ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1"

Transcript

1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1 Circuito da risolvere Il circuito in esame è costituito solo da resistenze ed è quindi una rete di tipo passivo. Per risolvere circuiti di questo tipo occorre calcolare la resistenza equivalente complessiva di tutta la rete. Come si può osservare, R 5, R 6 e R 7 sono in parallelo a un cortocircuito (V = 0). Poiché la tensione ai loro capi è nulla, anche la corrente che circola in esse è nulla per la legge di Ohm. Si ha quindi i 5 = i 6 = i 7 = 0 Le resistenze R 5, R 6 e R 7 possono essere eliminate e si può quindi andare a risolvere il circuito semplificato mostrato in Fig Fig. 1.2 Circuito semplificato dopo l eliminazione delle resistenze cortocircuitate In Fig. 1.3 sono riportate le incognite del problema. I versi della tensione e della corrente sono stati assegnati arbitrariamente applicando però la convenzione degli utilizzatori per i componenti passivi e la convenzione dei generatori per i componenti attivi.

2 Fig. 1.3 Correnti e tensioni incognite Le resistenze R 4, R 5 e R 8 sono collegate in serie tra di loro ed è quindi possibile sostituirle con la resistenza serie equivalente R 0 data da R 0 = R 4 + R 8 = 40 Ω Fig. 1.4 Circuito semplificato dopo aver sostituito R 4 e R 8 con la resistenza serie equivalente R 0 Il nuovo circuito semplificato da risolvere è quello riportato in Fig Le resistenze R 2, R 3 e R 0 sono collegate in parallelo tra di loro ed è quindi possibile sostituirle con la resistenza parallelo equivalente R 00 data da R 00 = ( ) = 4.44 Ω R 2 R 3 R 0 Il nuovo circuito semplificato da risolvere è quello mostrato in Fig Le resistenze R 1, R 00 e R 9 sono collegate in serie tra di loro ed è quindi possibile sostituirle con la resistenza serie equivalente R eq data da R eq = R 1 + R 00 + R 9 = Ω Fig. 1.5 Circuito semplificato dopo aver sostituito R 2, R 3 e R 0 con la resistenza parallelo equivalente R 00

3 Fig. 1.6 Circuito equivalente a quello di partenza Si ottiene così il circuito equivalente riportato in Fig Ora è possibile calcolare la corrente i E che attraversa R eq attraverso la legge di Ohm e si ottiene i E = E R eq = 2.25 A Per risolvere completamente il circuito di partenza è necessario ripercorre a ritroso le varie trasformazioni effettuate per ottenere i circuiti semplificati. Come visto in precedenza, R eq è costituita da R 1, R 00 e R 9 collegate in serie perciò la corrente che le attraversa è la stessa e si ha quindi i 1 = i 00 = i 9 = i E = 2.25 A Ora è quindi possibile calcolare le cadute di tensione su R 1 e R 9 attraverso la legge di Ohm ottenendo V 1 = R 1 i 1 = 45 V V 9 = R 9 i 9 = 45 V Come visto in precedenza, R 00 è costituita da R 2, R 3 e R 0 collegate in parallelo perciò la corrente i 00 che la attraversa si ripartisce in modo inversamente proporzionale alla resistenza del singolo elemento (partitore di corrente). Attraverso l equazione generale del partitore di corrente si ottiene i 2 = R 00 R 2 i 00 = 1 A i 3 = R 00 R 3 i 00 = 1 A i 0 = R 00 R 0 i 00 = 0.25 A Ora è quindi possibile calcolare le cadute di tensione su R 2 e R 3 attraverso la legge di Ohm ottenendo V 2 = R 2 i 2 = 10 V V 3 = R 3 i 3 = 10 V Come visto in precedenza, R 0 è costituita da R 4, R 5 e R 8 collegate in serie perciò la corrente che le attraversa è la stessa e si ha i 4 = i 8 = i 0 = 0.25 A Ora è quindi possibile calcolare le cadute di tensione su R 4, R 5 e R 8 attraverso la legge di Ohm ottenendo

4 V 4 = R 4 i 4 = 5 V V 8 = R 8 i 8 = 5 V Abbiamo calcolato tutte le correnti che attraversano i componenti del circuito in esame e tutte le tensioni a cui essi sono soggetti. È quindi possibile valutare la potenza erogata/assorbita da ognuno dei componenti ottenendo P E = Ei E = 225 W P 1 = V 1 i 1 = R 1 i 1 2 = W P 2 = V 2 i 2 = R 2 i 2 2 = 10 W P 3 = V 3 i 3 = R 3 i 3 2 = 10 W P 4 = V 4 i 4 = R 4 i 4 2 = 1.25 W P 5 = V 5 i 5 = R 5 i 5 2 = 0 W P 6 = V 6 i 6 = R 6 i 6 2 = 0 W P 7 = V 7 i 7 = R 7 i 7 2 = 0 W P 8 = V 8 i 8 = R 8 i 8 2 = 1.25 W P 9 = V 9 i 9 = R 9 i 9 2 = W Infine, per il teorema di additività delle potenze (Boucherot) deve valere la seguente relazione 9 P E P k = 0 k=1

5 ESERCIZIO 2 Dopo aver risolto il circuito lineare tempo-invariante mostrato in Fig. 2.1 applicando il metodo di Kirchhoff, calcolare la potenza erogata/assorbita da ogni componente. Fig. 2.1 Circuito da risolvere Il circuito in esame è costituito da r = 5 rami e n = 3 nodi. Per la sua risoluzione è quindi necessario scrivere un sistema di r equazioni composto da n 1 = 2 LKC e r (n + 1) = 3 LKT. In Fig. 2.2 sono mostrate le incognite principali (una per ogni ramo) del problema i 1, i 2, i 4, V A1, V A2 e sono indicati anche i nodi (lettere maiuscole) e le maglie (lettere minuscole) ai quali verranno scritte le LKC e LKT rispettivamente. Il verso di percorrenza è stato scelto orario per tutte e tre le maglie. Il verso delle tensioni e delle correnti incognite è determinato arbitrariamente applicando però la convenzione degli utilizzatori per i componenti passivi e la convenzione dei generatori per i componenti attivi. Fig. 2.2 Incognite principali, nodi e maglie Il sistema da risolvere è quindi costituito dalle seguenti equazioni LKC A i 1 + A 1 i 2 = 0 LKC B A 1 + A 2 i 4 = 0

6 LKT a E V 2 V 1 = 0 LKT b V A2 + V 2 V A1 + V 3 = 0 LKT c V 4 V A2 = 0 In aggiunta alle LKC e LKT occorre considerare anche le relazioni di definizione dei resistori per le quali possiamo scrivere In definitiva il sistema da risolvere è il seguente Dalla LKC B si ricava direttamente Nota i 4 dalla LKT c si ricava Dalla LKC A si ricava V 1 = R 1 i 1 V 2 = R 2 i 2 V 3 = R 3 i 3 = R 3 A 1 V 4 = R 4 i 4 LKC A i 1 + A 1 i 2 = 0 LKC B A 1 + A 2 i 4 = 0 LKT a E R 2 i 2 R 1 i 1 = 0 LKT b V A2 + R 2 i 2 V A1 + R 3 A 1 = 0 LKT c R 4 i 4 V A2 = 0 i 4 = A 1 + A 2 = 20 A V A2 = R 4 i 4 = 80 V i 2 = i 1 + A 1 e sostituendola nella LKT a si ottiene E R 2 (i 1 + A 1 ) R 1 i 1 = 0 da cui si può ricavare che Infine dalla LKC A si ha e dalla LKT b i 1 = E R 2A 1 R 1 + R 2 = 2.5 A i 2 = i 1 + A 1 = 7.5 A V A1 = R 2 i 2 + V A2 + R 3 A 1 = 135 V È ora quindi possibile calcolare le tensioni ai capi dei 4 resistori attraverso la legge di Ohm ottenendo V 1 = R 1 i 1 = 5 V V 2 = R 2 i 2 = 15 V V 3 = R 3 i 3 = R 3 A 1 = 40 V

7 V 4 = R 4 i 4 = 80 V Abbiamo calcolato tutte le correnti che attraversano i componenti del circuito in esame e tutte le tensioni a cui essi sono soggetti. È quindi possibile valutare la potenza erogata/assorbita da ognuno dei componenti ottenendo P E = Ei E = Ei 1 = 25 W P A1 = V A1 A 1 = 1350 W P A2 = V A2 A 2 = 800 W P 1 = V 1 i 1 = R 1 i 1 2 = 12.5 W P 2 = V 2 i 2 = R 2 i 2 2 = W P 3 = V 3 i 3 = R 3 i 3 2 = 400 W P 4 = V 4 i 4 = R 4 i 4 2 = 1600 W Infine, per il teorema di additività delle potenze (Boucherot) deve valere la seguente relazione P E + P A1 + P A2 P k = 0 Per concludere, osserviamo come il valore calcolato di i 1 sia negativo. Questo non ci deve spaventare, ma significa solamente che il verso da noi attribuito arbitrariamente a i 1 in Fig. 2.2 è sbagliato e che la corrente circola nel verso opposto, andandosi a iniettare nel generatore di tensione. Per lo stesso motivo otteniamo quindi P E < 0, il che vuol dire che in realtà il generatore di tensione si comporta da carico in questa configurazione. 4 k=1

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3 ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 3 ESERCIZIO 1 Un generatore di tensione sinusoidale con alimenta la rete lineare mostrata in Fig. 1.1. Calcolare tutte le tensioni e le correnti di ramo considerando

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie.

Esercizio. Risolvere poi lo stesso quesito utilizzando la legge di Kirchhoff alle maglie. Esercizio Classe ª Elettronici Materia Elettrotecnica Argomento Reti elettriche Nel circuito di figura, utilizzando il teorema di Thevenin attraverso riduzioni successive, determinare la tensione ai capi

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Esercizi svolti. Elettrotecnica

Esercizi svolti. Elettrotecnica Esercizi svolti di Elettrotecnica a cura del prof. Vincenzo Tucci NOVEMBE 00 NOTA SUL METODO PE LA DEGLI ESECIZI La soluzione degli esercizi è un momento della fase di apprendimento nel quale l allievo

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Elettrotecnica A.A. 2001/2002 Prova scritta del 4 settembre 1999 Esercizio n 1 Data la rete in figura, determinare tutte le correnti (4

Dettagli

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE Partitore di tensione 2 legge kirkoff Partitore di corrente 1 legge kirkoff Principio di sovrapposizione degli effetti Legge di Thevenin Legge di

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1

Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 000-000 M6.qxp 7-09-01 1005 Pagina 1 sercizi aggiuntivi Unità sercizi svolti sercizio 1 ipoli elettrici e loro collegamenti 1 Per il circuito di figura.1 calcolare la resistenza equivalente tra i morsetti

Dettagli

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 - Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che

Dettagli

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1

Il modello circuitale. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 6 Pagina 1 Lez.6 Il modello circuitale Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 6 Pagina 1 Legge di Kirchhoff Legge di Kirchhoff delle correnti per gli insiemi

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in

Dettagli

Bipoli Elettrici. Esercitazioni aggiuntive. = i I. + i A 'B ' v A 'B ' + v R. + v E v AB. = v D. = v A 'B ' = v I C + A + D + R d V R. V i.

Bipoli Elettrici. Esercitazioni aggiuntive. = i I. + i A 'B ' v A 'B ' + v R. + v E v AB. = v D. = v A 'B ' = v I C + A + D + R d V R. V i. sercitazioni aggiuntive sercizio. Tracciare la caratteristica esterna della rete in figura: V i ʼ ʼ i i i i ʼʼ D V D i D d V i D γ i V D γ i ʼ V d i D V ʼ D i D V D i i i V i g =.5 [v] d = [W] i = [kw]

Dettagli

Elettrotecnica Problema di analisi n 1 Risoluzione di circuiti complessi

Elettrotecnica Problema di analisi n 1 Risoluzione di circuiti complessi Determinare le correnti in intensità e verso in tutti i rami del circuito di figura. R 2 E 2 R 4 I 0 = 22 kω R 2 = 56 kω = 56 kω R 4 = 33 kω E 1 = 12 V E 2 = 5 V I 0 = 1 m E 1 1) Principi di KIRKHOFF.

Dettagli

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1 2 nalisi delle reti sercitazioni aggiuntive sercizio 2 Calcolare la tensione ai capi e del seguente circuito, applicando il teorema di Millman: 0 [v] [] [] 0 [Ω] 2 20 [Ω] saminando il circuito si osserva,

Dettagli

Soluzione di circuiti RC ed RL del primo ordine

Soluzione di circuiti RC ed RL del primo ordine Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria

Università degli Studi di Bergamo Facoltà di Ingegneria Università degli Studi di Bergamo Facoltà di Ingegneria Piatti Marina _ RISOLUZIONE TEMA D ESAME CORSO DI ELETTROTECNICA A.A. 1995/96 SCRITTO 26 SETTEMBRE 1996_ Esercizio n 1 Dato il circuito in figura,

Dettagli

IL TEOREMA DI THEVENIN

IL TEOREMA DI THEVENIN IL TEOREMA DI THEVENIN Il teorema di Thevenin si usa per trovare più agevolmente una grandezza (corrente o tensione) in una rete elettrica. Enunciato: una rete elettrica vista a una coppia qualsiasi di

Dettagli

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C E con un corto. L amplificazione pertanto è g m R C dove

Dettagli

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI CONSIGLI PER L RISOLUZIONE DEI CIRCUITI ELETTRICI In questa lezione lo scopo è quello di mostrare che, con i principi e i teoremi proposti, si possono ottenere i risultati richiesti. Per mostrare l efficacia

Dettagli

5.12 Applicazioni ed esercizi

5.12 Applicazioni ed esercizi 138 5.12 pplicazioni ed esercizi pplicazione 1 1. Trovare il numero dei nodi e dei rami nel circuito in figura. 1 2 3 H 4 C D E 8 G 7 F 6 5 punti 1 e 2 costituiscono un unico nodo; lo stesso per i punti

Dettagli

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita)

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff

Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff primo principio di Kirchhoff "principio dei nodi " - la sommatoria di tutte le correnti che confluiscono in un nodo (siano

Dettagli

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame Prova n 1: Per il seguente circuito determinare: 1. R B1, R E tali che: I C = 0,5 ma; V E = 5 V; 2. Guadagno di tensione a piccolo segnale v out /v s alle medie frequenze; 3. Frequenza di taglio inferiore;

Dettagli

Esercizi e problemi su circuiti elettrici elementari

Esercizi e problemi su circuiti elettrici elementari 28/01/10 Esercizi e problemi su circuiti elettrici elementari 1 Esercizi Esercizio (p.480 n.9). La resistenza totale di un circuito è 300Ω. In esso vi sono tre resistenze in serie: la seconda è tripla

Dettagli

Analisi reti lineari

Analisi reti lineari nalisi reti lineari isolvere una rete vuol dire trovare le correnti circolanti, una volta nota la configurazione topologica della stessa rete e le caratteristiche degli aelementi passivi( e attivi (gen.

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 1)

Esercizi sulle reti elettriche in corrente continua (parte 1) Esercizi sulle reti elettriche in corrente continua (parte ) Esercizio : eterminare la resistenza equivalente della rete in figura tra i terminali e (supponendo e isolati) e la conduttanza equivalente

Dettagli

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari 7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,

Dettagli

Trasformazione stella triangolo esercizio n. 10

Trasformazione stella triangolo esercizio n. 10 alcolare la potenza assorbita da ogni resistore presente nel circuito, tensioni e correnti in ogni ramo. = 0 V = R = 0 Ω R = Ω R = 0 Ω R = 00 Ω R = 00 Ω Verrà utilizzata la trasformazione stella triangolo.

Dettagli

Università degli studi di Bergamo Facoltà di Ingegneria

Università degli studi di Bergamo Facoltà di Ingegneria Università degli studi di ergamo Facoltà di Ingegneria Corso di elettrotecnica Soluzione tema d esame del 16 giugno 1998 Esercizio n 1 Data la rete in figura determinare le correnti I 1,I 2,I,I 5 e la

Dettagli

Esercizio svolto 1 Dati: R 1

Esercizio svolto 1 Dati: R 1 Esercizio svolto = 4 = = I G = 4A = Determinare la corrente I e le potenze rispettivamente erogate dal generatore Ig e dal generatore αi. Per trovare la grandezza pilota uso la sovrapposizione degli effetti.

Dettagli

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α Esame di Teoria dei Circuiti 4 Luglio 202 () Esercizio I R R I R3 R 3 I 2 V αi R V 4 I 4 βi R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 0 Ω R R 3 kω, 5 kω,, α /2, β 2, V

Dettagli

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 9

ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 9 ELETTROTECNICA T A.A. 2014/2015 ESERCITAZIONE 9 ESERCIZIO 1 Determinare per quale valore di Z L essa assorbe la massima potenza apparente dal circuito di Fig. 1.1. Calcolare quindi tale potenza. Considerare

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

ESERCIZI svolti e non

ESERCIZI svolti e non ESERCIZI svolti e non Qualche ragionamento non ti convince? Qualche calcolo non torna? Consultami all indirizzo: sendtowally@virgilioit pag 1 di 7 Settore e I circuiti elettrici in corrente continua e

Dettagli

Alimentatori di tensione continua

Alimentatori di tensione continua Alimentatori di tensione continua Regolazione tensione Regolazione corrente Range: 20V-1.5A 35V-0.85A Set massima corrente uscita Alimentatore stabilizzato Principio di funzionamento - Ingresso: tensione

Dettagli

Circuiti con due generatori di tensione esercizio n. 2 principi di Kirchhoff

Circuiti con due generatori di tensione esercizio n. 2 principi di Kirchhoff ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando i principi di Kirchhoff, la potenza erogata (o eventualmente assorbita) dai

Dettagli

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita) dai generatori di tensione ed e quella assorbita

Dettagli

Collegamento di resistenze

Collegamento di resistenze Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II 1. (a.a. 2002-2003 e 2001-2002) Prova scritta del 22/06/2004 Qual è la probabilità che, in 6 lanci, due dadi diano la somma 9 (a) una volta,

Dettagli

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione) Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2

Dettagli

Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli

Esercizi svolti Esperimentazioni di Fisica 2 A.A. 2009-2010 Elena Pettinelli Esercizi svolti Esperimentazioni di Fisica A.A. 009-00 Elena Pettinelli Principio di sovrapposizione: l principio di sovrapposizione afferma che la risposta di un circuito dovuta a più sorgenti può essere

Dettagli

LEZIONI ED ESERCITAZIONI DI FISICA Prof. Francesco Marchi 1 Esercitazione su: circuiti e reti elettriche Indice 1 Introduzione: I legge di Ohm e convenzioni sui segni 2 1.1 Richiami di teoria........................................

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di lettrotecnica orso di lettrotecnica - od. 900 N Diploma Universitario Teledidattico in ngegneria nformatica ed utomatica Polo Tecnologico di lessandria cura di Luca FRRRS Scheda N ircuiti in

Dettagli

Le leggi di Kirchhoff

Le leggi di Kirchhoff Le leggi di Kirchhoff n questa lezione impareremo... legge di Kirchhoff o legge delle correnti (KL) legge di Kirchhoff o legge delle tensioni (KVL) LZON 7 circuiti elettrici Le leggi di Ohm ci permettono

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Bipoli lineari;

Dettagli

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3 CAPITOLO 3 Analisi delle reti resistive Paragrafi da 3.2 a 3.4: Analisi ai nodi e alle maglie Problema 3.1 Correnti di maglia: Correnti di lato in Fissa una direzione per la corrente in R 1 (ad esempio

Dettagli

Regime stazionario. Corso di Elettrotecnica NO. Angelo Baggini. Rappresentazione e analisi delle reti elettriche in regime stazionario.

Regime stazionario. Corso di Elettrotecnica NO. Angelo Baggini. Rappresentazione e analisi delle reti elettriche in regime stazionario. ver. 0000 Corso di lettrotecnica NO ngelo aggini potesi Regime stazionario Rappresentazione e analisi delle reti elettriche in regime stazionario Cariche libere di muoversi Tutte le derivate rispetto al

Dettagli

di porre a sinistra del nello stesso

di porre a sinistra del nello stesso Òà-0ESERCIZIO 1 Per scrivere tali equazioni, una volta deciso il verso di percorrenza a di ciascunaa maglia e quello dellee correnti in ciascuno dei tre rami riferiti alle tre resistenze, è sufficiente

Dettagli

Eserciziario di Elettrotecnica

Eserciziario di Elettrotecnica Didattica e icerca Manuali Francesco ertoncini Eserciziario di Elettrotecnica ertoncini, Francesco Eserciziario di elettrotecnica / Francesco ertoncini. - Pisa : Pisa university press, c013 (Didattica

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Principio di NORTON e Teorema di MILLMANN

Principio di NORTON e Teorema di MILLMANN Principio di NORTON e Teorema di MILLMNN Esempio nr.5 PRINIPIO DI NORTON Dato il circuito in figura, calcolare il valore delle correnti nei rami. 1 Impostare il problema... 2 alcolare il valore di Rno...

Dettagli

Tre resistenze in serie

Tre resistenze in serie Tre resistenze in serie Un circuito è formato da tre resistenze collegate in serie a una batteria da 24,0 V. La corrente nel circuito è di 0,0320 A. Sapendo che R 1 = 250,0 Ω e R 2 = 150,0 Ω, calcola a)il

Dettagli

Leggi e principi fondamentali

Leggi e principi fondamentali Legge di Ohm per i conduttori filiformi Leggi e principi fondamentali La resistenza elettrica R [Ω] di un conduttore metallico filiforme dipende dalla natura del conduttore e dalle sue dimensioni secondo

Dettagli

Le lettere x, y, z rappresentano i segnali nei vari rami.

Le lettere x, y, z rappresentano i segnali nei vari rami. Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,

Dettagli

Appunti di Elettronica I Lezione 2 Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito

Appunti di Elettronica I Lezione 2 Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito Appunti di Elettronica Lezione Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano,

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Scopo dell'esperienza: Circuiti in corrente continua 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validita'

Dettagli

Circuiti in corrente continua

Circuiti in corrente continua Domanda Le lampadine mostrate in figura sono le stesse. Con quali collegamenti si ha maggiore luce? Circuiti in corrente continua Ingegneria Energetica Docente: Angelo Carbone Circuito 1 Circuito 2 La

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte c Partitori di tensione e di corrente Partitore di tensione: si fa riferimento ad una tensione nota che alimenta una

Dettagli

Teoremi delle re* lineari

Teoremi delle re* lineari Teoremi delle re* lineari circuito o rete lineare se con-ene solo elemen- lineari e generatori indipenden- elemento ele2rico lineare se il rapporto eccitazione-risposta e lineare generatore indipendente

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 2)

Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizio 7: Verificare il bilancio delle potenze. Nota. l ramo costituito dal generatore di corrente in serie al resistore ha come caratteristica

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare

Dettagli

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione) Esame di Teoria dei Circuiti - 6 luglio 009 Soluzione) Esercizio 1 C T V C T 1 Con riferimento al circuito di figura si assumano i seguenti valori: r 1kΩ, C 1µF 10 6 F, 4V, ma. Per t < t 0 0sec l interruttore

Dettagli

Trasformazione triangolo stella esercizio n. 10

Trasformazione triangolo stella esercizio n. 10 alcolare la potenza assorbita da ogni resistore presente nel circuito, tensioni e correnti in ogni ramo. = 30 V = 0 Ω 1 Ω 0 Ω 3 00 Ω 100 Ω Verrà utilizzata la trasformazione triangolo stella ed il teorema

Dettagli

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito Elettronica Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano, 603 Crema email:

Dettagli

che cosa significa soluzione dei circuiti?

che cosa significa soluzione dei circuiti? Capitolo 3: dei circuiti elettrici Dipartimento Energia Politecnico di Torino di di di Settembre 2012 di di di che cosa significa dei circuiti? un per la dei circuiti deve fornire i seguenti risultati:

Dettagli

Resistenza equivalente

Resistenza equivalente Le uivalenze esistenza uivalente è la resistenza uivalente di un bipolo se possiede la stessa relazione tensione-corrente ai terminali esistori in serie esistori in parallelo Trasformazione stella triangolo

Dettagli

oppure Esempio di calcolo per la conversione da STELLA a TRIANGOLO oppure da TRIANGOLO [o (delta)] a STELLA [o Y(ipsilon)] Formule da utilizzare

oppure Esempio di calcolo per la conversione da STELLA a TRIANGOLO oppure da TRIANGOLO [o (delta)] a STELLA [o Y(ipsilon)] Formule da utilizzare Es. lab LTE Conversione da STELLA a TRIANGOLO e viceversa PREMESSA Per semplificare alcuni circuiti può essere necessario effettuare la conversione di alcune maglie: da STELLA [o Y(ipsilon)] a TRIANGOLO

Dettagli

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono: CIRCUITI ELETTRICI Riccardo Scannaliato 4H 2015/16 Le grandezze fondamentali nei circuiti elettrici sono: La corrente elettrica: la quantità di carica che attraversa una sezione S di conduttore in un secondo.

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettrotecnica Corso di Elettrotecnica - Cod. 900 N Diploma Universitario Teledidattico in ngegneria nformatica ed utomatica olo Tecnologico di lessandria cura di Luca FES Scheda N Circuiti in

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Circuiti in corrente continua Scopo dell'esperienza 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validità

Dettagli

T 1? [1 livello 2014]

T 1? [1 livello 2014] Corrente elettrica 1. Nel circuito elettrico mostrato in figura l interruttore viene chiuso e il condensatore inizia a caricarsi. Quale valore avrà la carica elettrica Q del condensatore, raggiunta la

Dettagli

Esercizi di Elettrotecnica

Esercizi di Elettrotecnica Esercizi di Elettrotecnica Circuiti in corrente continua Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 24-5-2011) Circuiti in corrente continua - 1 1 Esercizio n. 1 R 1 = 10 R 2

Dettagli

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente:

1 3 La reiterazione della legge di Kirchhoff delle tensioni. corrente I 2 con la relazione seguente: PM PO N TNEE --- 9 MGGO 008 ECZO E..: Del circuito mostrato in figura, si desidera determinare: a) la corrente ; b) la potenza elettrica erogata dai tre generatori. Sono assegnati: Ω, 4 Ω, 6 Ω; ; E S 6

Dettagli

asciugacapelli uguali sono connessi in parallelo, la loro resistenza equivalente è = R + 1 $

asciugacapelli uguali sono connessi in parallelo, la loro resistenza equivalente è = R + 1 $ Capitolo Circuiti elettrici Domande. La resistenza di un filo conduttore è L / A: due fili di resistività diversa e stessa lunghezza possono avere la stessa resistenza, purché le loro sezioni siano scelte

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003 Esercizi & Domande per il Compito di Elettrotecnica del 7 settembre 003 ESERCIZIO v a i a i b v b R v 0 Nel circuito in figura determinare il valore di v o e i o Si ponga: R 6kΩ, R kω, e i o R v o ; i

Dettagli

Piano di Recupero del debito. di STA (Scienze e Tecnologie Applicate) Primo Biennio

Piano di Recupero del debito. di STA (Scienze e Tecnologie Applicate) Primo Biennio Liceo Scientifico Istituto Tecnico Industriale ISTITUTO DI ISTRUZIONE SUPERIORE ALDO MORO Via Gallo Pecca n.4/6 10086 RIVAROLO CANAVESE Tel. 0124/45.45.11 - Fax 0124/45.45.45 Cod. Fisc. 85502120018 E-mail:

Dettagli

Circuiti Elettrici Lineari Metodi di analisi

Circuiti Elettrici Lineari Metodi di analisi Facoltà di Ingegneria Università degli studi di Pavia Corso di Laurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici Lineari Metodi di analisi Circuiti Elettrici Lineari a.a. 218/19

Dettagli

Errata Corrige. M. Repetto, S. Leva

Errata Corrige. M. Repetto, S. Leva Errata Corrige M. epetto, S. Leva 21 marzo 2016 Indice 0.1 CAPITOLO 1............................ 2 0.1.1 pagina 16, nel testo..................... 2 0.1.2 pagina 16, Fig.1.17..................... 2 0.1.3

Dettagli

Generatore di fem. r + R. ε 2 W R = I 2 R = (r + R) 2 R

Generatore di fem. r + R. ε 2 W R = I 2 R = (r + R) 2 R Generatore di em Dispositivo capace di mantenere un d.d.p. costante ai capi di un conduttore percorso da corrente. em come lavoro svolto sull unità di carica si misura in Volt Lavoro può essere di diversa

Dettagli

1.1 Assenza di generatori di tensione ideali

1.1 Assenza di generatori di tensione ideali ANALISI NODALE Questa dispensa presenta un metodo alternativo a quello presentato nel libro Circuiti Elettrici di C.K. Alexander, M.N.O.Sadiku - seconda edizione - traduzione a cura del Prof. P.Gubian

Dettagli

Circuiti trasformazione stella triangolo o triangolo stella

Circuiti trasformazione stella triangolo o triangolo stella alcolare le correnti che circolano nel circuito sotto riportato le cui resistenze valgono tutte = 10 Ω, conoscendo il valore della corrente di ingresso. alcolare le potenze dissipate da ciascuna resistenza

Dettagli

Elettrotecnica B - SUISS

Elettrotecnica B - SUISS Elettrotecnica B - SUISS Esercitazione 1 Serena Panati Politecnico di Torino - INFN Torino 18 Gennaio 2016 1 / 45 Info & contatti Mi chiamo Serena Panati e sono dottoranda al Politecnico di Torino (Ingegneria

Dettagli

Reti elettriche: definizioni

Reti elettriche: definizioni TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

Appunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti

Appunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti ppunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti Valentino Liberali Dipartimento di Tecnologie dell Informazione

Dettagli

Prova di Elettrotecnica I prova B

Prova di Elettrotecnica I prova B C O N S O Z O N E T T U N O Prova di Elettrotecnica 4.05.004 prova B Cognome Nome matr ESECZO l circuito in figura funziona in regime sinusoidale. Determinare l andamento della corrente che fluisce nella

Dettagli

68 Luciano De Menna Corso di Elettrotecnica. Metodi sistematici per la risoluzione delle reti

68 Luciano De Menna Corso di Elettrotecnica. Metodi sistematici per la risoluzione delle reti 68 Luciano De Menna Corso di Elettrotecnica Metodi sistematici per la risoluzione delle reti La scrittura delle equazioni risolventi per una rete di bipoli attivi e passivi può essere resa automatica e

Dettagli