of Bergamo Department of Management, Information and Production Engineering...

Dettagli

CORSO DI DISEGNO TECNICO EDILE LEZIONE 2 TEORIA DELLE OMBRE

CORSO DI DISEGNO TECNICO EDILE LEZIONE 2 TEORIA DELLE OMBRE PERCORSI ABILITANTI SPECIALI (PAS) - A.A. 2013-2014 UNIVERSITÀ DI PISA DIPARTIMENTO DI INGEGNERIA CIVILE E INDUSTRIALE (DICI) CORSO DI DISEGNO TECNICO EDILE LEZIONE 2 TEORIA DELLE OMBRE 1 non abbiate mai

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Cerchio di Mohr. n y. n x

Cerchio di Mohr. n y. n x t nm m t n P n s n Sia P un punto generico del continuo e z una generica retta passante per esso. Fissato un riferimento cartesiano {,, z}, siano n=[n n 0] T ed m=[m m 0] T due versori ortogonali nel piano

Dettagli

Elementi di Disegno Tecnico A

Elementi di Disegno Tecnico A docente: Giuseppe Modica A.A. 2007-2008 Elementi di Disegno Tecnico A Corsi di Disegno tecnico e Strumenti di analisi del territorio Laboratorio di progettazione e Disegno tecnico computerizzato 1 Disegno

Dettagli

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non Primo esonero di GEOMETRIA 3 - C. L. Matematica 22 Novembre 2013 1. Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non singolare ( ) α 2. 1 0 (a) Si determini, al variare del

Dettagli

Programmazione annuale classe 1 B materia: A018 Discipline Geometriche, Architettoniche e Arredamento Prof- Ricciardi Riccardo

Programmazione annuale classe 1 B materia: A018 Discipline Geometriche, Architettoniche e Arredamento Prof- Ricciardi Riccardo 1 PROGRAMMA ANNUALE C l a s s e 1 a B - A. S. 2 0 1 3-2014 materia: A018 DISCIPLINE GEOMETRICHE, ARCHITETTONICHE E ARREDAMENTO a) ANALISI DELLA SITUAZIONE INIZIALE Motivazione: Conoscenza della classe

Dettagli

Compenetrazione di solidi e intersezioni

Compenetrazione di solidi e intersezioni Compenetrazione di solidi e intersezioni prof. Denis Benasciutti denis.benasciutti@unife.it A.A. 2017/2018 1 Introduzione Nel disegno di componenti meccanici spesso è necessario determinare la linea di

Dettagli

Nome file 2007_2008_dis_tecnico Ultima revisione 10/02/2008

Nome file 2007_2008_dis_tecnico Ultima revisione 10/02/2008 PROIEZIONI ORTOGONALI IN SINTESI I sistemi di rappresentazione si classificano in funzione della posizione della sorgente S rispetto al piano π. Se S è posto a distanza infinita si avranno proiezioni parallele

Dettagli

Coordinate e Sistemi di Riferimento

Coordinate e Sistemi di Riferimento Coordinate e Sistemi di Riferimento Sistemi di riferimento Quando vogliamo approcciare un problema per risolverlo quantitativamente, dobbiamo per prima cosa stabilire in che sistema di riferimento vogliamo

Dettagli

COMUNICAZIONE N.17 DEL

COMUNICAZIONE N.17 DEL COMUNICAZIONE N.17 DEL 03.04.20131 1- SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (16): ESEMPI 134-143 2 - QUARTO MODULO - CLASSICI MODERNI E CONTEMPORANEI (15): REM KOOLHAAS, VILLA DALL'AVA,

Dettagli

PROIEZIONI ASSONOMETRICHE

PROIEZIONI ASSONOMETRICHE 1 ci permettono di disegnare un solido, che ha 3 dimensioni, su un foglio che ha 2 dimensioni PROIEZIONI ORTOGONALI PROIEZIONI ASSONOMETRICHE PROIEZIONI PROSPETTICHE Libro consigliato: Disegno Laboratorio

Dettagli

Definizioni e concetti fondamentali

Definizioni e concetti fondamentali Definizioni e concetti fondamentali Università Mediterranea di Reggio Calabria Facoltà di Architettura Corso di DISEGNO 1 2011-2012 Prof. Franco Prampolini Unità didattica n. 3 Fondamenti di Geometria

Dettagli