Moto di rotazione di un corpo rigido intorno ad un asse fisso : asse di rotazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Moto di rotazione di un corpo rigido intorno ad un asse fisso : asse di rotazione"

Transcript

1 Moto di otaione di un copo igido intono ad un asse fisso : asse di otaione x ϑ(t) ϕ d m v y dϑ ds dϑ Vettoe velocità angolae : vettoe tale che pe un qualsiasi punto P del copo individuato dal vettoe posiione ispetto a un polo sull asse di otaione, la velocità di P è data da: v v d s d ϑ s i n ϕ d t d t - ϑ d ( t ) d t - è dietto lungo l asse di otaione - il veso di è dato dalla egola della mano desta U.aspaini, Fisica

2 Dato un polo sull asse di otaione, la componente di L lungo l asse : è data da: Momento angolae pe un moto di otaione intono ad un asse : L momento di ineia del copo ispetto π/ ϕ dl Contibuto (infinitesimo) di dm al momento angolae totale L ϕ all asse : dl d m v L d m Copo C o p o v dm distana dall asse dell elemento dm v d L v d m U.aspaini, Fisica d L v d m π dl cos( ϕ ) ntegando su tutto il copo: L dl dm dm sin s i n ϕ ϕ dl dm dm d m sin ϕ

3 Momento di ineia [ ] K g m Dimensioni del momento d ineia: l momento d ineia dipende dalla foma geometica del copo, dalla sua distibuione di massa (densità) e dall asse consideato; non è una popietà intinseca del copo Esempio: momento d ineia di un asta omogenea di lunghea e massa M: l i) ispetto ad un asse pependicolae passante pe un suo estemo : l 3 dm λ l d m x λ d x 3 C o p o 0 densità lineae ii) ispetto ad un asse pependicolae passante pe il suo cento di massa : l / dm l x λ M / l x x λ d x 0 M l 3 l / 3 M l λ l 4

4 Esempi di calcolo di momenti di ineia i) Momento d ineia di un anello omogeneo di spessoe tascuabile, aggio e massa M ispetto all asse pependicolae al piano dell anello passante pe il suo cento di massa : dm dm dm anello anello M ii) Momento d ineia di un disco omogeneo di aggio e massa M ispetto all asse pependicolae al disco passante pe il suo cento di massa : d d m σ d S σ π d densità supeficiale: σ πσ d 0 Copo πσ 4 3 dm 4 M / π 0 σ π d M

5 Esempi di calcolo di momenti di ineia () iii) Momento d ineia di una sfea omogenea di aggio e massa M : d ( ) disco di massa dm(), momento d ineia d() d d M ( ) ρ d V ρ π ( ) d ( ) ( ) d M ( ) ρ 4 M / π ρ π ( ) 4 d ρ π ( ) d d ( ) ρ π ( ) d s f e a ρ π ρ π 5 5 M U.aspaini, Fisica 5

6 Momenti di ineia (3) anello di aggio m m disco di aggio m m guscio cilindico sottile di aggio n geneale mλ dove λ è detto aggio otatoe cilindo pieno di aggio U.aspaini, Fisica 6

7 guscio sfeico sottile di aggio m 3 Momenti di ineia (4) sfea piena di aggio m 5 l asta sottile di lunghea d ml ( m a + b ) mλ U.aspaini, Fisica 7 lasta a b

8 Teoema di Huygens-Steine (o degli assi paalleli ) : ' + M d momento d ineia ispetto all asse // e passante pe il CM x Teoema di Huygens-Steine x d C M massa totale del copo dm d m ( x + y ) d m C o p o C o p o P (x,y,,) (x,y, ) distana ta e y, y [ x ' + ( y ' + d ) ] d m [ x ' + y ' + y ' d + d ] d m C o p o C o p o ' d m + d y ' d m + d d m ' + M d C o p o C o p o C o p o x C M x y y ' + d ' U.aspaini, Fisica ' 8 C M ' 0 M y C M

9 i ) ii) d l / Esempi di applicaione del teoema di Steine : dm + M d ' C M M l l M l + M 3 Momento d ineia di un disco omogeneo di massa M e aggio ispetto ad un asse ad esso pependicolae passante pe un punto P sul suo bodo : (cf. slide n.3) M d P ' + C M M M 3 P d + M M P 3 Si noti che: un disco che uoti sena stisciae ( puo otolamento ) compie una otaione intono all asse istantaneo passante pe il punto di contatto col piano di appoggio U.aspaini, Fisica 9 P v

10 Teoema del momento angolae pe un copo igido l teoema del momento angolae ( a equaione cadinale della dinamica): U.aspaini, Fisica d L d t massa totale del sistema ( ) M v M v momento totale delle foe estene ispetto al polo E pe un copo igido in otaione intono ad un asse fisso ( v 0) : ) M E velocità del polo nel sistema di ifeimento ineiale nel quale i Punti mateiale hanno le velocità v che entano nella definiione di L : L v d m d L d t M ( E ) C o p o può essee ifomulato utiliando il concetto di momento d ineia. Poiettando tale equaione lungo l asse di otaione: dl dt α dt ( ( in fomale analogia con la legge di Newton: F m a ) d d dt ( ) ( E M acceleaione angolae : d ( t ) α ( t ) d t )

11 Equaione fondamentale della dinamica delle otaioni: L equaione fondamentale della dinamica delle otaioni: M ( E ) α è fomalmente analoga alla a legge della dinamica pe un punto mateiale, con le sostituini: foa isultante F momento delle foe estene M acceleaione a acceleaione angolae α Esempio : pota in otaione intono ai suoi cadini M P F foa agente sulla maniglia F P massa m momento d ineia ispetto all asse P M α (t) (t+dt) P F di otaione d ( t ) α ( t ) M / dt U.aspaini, Fisica stessa foa M F P P α baccio minoe minoe acceleaione angolae

12 h Φ y eaione vincolae (non ha momento ispetto ad ) ϑ mg x M m g Pendolo composto ggetto vincolato ad oscillae in un piano veticale intono ad un asse passante pe un punto di sospensione non coincidente con il suo cento di massa y d ϑ ( t ) d t M ( E ) M α Pe piccole oscillaioni (sin ϑ ϑ ) : m g h + ϑ ( t ) hmg Poieione della a eq.cadinale lungo l asse : d ϑ ( t ) d t g + ϑ ( t ) l 0 piano di oscillaione (x,y) M sin ϑ ( t ) m g h s i n ϑ ( t ) 0 U.aspaini, Fisica ntoducendo la lunghea idotta del pendolo composto: d mg ϑ ( t ) d t Soluione : moto amonico l x m h ϑ ( t ) ϑ s i n ( t + ϕ ) 0

13 l U.aspaini, Fisica piano di oscillaione (x,y) h Assi ecipoci di un pendolo composto: y h mg asse di otaione assi ecipoci asse di oscillaione : asse paallelo all asse di otaione, passante pe il punto a distana l ( lunghea idotta ) dal punto di sospensione lungo la etta peiodi di oscillaione intono agli assi e ( assi ecipoci ) sono uguali. nfatti: + m h l + h m h l m h m h m h m h h + h ' La lunghea idotta pe le oscillaioni intono ad è: h + h h ' h + h ' h ' l ' m h ' ' + m h ' m h l m h + m h ' h ' ( h + h ' ) h ' m h ' h + h m h ' l ' l g l ' ' g l '

14 Pendolo evesibile (o pendolo di Kate ) : Masse mobili m punti di sospensione (fissi) m m l m π T g l g 6 U.aspaini, Fisica 0 4 g π ' T ' le masse m ed m vengono spostate finchè i peiodi di oscillaione intono ad e sono gli stessi; in tale situaione la distana, deteminabile con elevata pecisione ( l/l 0-3 ) è la lunghea idotta del pendolo composto si ottengono misue di g l di analoga pecisione : l g '

15 Enegia cinetica di un copo igido in otaione Pe un copo igido in otaione con velocità angolae intono ad un asse : ϑ(t) asse di otaione d m v dϑ dsdϑ v d s d ϑ d t d t E k v d m ( ) d m d m c o p o c o p o c o p o Ek v dm copo Analogia fomale con l espessione dell enegia cinetica di un punto mateiale: U.aspaini, Fisica E k m v m v E k

16 Teoema di Koenig pe l enegia cinetica di un copo igido l moto geneico di un copo igido è, in un dato istante, iconducibile ad un moto oto-taslatoio, sovapposiione di un moto di taslaione del cento di massa con velocità v e di un moto di otaione con velocità angolae intono ad un asse istantaneo di otaione passante pe il cento di massa: v n geneale, sia il modulo che la dieione di vaiano istante pe istante. Teoema di Koenig pe l enegia cinetica di un copo igido: E M v + k E k M v + v ' d m c o p o U.aspaini, Fisica momento d ineia ispetto all asse istantaneo di otaione passante pe 6

17 Enegia cinetica di un copo igido l teoema di Koenig pe un copo igido puo essee icavato dal teoema di Huygens-Steine : d v v d copo in otaione intono all asse fisso E k ( ' + M d ) ' + M ( d ) t. di Huygens-Steine v E k ' + Mv E k ' + Mv U.aspaini, Fisica 7

18 Teoema dell enegia cinetica pe un copo igido: f k i ( E ) i f E k E k E W Pe un copo igido,il lavoo infinitesimo dw () delle foe intene è nullo: lavoo delle sole foe estene dm k j k dm j ( ) ( ) d W F j d j F d j j k j j k j F d + F 3 d +... F d F ( d d ) + F 3 ( d d 3 ) F d ( ) + F d ( ) F d 3 3 j j k j k 0 k j poichè in un copo igido le distane elative 0 jk imangono invaiate U.aspaini, Fisica 8

19 Copo soggetto alla foa peso: moto del cento di massa e consevaione del momento angolae mg ma E m a a g M E 0 L d L dt costante velocita angolae piccola L velocita angolae gande U.aspaini, Fisica 9

20 Esempi di consevaione del momento angolae velocita angolae piccola velocita angolae gande i f U.aspaini, Fisica 0

21 Consevaione del momento angolae () U.aspaini, Fisica

22 Equaioni della statica e condiioni di equilibio Le condiioni di equilibio di un copo igido (o di un sistema di copi) sono : M E E (si noti che essendo E 0 non dipende dal polo consideato ) 0 0 il momento isultante E n queste condiioni un copo pesevea nel suo stato di quiete o di moto, sia pe quel che iguada le taslaioni (moto del suo CM: acm 0) sia pe le otaioni (Lcostante, acceleaione angolae α 0 ). Se il copo e iniialmente in quiete, si pala di equilibio statico. Altimenti di equilibio dinamico (ad esempio: una uota che otola con velocita angolae costante su un piano oiontale pivo di attito e in una condiione di equilibio dinamico). U.aspaini, Fisica M

23 Equilibio statico stabile Una posiione di equilibio statico si dice stabile se pe un minimo spostamento del copo si sviluppano foe estene e /o momenti non equilibati che tendono a ipotae il sistema nella posiione di equilibio. Esempi: Fel Punto di sospensione di un pendolo composto mg mg dieione veticale posiione di iposo della molla Quando le foe che si sviluppano sono consevative, il punto di equilibio stabile e il punto nel quale il sistema assume il minimo valoe possibile della sua enegia poteniale. U.aspaini, Fisica 3

24 Equilibio statico instabile e indiffeente Una posiione di equilibio statico si dice instabile se pe un minimo spostamento del copo si sviluppano foe estene e /o momenti non equilibati che tendono ad allontanae ulteiomente il sistema dalla posiione di equilibio. mg l punto di equilibio instabile coisponde ad un massimo dell enegia poteniale del sistema Punto di sospensione di un pendolo posto al di sotto del CM mg dieione veticale Una posiione di equilibio statico si dice indiffeente se pe un minimo spostamento del copo non si sviluppano foe estene e /o momenti, non equilibati, e quindi la nuova posiione aggiunta e ancoa di equilibio Esempio: oggetto su un piano inclinato scabo, con coeff.di attito statico µs > tanθ U.aspaini, Fisica 4 θ

25 Equaioni della statica Nei poblemi di statica, la soluione delle equaioni di equilibio detemina le eaioni vincolai, in geneale incognite, che si sviluppano sul sistema e che contibuiscono, con le alte foe e momenti noti agenti sul sistema (ad esempio: foe peso), all equilibio del sistema stesso. Applicate a pati del sistema, le equaioni della statica danno infomaioni anche sulle foe che vengono a sviluppasi intenamente alla stuttua (ad esempio: le foe ta le acate di un ponte). Esempio: eaioni vincolai del pavimento sulla base di una scala; foa di taione T ( intena ) che si sviluppa sulla tavesina CD della scala stessa FA C T D FB A U.aspaini, Fisica 5 B

26 Esempio di applicaione delle equaioni della statica M u y y M 0 u 0 T mg Mg F 0 d T D mg L Mg 0 sistema di equaioni con incognite: F e T T g( D m + L M ) / d 648N F T mg Mg 560N U.aspaini, Fisica 6

27 Esempio di applicaione delle eq. della statica () θ xux + yu y M M u 0 0 sistema di 3 equaioni con 3 incognite: N,Fw,f Una scala da pompiei, lunga Lm e con massa m45 kg, è appoggiata ad una paete veticale. l punto di appoggio è ad un altea h 9.3 m dal suolo. l CM si tova ad un teo della lunghea. Un uomo, di massa M7 kg si aampica sulla scala fino a che il suo cento di massa si tova a metà della scala. La paete è liscia e il teeno scabo. Quale foe esecitano sulla scala la paete e il teeno? θ accos( h / L) M x y F f w eaioni vincolai U.aspaini, Fisica 7 0 N Mg mg 0 mg( L / 3 )sin θ + Mg( L / )sin θ F h 0 F W mg sinθ ( L / h)[ m / 3 + M / ] mg tanθ[ m / 3+ M / ] 40N f N ( M + m) g 47N w attito

Moto di puro rotolamento

Moto di puro rotolamento oto-taslaione di un copo igido di seione cicolae (disco,cilindo,sfea) su di un piano, pe il quale il punto (o i punti) di contatto ta il copo ed il piano è femo ispetto a questo ( non vi è stisciamento

Dettagli

LEZIONE 09 MOMENTO DI UNA FORZA Torque

LEZIONE 09 MOMENTO DI UNA FORZA Torque LEZIONE 09 OENO DI UNA ORZA oque Nella dinamica del punto mateiale, fissata la massa e la foa, si deduce una sola acceleaione lineae. Nelle otaioni, la stessa foa applicata sulla stessa massa, può invece

Dettagli

Note su esperienza con il pendolo fisico PASCO

Note su esperienza con il pendolo fisico PASCO Note su espeiena con il pendolo fisico PASCO Pendolo Fisico PASCO è composto da: - Asta igida che può essee fissata ad un peno tamite un piccolo bullone in 3 posiioni lungo l asta: o in una posiione centale,

Dettagli

AA MECCANICA CLASSICA e MECCANICA dei SISTEMI CONTINUI PROVA di ESAME 10 Settembre Canali A-B-C-D

AA MECCANICA CLASSICA e MECCANICA dei SISTEMI CONTINUI PROVA di ESAME 10 Settembre Canali A-B-C-D Esecizio n. 1 Un oggetto di piccole dimensioni scivola su un piano oizzontale e la sua velocità iniziale vale v =4. m/sec. La supeficie del piano ha una uvidità cescente e la coispondente foza di attito

Dettagli

Fisica Generale A. Lavoro ed Energia - 2. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Lavoro ed Energia - 2. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini isica Geneale A - cuola di Ingegneia e Achitettua NIBO Cesena Anno Accademico 015 016 Campi di foe consevativi oa posiionale su un punto mateiale: foa descitta da una funione cha associa ad ogni posiione

Dettagli

Meccanica Dinamica del corpo rigido

Meccanica Dinamica del corpo rigido eccanica 7-8 Dinamica del copo igido 9 a C F m ( + k ) otolamento Foza oizzontale costante applicata all asse k Acceleazione m omento costante applicato all asse 3 F m uota cilindica C C F a C Acceleazione

Dettagli

Cinematica dei corpi rigidi. Momenti di inerzia

Cinematica dei corpi rigidi. Momenti di inerzia Cinematica dei copi igidi Momenti di ineia elaioni fa moto lineae e moto angolae La distana (l aco) pecosa da un copo igido che uota attono ad un asse di un angolo θ, è dato da s θ La velocità di questo

Dettagli

DINAMICA - CONCETTO DI FORZA

DINAMICA - CONCETTO DI FORZA DINAMICA - CONCETTO DI ORZA v 2 v 1 2 1 La vaiazione di velocità v = v 2 v 1 è dovuta all inteazione della paticella con uno o più copi (esempio: paticella caica che inteagisce con un copo caico). A causa

Dettagli

con la verticale. Calcolare (a) il rapporto θ 1

con la verticale. Calcolare (a) il rapporto θ 1 PRIMA LEZIONE: Legge di Coulomb e campo elettostatico Te caiche positive uguali q 1 q q q sono fisse nei vetici di un tiangolo equilateo di lato l. Calcolae (a) la foza elettica agente su ognuna delle

Dettagli

ESERCIZIO 1. agente su m1 nel sistema di riferimento rappresentato.

ESERCIZIO 1. agente su m1 nel sistema di riferimento rappresentato. ESERCIZIO Due copi di massa m ed m sono appoggiati su un piano oizzontale scabo e sono connessi ta loo attaveso un filo ideale (inestensibile e di massa tascuabile) che passa attono ad una caucola ideale

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 09/09/2019 ESERCIZIO 3

Soluzione degli esercizi dello scritto di Meccanica del 09/09/2019 ESERCIZIO 3 Esecizio 1 Soluzione degli esecizi dello scitto di Meccanica del 09/09/2019 ESERCIZIO 3 Un copo igido è costituito da un anello cicolae (omogeneo e con spessoe tascuabile) di aggio = 10 cm e massa M =

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

dove dl del satellite nel suo moto, T il periodo di rivoluzione ed F r e la risultante delle forze sul satellite.

dove dl del satellite nel suo moto, T il periodo di rivoluzione ed F r e la risultante delle forze sul satellite. PRIMA PROVA SCRITTA PARZIALE 31 mazo 3 compito A COGNOME NOME NOTA: questo foglio deve essee estituito; e obbligatoio giustificae le isposte. 11 domande: 3 punti a domanda + da a 3 punti pe la chiaezza

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccanica 06-07 Gavitazione 4 Newton m m F G u egge di gavitazione univesale E una foza centale F ± F( ) u. Il momento angolae si conseva. a taiettoia si mantiene sullo stesso piano. a velocità aeale è

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

Il formalismo vettoriale della cinematica rotazionale

Il formalismo vettoriale della cinematica rotazionale Il fomalismo ettoiale della cinematica otaionale Le elaioni della cinematica otaionale assumono una foma semplice ed elegante, se sono iscitte in foma ettoiale. E questo l agomento dei paagafi che seguono.

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

M = 1500 kg. m 9 m 3 m M F

M = 1500 kg. m 9 m 3 m M F 1) La figua descive un copo di assa appoggiato ad un piano inclinato di un angolo ispetto all oizzontale, con un coefficiente di attito dinaico fa copo e piano µ. Il copo è collegato, pe ezzo di una fune,

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

M = T R = Iα = I a R. a. Dall equazione lungo l asse x si ricava quindi F A = Mgsinθ m 2 a Ma. µ D Mgcosθ = Mgsinθ ( m 2 + M)a.

M = T R = Iα = I a R. a. Dall equazione lungo l asse x si ricava quindi F A = Mgsinθ m 2 a Ma. µ D Mgcosθ = Mgsinθ ( m 2 + M)a. Esecizio 1 Un copo di dimensioni tascuabili e di massa M si tova in cima ad un piano, inclinato di un angolo θ e alto h. È collegato tamite una coda inestensibile di massa tascuabile ad una caucola cilindica

Dettagli

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - II Appello 6 settembre 2007

POLITECNICO DI MILANO IV FACOLTÀ Ingegneria Aerospaziale Fisica Sperimentale A+B - II Appello 6 settembre 2007 POLITECNICO DI MILANO I FACOLTÀ Ingegneia Aeospaziale Fisica Speimentale A+B - II Appello 6 settembe 7 Giustificae le isposte e scivee in modo chiao e leggibile Sostituie i valoi numeici solo alla fine,

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Momento di una forza:

Momento di una forza: omento di una foza: d 1 A B d 2 d C In quale situazione la pesona sente di più il peso del copo? A o B? D d C o D? 1 2 1 2 L altalena è in equilibio? Dipende dalla distanza d1 e d2 e dalle due foze: 1

Dettagli

ESERCIZIO 1. per i 3 corpi: I: per m3 lungo y: T2 m3g = 0 II: per m1 lungo y: N m1g = 0 III: per m1 lungo x:

ESERCIZIO 1. per i 3 corpi: I: per m3 lungo y: T2 m3g = 0 II: per m1 lungo y: N m1g = 0 III: per m1 lungo x: ESERCIZIO e copi i assa =.5 kg, = kg, = 4 kg sono collegati coe in figua eiante fili ieali (inestensibili e i assa tascuabile). Il copo giace su un piano oiontale scabo. Il sistea è iniialente antenuto

Dettagli

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2 Enegia cinetica di un copo igido in otazione z Copo igido con asse di otazione fisso (Z) 1 1 ogni eleento del copo ha la stessa velocità angolae K un eleento a distanza K dall asse di otazione ha velocità

Dettagli

Operatori differenziali

Operatori differenziali Opeatoi diffeeniali www.die.ing.unibo.it/pes/masti/didattica.htm (vesione del 5-4-018) Deivata dieionale Dato un punto P appatenente a una egione in cui è definito un campo scalae f(p), si considea la

Dettagli

Elementi di Dinamica

Elementi di Dinamica Elementi di Dinamica ELEMENTI DI DINAMICA Mente la cinematica si limita allo studio delle possibilità di movimento di un ceto sistema ed alla elativa descizione matematica, la dinamica si occupa delle

Dettagli

Compito di Meccanica Razionale M-Z

Compito di Meccanica Razionale M-Z Compito di Meccanica Razionale M-Z 0 gennaio 0. Due quati di coona cicolae, di aggio inteno ed esteno, ciascuno omogeneo e di massa m, sono disposti come in figua. a) Deteminae la matice d inezia. b) Deteminae

Dettagli

SOLUZIONI DELLO SCRITTO DI MECCANICA DEL 23 GIUGNO 2015 ESERCIZIO 1

SOLUZIONI DELLO SCRITTO DI MECCANICA DEL 23 GIUGNO 2015 ESERCIZIO 1 SOLUZIONI DELLO SCRITTO DI MECCANICA DEL GIUGNO 05 ESERCIZIO Un copo di diensioni tascuabili e assa M =.5 kg è vincolato ad una olla di costante elastica k = 0 N/ a sua volta vincolata ad una paete. I

Dettagli

=50s. v c. v b. v b sin α = v c α =arcsin v c v b 11

=50s. v c. v b. v b sin α = v c α =arcsin v c v b 11 Esecizio 1 Gianni vuole attavesae il icino a nuoto nel mino tempo possibile in una zona in cui il fiume èlago D =50melacoenteviaggiaadunavelocità v c =2m/s. SapendocheGiannièingadodinuotaead una velocità

Dettagli

DINAMICA - CONCETTO DI FORZA. La variazione di velocità v r = v r

DINAMICA - CONCETTO DI FORZA. La variazione di velocità v r = v r DINAMICA - CONCETTO DI FORZA v v 1 P La vaiazione di velocità v = v v 1 è P 1 dovuta all inteazione della paticella con uno o più copi (esempio: paticella caica che inteagisce con un copo caico). A causa

Dettagli

Compito di fisica I. 11 luglio 2011

Compito di fisica I. 11 luglio 2011 Compito di fisica I. luglio 0 Meccanica Una uota di massa M, aggio R e momento d inezia I sale senza stisciae sotto l azione di un momento motoe τ m lungo un piano, inclinato di un angolo θ ispetto all

Dettagli

GRAVITAZIONE Giro della morte. Il binario in figura 1.1 ha un raggio di 7.2 m.

GRAVITAZIONE Giro della morte. Il binario in figura 1.1 ha un raggio di 7.2 m. GRAVITAZIONE Sommaio. In questa seie di poblemi vengono toccati tutti i concetti fondamentali dell ultima pate del coso. 1. Poblemi 1.1. Moto cicolae. 1.1.1. Gio della mote. Il binaio in figua 1.1 ha un

Dettagli

ESERCIZIO 1. a) si verifichi che il corpo m non si muove. Si determini la forza di attrito statico F r as

ESERCIZIO 1. a) si verifichi che il corpo m non si muove. Si determini la forza di attrito statico F r as ESERCIZIO Un copo di massa m e dimensioni tascuabili si tova inizialmente femo su un piano oizzontale scabo. I coefficienti di attito statico e dinamico ta il copo m e il piano sono ispettivamente μs μd.

Dettagli

Momento di una forza:

Momento di una forza: Univesità olitecnica delle ache, acoltà di gaia C.d.L. Scienze oestali e mbientali,.. 2008/2009, isica 1 omento di una foza: d 1 d 2 d C In quale situazione la pesona sente di piu il peso del copo? o?

Dettagli

O -q -q. 4πε. 3πε C 7. p d. 2 4πε. 3 qd. Facoltà di Ingegneria Prova Scritta di Fisica II 19 settembre 2007 Compito A. Esercizio n.

O -q -q. 4πε. 3πε C 7. p d. 2 4πε. 3 qd. Facoltà di Ingegneria Prova Scritta di Fisica II 19 settembre 2007 Compito A. Esercizio n. Facoltà di Ingegneia Pova Scitta di Fisica II 9 settembe 7 Compito A C 7 ε 8.85, µ 4 N m T m A Esecizio n. Te caiche puntifomi sono disposte ai vetici di un tiangolo equilateo di lato d cm. Le caiche ()

Dettagli

Esercitazione 08: Introduzione alla cinematica e dinamica del punto materiale e del corpo rigido

Esercitazione 08: Introduzione alla cinematica e dinamica del punto materiale e del corpo rigido Meccanica e Tecnica delle ostuzioni Meccaniche Esecitazioni del coso. Peiodo II Pof. Leonado BERTINI Ing. io SANTUS Esecitazione 8: Intoduzione alla cinematica e dinamica del punto mateiale e del copo

Dettagli

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione Biomeccanica Cinematica Dinamica Statica dei copi igidi Enegia e pincipi di consevazione Posizione: definita da : z modulo, diezione, veso vettoe s s z s s y unità di misua (S.I.) : meto x s x y Taiettoia:

Dettagli

Momenti. Momento di una forza, momento di inerzia, momento angolare

Momenti. Momento di una forza, momento di inerzia, momento angolare Momenti Momento di una foza, momento di inezia, momento angolae Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo

Dettagli

FISICA GENERALE II COMPITO SCRITTO

FISICA GENERALE II COMPITO SCRITTO ISIA GENEALE II Ingegneia ivile, Ambientale, Industiale (A.A. 56) OMPITO SITTO 3..6 ognome.. maticola.. Nome anno di coso ALTAZIONE quesito 6 quesito 6. poblema poblema puneggio. totale ATTENZIONE! Pe

Dettagli

a = r = costante Esempio : giostra in rotazione assumendo: determinare la velocita e l accelerazione di P rispetto al centro della giostra

a = r = costante Esempio : giostra in rotazione assumendo: determinare la velocita e l accelerazione di P rispetto al centro della giostra Esempio : giosta in otaione assumendo: che all istante iniiale il punto sia posto nel cento O del sistema fisso che sia fisso al passa del tempo ispetto all ossevatoe solidale con v e a che l asse di otaione

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettomagnetismo Pof. Fancesco agusa nivesità degli Studi di Milano Leione n. 6 9..8 Divegena e teoema della divegena Foma diffeeniale della Legge di Gauss Enegia del campo elettostatico Anno Accademico

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

Consideriamo, ancora, il momento angolare del punto materiale rispetto al centro delle forze:!!!!!

Consideriamo, ancora, il momento angolare del punto materiale rispetto al centro delle forze:!!!!! Moto in un campo di foe centali. Moto in un campo di foe centali Planaità del moto In un campo di foe centali avemo sempe: dl F( ) F 0 L cost. e quindi il moto è piano. Si tatta di una delle caatteistiche

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II 19 luglio Compito A

Facoltà di Ingegneria Prova scritta di Fisica II 19 luglio Compito A Facoltà di Ingegneia Pova scitta di Fisica II 9 luglio 7 - Compito A ε = 8.85 Esecizio n. C N m, µ = 4π 7 T m A Te paticelle con la stessa caica = 6 C si tovano in te dei vetici di un uadato di lato L

Dettagli

ESERCIZIO 1. SOLUZIONI a, b) Diagramma delle forze r r Scrivendo la II legge della dinamica = m a e

ESERCIZIO 1. SOLUZIONI a, b) Diagramma delle forze r r Scrivendo la II legge della dinamica = m a e ESERCIZIO Un copo di assa M = 300 g è inizialente feo su un piano oizzontale liscio. Ad un ceto istante, sul copo coincia ad agie una foza in odulo pai a F = N, inclinata di θ = 5 ispetto alla veticale.

Dettagli

F m. 3) Le forze di azione e reazione tra corpi che interagiscono sono uguali in modulo hanno la stessa retta d azione e sono opposte in verso.

F m. 3) Le forze di azione e reazione tra corpi che interagiscono sono uguali in modulo hanno la stessa retta d azione e sono opposte in verso. I TE PINCIPI DELLA DINAMICA 1) Una paticella imane a iposo o continua a muovesi di moto ettilineo unifome se la isultante di tutte le foze agenti su di essa è nulla (detto anche pincipio d inezia) 2) L

Dettagli

L = F s cosα = F r s LAVORO. F r α. s r

L = F s cosα = F r s LAVORO. F r α. s r LAVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s 1 LAVORO L unità di misua del lavoo nel S.I. si chiama

Dettagli

Esercitazioni del 26/03/2010

Esercitazioni del 26/03/2010 Esecitazioni del 6/03/010 Poblema 1) Un battello e capace di viaggiae alla velocita di 4 m/s elativamente all acqua di un fiume lago d=1km. La velocita dell acqua, elativamente alle sponde, e costante

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale:

5) Il modulo della velocità del centro di massa del cilindro, calcolata quando esso raggiunge il fondo del piano inclinato vale: Facoltà di Ingegneia Pova Scitta di Fisica I - Luglio 005 Quesito n. Dalla soità di uno scivolo, liscio, descitto in figua, viene fatto patie, a quota e da feo, un copo puntifoe di assa. aggiunto il fondo

Dettagli

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 5 settembre 2002 Soluzioni

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 5 settembre 2002 Soluzioni Univesità di Pavia Facoltà di Ingegneia Esame di Meccanica Razionale Appello del 5 settembe 2002 Soluzioni D1. Una lamina quadata omogenea Q di massa 2m e lato di lunghezza l viene divisa in due lungo

Dettagli

1) Consideriamo una sfera di raggio R, con densita` di carica uniforme positiva. Alla distanza Re

1) Consideriamo una sfera di raggio R, con densita` di carica uniforme positiva. Alla distanza Re 1) Consideiamo una sfea di aggio, con densita` di caica unifome positiva Alla distanza e k dal cento si tova un elettone, inizialmente femo Calcolae: a) la velocita` dell elettone, lasciato libeo, nel

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

Fisica Generale 2 Giugno 2002

Fisica Generale 2 Giugno 2002 Fisica Geneale Giugno 1) Alla supeficie della tea vi e un campo elettico E 3 V/m dietto secondo il aggio, veso il cento della tea. a) Supponendo che la tea sia sfeica (R 6.4 1 6 m) e conduttice, tovae

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani Campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui esiste un campo magnetico B1T otogonale al piano

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

Momento torcente. sen90 k = k = 0.48 k Nm. 5) Il momento torcente risultante rispetto ad O è. TAU4Fsol.doc. Oi i O O1 O2 O3 O4

Momento torcente. sen90 k = k = 0.48 k Nm. 5) Il momento torcente risultante rispetto ad O è. TAU4Fsol.doc. Oi i O O1 O2 O3 O4 Momento tocente TAU4Fsol.doc F1 6. N,F 4. N,F3. N,F4 5. N,R1.5 m,r.1 m,m kg i è il vettoe che congiunge il polo con il punto di applicazione della foza F i τ F F dove è la componente di pependicolae a

Dettagli

θ = arctg Esercizio 1 a) Affinché la vettura non sbandi, le gomme non devono slittare sull asfalto, pertanto l attrito deve essere di tipo statico.

θ = arctg Esercizio 1 a) Affinché la vettura non sbandi, le gomme non devono slittare sull asfalto, pertanto l attrito deve essere di tipo statico. Esecizio 1 a) Affinché la vettua non sbani, le gomme non evono slittae sull asfalto, petanto l attito eve essee i tipo statico. b) Sia µ s il coefficiente attito statico minimo che pemette alla vettua

Dettagli

Effetto delle Punte e problema dell elettrostatica

Effetto delle Punte e problema dell elettrostatica Effetto delle Punte e poblema dell elettostatica 4 4 R Q R Q πε πε / / R R R R E E Effetto delle punte E L effetto paafulmine E E E R R Nel caso del paafulmine, R 6 Km è il aggio di cuvatua della supeficie

Dettagli

DINAMICA DEI SISTEMI DI PUNTI MATERIALI II

DINAMICA DEI SISTEMI DI PUNTI MATERIALI II DINMI DEI SISTEMI DI PUNTI MTERILI II ento di assa Nello studio della dinaica dei sistei di punti ateiali isulta utile intodue il concetto di cento di assa: M Rifeiento del cento di assa: Onde ettee in

Dettagli

Fisica Generale II con Laboratorio. Lezione - 3

Fisica Generale II con Laboratorio. Lezione - 3 Fisica Geneale II con Laboatoio Lezione - 3 Richiami - I Riassunto leggi della meccanica: Leggi di Newton 1) Pincipio di inezia Esistono sistemi di ifeimento ineziali (nei quali un copo non soggetto a

Dettagli

Equilibrio del corpo rigido e vincoli

Equilibrio del corpo rigido e vincoli Equilibio del copo igido e vincoli Gadi di libetà nello spazio Punto mateiale e copo igido z z z' P α P z α P' θ ' α O z P O z P P P ' P P Gadi di libetà nel piano Punto mateiale e copo igido P P P' P

Dettagli

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte)

SECONDA LEZIONE: lavoro elettrico, potenziale elettrostatico, teorema di Gauss (prima parte) A. Chiodoni esecizi di Fisica II SECONDA LEZIONE: lavoo elettico, potenziale elettostatico, teoea di Gauss (pia pate) Esecizio Te caiche sono poste ai vetici di un tiangolo euilateo di lato l, calcolae

Dettagli

Facoltà di Ingegneria 2 a prova in itinere di Fisica II Compito B

Facoltà di Ingegneria 2 a prova in itinere di Fisica II Compito B ostanti: ε 8,85, µ Facoltà di Ingegneia a pova in itinee di Fisica II 4.7.5 ompito 4π 7 m A Esecizio n. u un cilindo di aggio e lunghezza indefinita è distibuita una caica elettica con densità volumica

Dettagli

Forza conservativa: il suo integrale di linea fra due posizioni fissate e indipendente dal percorso. A A x y. F dr= F x x + F y y.

Forza conservativa: il suo integrale di linea fra due posizioni fissate e indipendente dal percorso. A A x y. F dr= F x x + F y y. Foza consevativa: il suo integale di linea fa due posizioni fissate e indipendente dal pecoso Es: Foza costante F= F iˆ+ F jˆ= cost x y ( ) F d= F dx+ F dy = F dx+ F dx x y x y x y ( ) ( ) F d= F x x +

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettomagnetismo Pof. Fancesco agusa Univesità degli Studi di Milano Leione n. 6 8..7 Divegena e teoema della divegena Foma diffeeniale della Legge di Gauss Enegia del campo elettostatico nno ccademico

Dettagli

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione?

F 1 F 2 F 3 F 4 F 5 F 6. Cosa è necessario per avere una rotazione? Cosa è necessaio pe avee una otazione? Supponiamo di vole uotae il sistema in figua intono al bullone, ovveo intono all asse veticale passante pe, usando foze nel piano oizzontale aventi tutte lo stesso

Dettagli

Sistemi di riferimento inerziali:

Sistemi di riferimento inerziali: La pima legge di Newton sul moto è anche chiamata pincipio di inezia. In fisica inezia significa esistenza ai cambiamenti di velocità. Es.: - la foza d attito ta la moneta e la tessea è molto piccola e

Dettagli

F r. Dinamica del punto materiale. Studia il moto e le cause che lo determinano. basata sui 3 principi fondamentali di Netwon

F r. Dinamica del punto materiale. Studia il moto e le cause che lo determinano. basata sui 3 principi fondamentali di Netwon Dinamica del punto mateiale F Studia il moto e le cause che lo deteminano basata sui 3 pincipi fondamentali di Netwon Pincipio di inezia alla Galileo (I legge della dinamica) piano completamente liscio

Dettagli

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta,

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta, isica eneale 5. Esecizi di Statica Esecizio Un asta di eso = + (vedi figua) è aoggiata su due 0 N suoti e, distanti, dal baicento dell asta, isettivamente a =. m e b = + 0. 000 m Calcolae la foza d aoggio

Dettagli

Soluzione esercizi: seconda prova in itinere e scritto totale di Meccanica del 22/01/2019

Soluzione esercizi: seconda prova in itinere e scritto totale di Meccanica del 22/01/2019 Soluione esercii: seconda prova in itinere e scritto totale di Meccanica del 22/01/2019 Eserciio 1 Il pianeta Kepler-20e/f è stato osservato misurando il calo di luminosità della stella Kepler-20, di massa

Dettagli

Gravitazione universale

Gravitazione universale INGEGNERIA GESTIONALE coso di Fisica Geneale Pof. E. Puddu LEZIONE DEL 22 OTTOBRE 2008 Gavitazione univesale 1 Legge della gavitazione univesale di Newton Ogni paticella attae ogni alta paticella con una

Dettagli

Fisica Generale B. Conduttori e condensatori. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale B. Conduttori e condensatori. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Geneale B Conduttoi e condensatoi Scuola di Ingegneia e Achitettua NIBO Cesena Anno Accademico 4 5 Campo elettostatico nei conduttoi Conduttoe In un conduttoe, una pate delle paticelle caiche (gli

Dettagli

Esercizio n. 1 ELEMENTI DI MECCANICA RAZIONALE. 1 Esercizi. 1) Dati i vettori

Esercizio n. 1 ELEMENTI DI MECCANICA RAZIONALE. 1 Esercizi. 1) Dati i vettori Politecnico di Toino CeTeM Esecizi Esecizio n. ) Dati i vettoi u 3i + 4 j + k v i + 3j k w i + j applicato in P (,,) applicato in P applicato P 3 (,,) (,,) a: deteminae la loo isultante. b: calcolae il

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccanica 07-08 Gavitazione Newton m m F G u egge i gavitazione univesale E una foza centale F ± F( ) u mmt 4π G m T T. Il momento angolae si conseva. a taiettoia si mantiene sullo stesso piano 3. a velocità

Dettagli

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180.

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180. CORPO RIGIDO EX Un pofilo igido è costituito da un tatto ettileo AB e da una semiciconfeenza di aggio R=0cm come figua. Dal punto A viene lanciata una moneta di aggio =cm. Calcolae la mima velocità che

Dettagli

Energia: esempi e applicazioni

Energia: esempi e applicazioni negia: esempi e applicazioni Foze conseva3ve ed enegia potenziale Ricodiamo che un campo di foze è conseva4vo se la foza dipende solo dalla posizione e se il lavoo B W AB = F d A è indipendente dal pecoso

Dettagli

Soluzione degli esercizi della seconda prova in itinere di Meccanica del 26/01/2018

Soluzione degli esercizi della seconda prova in itinere di Meccanica del 26/01/2018 Soluzione degli esecizi della seconda pova in itinee di eccanica del 6/0/08 Esecizio Un asteoide di massa m compie un obita cicolae attono al Sole (massa = 0 0 kg) con velocità in modulo costante e pai

Dettagli

Lezione 7 - Sistemi di punti materiali

Lezione 7 - Sistemi di punti materiali Lezione 7 - Sistemi di punti mateiali Il moto di oggetti estesi spesso appae assai complicato Se tuttavia si immagina che tali copi siano costituiti da un insieme di tanti punti mateiali si possono individuae

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

Fisica Generale III con Laboratorio

Fisica Generale III con Laboratorio Fisica Geneale III con Laboatoio Campi elettici e magnetici nella mateia Lezione 1 Dielettici q. di Maxwell N el vu oto: = B = ρ ε B = t B = µ ε + µ t j (Non esistono caiche o coenti magnetiche) Caiche

Dettagli

M m. M r. ϕ, ω ( ) ( ) () ϕ() N con N = costante per cui = 0 LAGRANGE. esia

M m. M r. ϕ, ω ( ) ( ) () ϕ() N con N = costante per cui = 0 LAGRANGE. esia ϕ, J LAGRANGE * ( S δ ( ) + = * & δ G ( ( / T T T T esia GT Gϕ () ϕ() W e quindi = TW & () = = () W T W Supponiamo che il baicento del sistema sia sulla taccia dell asse di otazione, pe cui, mancando alte

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli