Anno 5. Applicazione del calcolo degli integrali definiti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Anno 5. Applicazione del calcolo degli integrali definiti"

Transcript

1 Anno 5 Appliczione del clcolo degli integrli definiti 1

2 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei solidi di rotzione e risolvere dei prolemi di fisic. Al termine dell lezione sri in grdo di pplicre le procedure di clcolo dell integrzione definit : clcolo delle ree clcolo dei volumi dei solidi di rotzione prolemi di fisic In quest lezione vedremo come utilizzre il clcolo dell integrle definito per determinre le ree dei sottogrfici di lcune funzioni, i volumi di determinti solidi di rotzione e l soluzione di lcuni prolemi fisici. Al termine dell lezione sri in grdo di pplicre le procedure di clcolo dell'integrzione definit l clcolo delle ree, l clcolo dei volumi dei solidi di rotzione e prolemi di fisic. 2

3 Are delle figure pine f(x) positiv o null nell intervllo [,] f(x) negtiv nell intervllo [,] f x) ( è l re del trpezoide sottostnte l curv nell intervllo [,]. f x) ( è l re compres tr l curv e l sse delle x nell intervllo [,]. Per clcolre l re dell prte di pino compres tr il grfico di un funzione f e l sse x nel cso in cui ess si trovi in prte sopr e in prte sotto l sse x, isogn trovre gli intervlli in cui il segno di f è costnte, clcolre gli integrli definiti di f in tli intervlli e poi sommrli. y f + - c x A f ( x) = f ( x) c Inizimo dl clcolo delle ree. Si f(x) un funzione positiv o null in un intervllo [,]. Allor l integrle tr e dell funzione, come visto nelle lezioni precedenti, rppresent l re del trpezoide sottostnte l curv proprio nell intervllo [,]. Cos ccde se l funzione è negtiv? Il suo integrle è un vlore negtivo e quindi isogn cmirne il segno per ottenere il vlore dell re. In definitiv, per clcolre l re dell prte di pino compres tr un curv che rppresent un funzione f e l sse x, nel cso in cui ess si in prte sopr e in prte sotto l sse x, isogn innnzitutto trovre gli intervlli in cui il segno dell funzione è costnte. Poi si deve clcolre seprtmente il vlore degli integrli definiti di f in tli intervlli, ciscuno secondo il proprio segno, e infine sommre i vlori ottenuti. Nel grfico è riportt un funzione che si mntiene positiv nell intervllo ],[ e negtiv in ],c[. L re compres tr il grfico di f e l sse x è trtteggit in rosso per l prte positiv e in gillo per quell negtiv. Il suo vlore srà quindi dto dll integrle dell funzione clcolto tr e più l opposto dell integrle dell stess funzione clcolto tr e c. 3

4 Are delimitt d due funzioni f(x) e g(x) funzioni definite nell intervllo [,] f(x)>g(x) per ogni x in ],[ le funzioni rcchiudono un superficie A. [ f ( x g( x) ] A = ) y y f(x) f(x) A A g(x) g(x) x x Considerimo or due funzioni, f(x) e g(x) definite entrme nello stesso intervllo [,]. Supponimo che l prim funzione si mnteng sempre l di sopr dell second, risultndo mggiore di ess nell intervllo perto ],[ e l più ugule negli estremi. Le due funzioni quindi, con le eventuli rette x= e x=, rcchiudono un superficie A. L re di quest superficie, è fcilmente intuiile, è dt dll integrle tr e dell differenz tr le due funzioni. Inftti l integrle di f(x) dree tutt l superficie compres tr l funzione f(x) e l sse x, mentre l integrle di g(x) dree solo l prte di re l di sotto dell funzione g(x). L loro differenz, è proprio l superficie che cerchimo. Nelle due immgini sottostnti si possono individure due possiili situzioni: nell prim le due funzioni coincidono negli estremi, mentre nell second le funzioni rcchiudono l re con l usilio delle rette verticli x= e x=. In entrmi i csi, l formul per il clcolo dell re è quell indict in quest pgin. 4

5 Volume dei solidi di rotzione Volume di un solido di rotzione Si f(x) un funzione positiv o null definit su [,] e considerimo il trpezoide delimitto d f(x), l sse x e le rette x= e x=. Fcendo ruotre tle trpezoide di un giro completo ttorno ll sse x si ottiene un solido il cui volume è dto d: V = π f 2 ( x). y f(x) x Osservzione: L integrle è l somm di tutte le ree delle circonferenze di rggio f(x) comprese tr e. Spostimo l nostr ttenzione sul clcolo del volume dei solidi di rotzione. Si f(x) un funzione positiv o null definit su [,] e considerimo il trpezoide delimitto d f(x), l sse x e le rette x= e x=. Fcendo ruotre tle trpezoide di un giro completo ttorno ll sse x si ottiene un solido il cui volume è dto dll integrle tr e di f 2 (x) moltiplicto per π. Nell figur possimo vedere l rppresentzione dell costruzione di un solido di rotzione prtire d un funzione f(x). Osservimo che, in effetti, l formul presentt si s su un conseguenz del Principio di Cvlieri. Il volume, inftti, si ottiene dll somm continu di tutte le ree delle vrie circonferenze comprese tr e e di rggio f(x). 5

6 Rotzione ttorno ll sse y Se l rotzione vviene ttorno ll sse y: invertimo l funzione scrivendol come x=f -1 (y) sommimo le ree dei cerchi di rggio f -1 (y) Il volume è dto d: V = π 1 2 [ f ( y) ] dy. Concettulmente non ci llontnimo d qunto detto nell pgin precedente se considerimo l rotzione ttorno ll sse y. In questo cso, però, doimo fre un pssggio intermedio, cioè doimo esprimere l funzione come dipendente d y e quindi doimo ricvre lgericmente l invers. L somm delle ree, stvolt, srà effettut su cerchi di rggio f -1 (y). Il volume, quindi, srà dto dll stess formul dell pgin precedente, dove l posto di f(x) doimo considerre f -1 (y) e l integrzione, ovvimente, dovrà vvenire rispetto ll vriile y, cioè in dy. 6

7 Appliczioni ll fisic: spzio, velocità e ccelerzione Gli integrli trovno molte ppliczioni nell fisic. Appliczione l moto rettilineo: s(t) spzio percorso l tempo t v(t) velocità l tempo t (t) ccelerzione l tempo t v(t)=s (t) (t)=v (t)=s (t) s(t) è un primitiv dell velocità v(t) è un primitiv dell ccelerzione s ( t) v( x) + s( t ) v t = t0 t ( t) ( x) + v( t ) = t0 0 0 L ultim prte dell nostr lezione verterà sulle ppliczioni del clcolo integrle ll fisic. Inizimo con l cinemtic, cioè le relzioni tr spzio, velocità e ccelerzione. Sino rispettivmente s(t), v(t) e (t) spzio percorso, velocità e ccelerzione in un moto rettilineo l tempo t. Dllo studio delle derivte e delle loro ppliczioni dovresti ricordre che l velocità è l derivt dello spzio e che l ccelerzione, in qunto derivt dell velocità, è l derivt second dello spzio. Ne consegue che lo spzio è un primitiv dell velocità, e che quest ultim è un primitiv dell ccelerzione. Pertnto lo spzio percorso l tempo t è dto dllo spzio percorso l tempo t 0 sommto ll integrle tr t e t 0 dell funzione velocità. Anlogmente, l velocità è dt dll velocità inizile sommt ll integrle tr t e t 0 dell funzione ccelerzione. 7

8 Appliczioni ll fisic: il lvoro e l quntità di cric Appliczione l lvoro di un forz: F(x) forz che produce uno spostmento rettilineo d un punto un punto di un rett orientt L lvoro dell forz L = F ( x) Appliczione ll quntità di cric: i(t) intensità di corrente l tempo t q(t) quntità di cric l tempo t i(t)=q (t) Quntità di cric che ttrvers l sezione di conduttore nell intervllo di tempo [t 0,t 1 ]: t1 Q = i t0 ( t) dt Infine, due ltre ppliczioni del clcolo integrle ll fisic sono costituite dl lvoro di un forz e dll quntità di cric. Si F(x) l forz che produce uno spostmento rettilineo d un punto d un punto di un rett orientt e L il lvoro compiuto d tle forz. Poiché il lvoro è dto dl prodotto tr forz e spostmento, dividendo il percorso tr e in tnti spostmenti infinitesimli di mpiezz sui quli l forz si può considerre costnte, si possono sommre tutti i prodotti F(x) tr e fcendo proprio l integrle. Questo ci permette di clcolre il lvoro complessivo L. Pssndo ll quntità di cric, indichimo con i(t) l intensità di corrente l tempo t e con q(t) l quntità di cric sempre l tempo t. Sppimo che l intensità di corrente è dt dll derivt rispetto l tempo dell quntità di cric. Questo ci permette di individure l quntità di cric che ttrvers l sezione di un conduttore in un intervllo di tempo, proprio integrndo sullo stesso intervllo di tempo l funzione intensità di corrente. 8

9 Conclusione Appliczioni del Clcolo Integrle Aree Volume dei solidi di rotzione Fisic Un funzione Più funzioni Cinemtic Lvoro Quntità di cric Ricpitolimo qunto visto in quest lezione sulle ppliczioni del clcolo integrle. Innnzitutto imo visto come l integrle ci permett di clcolre ree delimitte si d un sol funzione e l sse x che d più funzioni. Aimo poi studito le formule che ci permettono di clcolre il volume dei solidi di rotzione, si per rotzioni ttorno ll sse x che per rotzioni ttorno ll sse y. Infine, imo visto come utilizzre gli integrli in ppliczioni fisiche, quli l cinemtic, per trovre spzio percorso e velocità prtire rispettivmente d velocità e ccelerzione, il clcolo del lvoro di un forz e il clcolo dell quntità di cric prtire dll intensità di corrente. 9

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + +

1. In un piano, riferito ad un sistema di assi cartesiani ortogonali (Oxy), sono assegnate le curve di equazione: y ax x b = + + . In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le curve di equzione:, dove, sono prmetri reli con. ) Determinre i vlori di per i quli queste curve hnno un punto di mssimo

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

1 Lavoro sperimentale (di Claudia Sortino)

1 Lavoro sperimentale (di Claudia Sortino) 1 Lvoro sperimentle (di Cludi Sortino) Prtendo d un nlisi epistemologic del prolem, ho preprto un test che ho successivmente proposto due quinte clssi di un istituto industrile. QUESTIONARIO SULL INTEGRAZIONE

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo

Integrali. all integrale definito all integrale indefinito. Integrali: riepilogo Integrli ll integrle deinito ll integrle indeinito Indice dell lezione Integrle Deinito Rettngoloide Integrle deinito come re del rettngoloide Esempi e propriet Primitiv Teorem ondmentle del clcolo integrle

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F(x) è un primitiv di f(x), llor le funzioni F(x) + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(x). Precismente:! se F(x) è un primitiv di f (x), llor nche

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b

IL CONTRIBUTO DEI GRECI. A = b. h. Parallelogramma h. h b Mtemtic per Scienze Nturli, Aree ed integrli 1 IL CONTRIBUTO DEI GRECI h Rettngolo: A =. h h Prllelogrmm A =. h h Tringolo A =!h 2 Poligono come somm di tringoli Cerchio O r A = ". r 2 Mtemtic per Scienze

Dettagli

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se Cpitolo 6 Integrli L opertore derivt D ssoci d un funzione f l su derivt: Df f 0 Ci ciedimo se è possiile invertire quest operzione, vle dire trovre un funzione l cui derivt si un funzione ssegnt Definizione

Dettagli

INTEGRALE DEFINITO di una funzione continua y=f(x) nell intervallo [a ; b]

INTEGRALE DEFINITO di una funzione continua y=f(x) nell intervallo [a ; b] INTEGRALE DEFINITO di un funzione continu y=f(x) nell intervllo [ ; ] f(x)dx= F () F () il risultto e un NUMERO positivo o negtivo significto GEOMETRICO = AREA trpezoide con segno serve per clcolre AREE

Dettagli

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x

Risolvere gli esercizi proposti e rispondere a 4 quesiti scelti all interno del questionario. sin = x Risolvere gli esercizi proposti e rispondere quesiti scelti ll interno del questionrio Clcolre l derivt delle seguenti unzioni cos cos sin sin ( cos ) cos ( cos )( sin ) sin sin cos sin cos ( cos ) ( cos

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte.0 Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Matematica I, Funzione integrale

Matematica I, Funzione integrale Mtemtic I, 24.0.2. Funzione integrle Definizione Sino f : A R, funzione continu su A intervllo, e c in A. L funzione che ssoci d ogni in A l integrle di f sull intervllo [c, ], viene dett funzione integrle

Dettagli

INTEGRALI INDEFINITI

INTEGRALI INDEFINITI INTEGRALI INDEFINITI Se F() è un primitiv di f(), llor le funzioni F() + c, con c numero rele qulsisi, sono tutte e sole le primitive di f(). Precismente:! se F() è un primitiv di f (), llor nche F() +

Dettagli

INTEGRALE DEFINITO di una funzione continua y=f(x) nell intervallo [a ; b]

INTEGRALE DEFINITO di una funzione continua y=f(x) nell intervallo [a ; b] INTEGRALE DEFINITO di un funzione continu y=f(x) nell intervllo [ ; ] f (x)dx = F() F() il risultto e un NUMERO positivo o negtivo + significto GEOMETRICO = AREA con segno serve per clcolre AREE e VOLUMI

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Scuole italiane all estero - Bilingue italo-slovacca 2005

Scuole italiane all estero - Bilingue italo-slovacca 2005 www.mtefili.it Scuole itline ll estero - Bilingue itlo-slovcc 1) E dt l equzione y x + x + c dove i coefficienti,, c sono numeri reli non negtivi. Determinre tli coefficienti spendo che l prol p, che rppresent

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.04) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

Il calcolo letterale

Il calcolo letterale Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre le regole di quello

Dettagli

Il calcolo letterale

Il calcolo letterale Appunti di Mtemtic Il clcolo letterle Finor imo studito gli insiemi numerici espressioni numeriche. Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere e sviluppre

Dettagli

Integrale definito (p.204)

Integrale definito (p.204) Integrle definito (p.4) Trttimo dei cenni sull teori dell integrzione nel cso di funzioni continue (integrle di Cuchy). Gli integrli si estendono l cso di funzioni limitte (integrle di Riemnn). Nel clcolo

Dettagli

09 IL CALCOLO INTEGRALE

09 IL CALCOLO INTEGRALE 9 IL CALCOLO INTEGRALE Il Clcolo integrle h come fine quello di risolvere due prolemi: Prolem (ntiderivzione) Si I un intervllo; dt f : I R, dire se esiste un funzione G derivile in I tle che G ' f. Prolem

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1]

Verica di Matematica su Integrale Denito, Integrazione Numerica e calcolo di aree [1] Veric di Mtemtic su Integrle Denito, Integrzione Numeric e clcolo di ree []. Si consideri il seguente integrle denito: Determinre il vlore estto di I; I = 2 ( e x )dx. il vlore estto dell're A T del trpezoide

Dettagli

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2

ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M ELETTRONICA 2 M BIOFISICA APPLICATA M INFORMATICA 2 858874 - ELETTRONICA E STRUMENTAZIONE PER INDAGINI BIOMEDICHE M-2527 - ELETTRONICA 2 M-2529 - BIOFISICA APPLICATA M-2528 - INFORMATICA 2 Lezione n. 2i Derivt Integrle Numeri complessi Fsore Rppresentzione

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Il calcolo letterale

Il calcolo letterale Progetto Mtemtic in Rete Il clcolo letterle Finor imo studito gli insiemi numerici (espressioni numeriche). Ν, Ζ, Q, R ed operto con numeri In mtemtic però è molto importnte sper operre con le lettere

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Definizione: un equazione si dice razionale o fratta se l incognita compare a denominatore.

Definizione: un equazione si dice razionale o fratta se l incognita compare a denominatore. Il clcolo integrle Integrzione delle unzioni rzionli. Deinizione: un equzione si dice rzionle o rtt se l incognit compre denomintore. Il prolem di clcolre un primitiv per quest clsse di unzioni rigurd

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1.

TEST DI MATEMATICA. Funzioni in una, Funzioni in due variabili Integrali Equazioni differenziali. 1) Il valore del limite seguente. e e. e 1. TEST DI MATEMATICA Funzioni in un, Funzioni in due vriili Integrli Equzioni differenzili ) Il vlore del limite seguente e e e lim è ) Il vlore del limite seguente 5 lim 5 è : ) L derivt prim dell funzione

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN TUTELA E BENESSERE ANIMALE Corso di : FISICA MEDICA A.A. 015 /016 Docente: Dott. Chiucchi Riccrdo il:rchiucchi@unite.it Medicin Veterinri: CFU 5 (corso

Dettagli

Tutorato di analisi 1

Tutorato di analisi 1 Tutorto di nlisi 1 Alen Kushov Collegio Volt 1 / 8 Introduzione Integrzione ll Riemnn Integrle orientto Linerità dell integrle Teorem fondmentle del clcolo Regole di clcolo Integrli impropri 2 / 8 Integrzione

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Anno 1. Numeri reali: proprietà e applicazioni di uso comune

Anno 1. Numeri reali: proprietà e applicazioni di uso comune Anno Numeri reli: proprietà e ppliczioni di uso comune Introduzione L insieme dei numeri rzionli è composto d numeri che si ottengono dl rpporto tr due numeri interi. Tle rpporto, o frzione, è sempre ssociile

Dettagli

7. Derivate Definizione 1

7. Derivate Definizione 1 7. Derivte Il concetto di derivt è importntissimo e molto nturle. Per vere un esempio concreto, penste l moto di un mcchin: se f(t) è l funzione che esprime qunt strd vete percorso fino d un certo istnte

Dettagli

Daniela Tondini

Daniela Tondini Dniel Tondini dtondini@unite.it Fcoltà di Medicin veterinri CdS in Tutel e benessere nimle Università degli Studi di Termo 1 IDICI DI FORMA Dopo ver nlizzto gli indici di posizione e di vribilità di un

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni

Unità Didattica N 3 Le inequazioni. Unità Didattica N 3 Le inequazioni 9 ) Proprietà delle disuguglinze fr numeri reli reltivi ) Inequzioni e loro proprietà ) Inequzioni rzionli intere di primo grdo d un incognit 4) Segno del trinomio di secondo grdo : T = c 5) Inequzioni

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

Moto in due dimensioni

Moto in due dimensioni INGEGNERIA GESTIONALE corso di Fisic Generle Prof. E. Puddu LEZIONE DEL 24 SETTEMBRE 2008 Moto in due dimensioni Spostmento e velocità Posizione e spostmento L posizione di un punto mterile nel pino è

Dettagli

Argomenti della Lezione

Argomenti della Lezione ANALISI Argomenti dell Lezione 35. urve, lunghezze, integrli curvilinei 35.1. urve regolri. Definizione 35.1. Un curv regolre Φ é un funzione { (t) : I R φ : I = [, b] R 2 y(t) : I R 25 gennio 2012 continu,

Dettagli

14 - Integrazione numerica

14 - Integrazione numerica Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 4 - Integrzione numeric Anno Accdemico 205/206 M. Tumminello, V.

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G

Liceo Scientifico Statale Leonardo da Vinci Via Possidonea Reggio Calabria Anno Scolastico 2008/2009 Classe III Sezione G Liceo Scientifico Sttle Leonrdo d Vinci Vi Possidone 14 8915 Reggio Clbri Anno Scolstico 008/009 Clsse III Sezione G Dirigente scolstico: Preside Prof. ss Vincenzin Mzzuc Professore coordintore del progetto:

Dettagli

CORSO DI CALCOLO E BIOSTATISTICA. A.A APPUNTI SUGLI INTEGRALI

CORSO DI CALCOLO E BIOSTATISTICA. A.A APPUNTI SUGLI INTEGRALI CORSO DI CALCOLO E BIOSTATISTICA. A.A. 212-213. APPUNTI SUGLI INTEGRALI Il testo che segue contiene brevi ppunti reltivi lle lezioni svolte sull teori elementre dell integrzione di funzioni reli di un

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R

Curve parametriche. April 26, Esercizi sulle curve scritte in forma parametrica. x(t) = a cos t. y(t) = a sin t t [0, T ], a > 0, b R Curve prmetriche April 6, 01 Esercizi sulle curve scritte in form prmetric. 1. Elic cilindric Dt l curv di equzioni prmetriche r(t) x(t) = cos t y(t) = sin t t [0, T ], > 0, b R z(t) = bt (0.1) clcolre

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Il lavoro di una forza

Il lavoro di una forza Il lvoro di un forz Definizione Nello svolgimento che segue, ci limiteremo lvorre in due dimensioni, su un pino. L grn prte dei risultti che troveremo potrà essere estes immeditmente e senz difficoltà

Dettagli

U.D. N 13 Le inequazioni ad una incognita

U.D. N 13 Le inequazioni ad una incognita Unità Didttic N Le inequzioni d un incognit 5 U.D. N Le inequzioni d un incognit 0) Proprietà delle disuguglinze fr numeri reli reltivi 0) Inequzioni e loro proprietà 0) Inequzioni rzionli intere di primo

Dettagli

Minimi quadrati e problemi di distanza minima

Minimi quadrati e problemi di distanza minima Minimi qudrti e problemi di distnz minim Considerimo un mtrice rettngolre B, con elementi b ij, i 1,..., n, j 1,..., m, con m < n (quindi, più righe che colonne. Voglimo risolvere il sistem linere (1 Bx

Dettagli

Tutorato di Analisi 2 - AA 2014/15

Tutorato di Analisi 2 - AA 2014/15 Tutorto di Anlisi - AA /5 Emnuele Fbbini 8 prile 6 Curve in R ed R 3.. Prmetrizzzione. Scrivere un prmetrizzzione regolre per le seguenti curve:. Segmento di estremi A ; ) e B ; 3). Esiste un formul di

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a

Analisi Matematica per Bio-Informatici Esercitazione 13 a.a Anlisi Mtemtic per Bio-Informtici Esercitzione 3.. 27-28 Dott. Simone Zuccher 28 Febbrio 28 Not. Queste pgine potrebbero contenere degli errori: chi li trov è pregto di segnlrli ll utore (zuccher@sci.univr.it).

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnic delle Mrce Fcoltà di ngegneri ng. normtic e Automtic ng. delle Telecomuniczioni Teledidttic ANALS NUMERCA TEMA D Pro. A. M. Perdon Ancon, giugno PARTE - SOLUZONE Si ciede llo studente

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

(somma inferiore n esima), (somma superiore n esima).

(somma inferiore n esima), (somma superiore n esima). Clcolo integrle Appunti integrtivi lle dispense di Mtemtic ssistit rgomento 9 (Integrli definiti) e rgomento (Integrli impropri) cur di C.Znco (Il contenuto di questi ppunti f prte del progrmm d esme)

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei Curve e integrli curvilinei E. Polini 13 ottobre 214 curve prmetrizzte Un curv prmetrizzt è un funzione : [, b] R n. Al vrire di t nell intervllo [, b] (con < b) il punto (t) descrive un triettori nello

Dettagli

Integrali definiti (nel senso di Riemann)

Integrali definiti (nel senso di Riemann) Integrli definiti (nel senso di Riemnn) Problem: cos è l re di un figur pin? come clcolrl? Grficmente concetto intuitivo ed evidente. Tecnicmente ci sono definizioni e formule d hoc per le figure elementri.

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

f(x) f(x 0 ) lim (x) := f(x) f(x 0)

f(x) f(x 0 ) lim (x) := f(x) f(x 0) Cpitolo 3 Derivte 31 Definizione **Definizione 31 (Punto di derivilità) Si f :[, ]! R un funzione e si 2 [, ] Allor f si dice derivile in se esiste finito il In questo cso si dice punto di derivilità per

Dettagli

Integrali. Alessandro Fallica Liceo Ginnasio Statale G. Verga Adrano. 3 aprile 2014

Integrali. Alessandro Fallica Liceo Ginnasio Statale G. Verga Adrano. 3 aprile 2014 Integrli Alessndro Fllic Liceo Ginnsio Sttle G. Verg Adrno 3 prile 2014 Indice 1 Differenzile di un funzione 2 1.1 Definizione di differenzile.................... 2 1.2 Significto geometrico del differenzile

Dettagli

Anno 2. Potenze di un radicale e razionalizzazione

Anno 2. Potenze di un radicale e razionalizzazione Anno Potenze di un rdicle e rzionlizzzione Introduzione In quest lezione impreri utilizzre le ultime due tipologie di operzioni sui rdicli, cioè l potenz di un rdicle e l rdice di un rdicle. Successivmente

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann

ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrale secondo Riemann ANALISI 1 1 DICIOTTESIMA - DICIANNOVESIMA LEZIONE Integrle secondo Riemnn 1 prof. Cludio Sccon, Diprtimento di Mtemtic Applict, Vi F. Buonrroti 1/C emil: sccon@mil.dm.unipi.it web: http://www2.ing.unipi.it/

Dettagli

7 Simulazione di prova d Esame di Stato

7 Simulazione di prova d Esame di Stato 7 Simulzione di prov d Esme di Stto Problem 1 Risolvi uno dei due problemi e 5 dei 10 quesiti in cui si rticol il questionrio Si consideri l fmigli di funzioni definite d { f n () = n (1 ln ) se 0,n N

Dettagli

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE.

La parabola LA PARABOLA È IL LUOGO DEI PUNTI DEL PIANO EQUIDI- STANTI DA UN PUNTO DETTO FUOCO E DA UNA RETTA CHE NON LO CONTIENE DETTA DIRETTRICE. L prol In figur è trccito il grfico di un prol con sse di simmetri verticle. Si vede suito dl grfico ce: l curv è simmetric rispetto l suo sse di simmetri il suo punto più in sso è il vertice il vertice

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

LEGGI DELLA DINAMICA

LEGGI DELLA DINAMICA 1) Nel SI l unità di misur dell forz è il Newton (N); 1 N è quell forz che: [A] pplict su un oggetto dell mss di 1 kg lo spost di 1m; [B] pplict su un oggetto che h l mss di 1g lo cceler di 1m/s 2 nell

Dettagli

Appunti di Matematica 3 - Iperbole - Iperbole. cioè tali che

Appunti di Matematica 3 - Iperbole - Iperbole. cioè tali che Iperole Comincimo con l definizione: Dti due punti F e F si dice iperole I il luogo geometrico dei punti P del pino per i quli è costnte l differenz delle distnze d F e F cioè tli che F e F si dicono fuochi

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli