Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari"

Transcript

1 Cors d Laurea n Ingegnera Eleronca, Informaca e delle Telecomuncazon Lezone n. 2 d Conroll Auomac A prof. Aurelo Pazz dfferenzal lnear Unversà degl Sud d Parma a.a

2 Cenn d modellsca (crcu elerc e ssem meccanc) L equazone dfferenzale lneare a coeffcen cosan quale modello d un ssema dnamco scalare 2

3 Cenn d Modellsca Modellsca = cosruzone de modell maemac de ssem Modellsca: 1. a parre da legg fondamenal 2. a parre da da spermenal (denfcazone) Sceglendo l prmo approcco rporamo qualche cenno su crcu elerc e ssem meccanc. 3

4 Crcu elerc Ressenza: v R = R d Induanza: v L = L = LD d D operaore dervaa Capacà: v C = Q C = 1 C (τ ) dτ Dv C = C 4

5 Esempo: crcuo RLC v = v L + v R + v C v ( ) = LD( ) + R( ) + 1 C (τ ) dτ Cosruzone del m.m. del crcuo RLC orenao da v (ngresso) ad (usca): 5

6 Eq. dfferenzale lneare a coeffcen cosan: Rappresenable anche come: 2 1 LD + RD + = C Dv 2 1 LD + RD + = C Dv Cosruzone del m.m. del crcuo RLC orenao da v (ngresso) ad v u (usca): v u Dvu = = CDvu C v = LD( CDv ) + R( CDv u u u u ) + v 2 LCD v + RCDv + v = ( 2 LCD + RCD + 1) v u = v u u v 6

7 Ssem meccanc legg del moo undmensonale per componen meccanc 2 Massa: MD x ) = f ( ) f ( ) ( 1 2 Molla: f ( ) = K( x1 ( ) x2( ) ) Relazone valda nell poes che la dsanza fra le orgn degl ass x 1 e x 2 sa par alla lunghezza della molla non carcaa. 7

8 Ammorzzaore: f ( ) = B f ( ) = BD ( v1( ) v2( ) ) ( x ( ) x ( ) ) 1 2 Legge che descrve un fenomeno d aro vscoso: forza proporzonale alla velocà relava 8

9 Esempo: ssema meccanco vbrane (quando l ssema è a rposo abbamo x = 0 ) f b m 0 x md 2 x() = x() bdx() + f () f Σ x equazone del ssema orenaao da f ad x: 2 md x + bdx + x = f () () () () 9

10 Equazone dff. del ssema orenao da f (forza applcaa) a Dx (velocà della massa): 3 2 md x + bd x + Dx = Df y: = Dx 2 md y + bdy + y = Df f Σ Dx 10

11 Crcu elerc con amplfcaor operazonal Esempo: u R1 C R2 C y u y Σ u y è la ensone n ngresso (varable manpolable o ndpendene) è la ensone n usca (varable dpendene) S può dedurre R1CDy + y = R2CDu u 11

12 Equazon Ssem scalar rappresena da eq. a coeffcen cosan a D y + a n 1 m 1 D y + + a1dy + a0 y = bmd u + b1 Du + b n n n 0 n m ad y = = 0 = 0 b D È un modello maemaco formale del ssema dnamco (orenao) Σ, y = varable d usca, u = varable d ngresso; a n 0, b m 0. n = ordne dell eq. dff., per esensone ordne d Σ, n m; ρ := n m ordne relavo o grado relavo d Σ. u u 12

13 Inseme de behavours B d Σ: {( u y) B : = ( ), ( ) : la coppa de segnal causa-effeo "soddsfa" Se u ( ) e y ( ) sono dervabl ane vole quano necessaro ( m n u() C e y() C ) "soddsfa" sgnfca: n m = 0 = 0 l'equazone dfferenzale ady() = bdu () n m ady = bdu = 0 = 0 13

14 Propreà: Il ssema Σ è lneare. Dm. ( u y ) B ( α u ( ) α u ( ), α y ( ) α y ( ) ) Sano ( ), ( ), = 1,2. Allora α, α segue: Infa (per semplcà n = 1, m = 0): ady 1 1() + a0y1() = bu 0 1() ady 1 2() + a0y2() = bu 0 2() α1, α2 : [ α ()] + [ α ()] = [ α ()] [ α ()] + [ α ()] = [ α ()] ad 1 2y2 a0 2y2 b0 2u2 sommando le equazon: [ α () + α ()] + [ α1y1() + α2y2() ] = b0[ α1u1() + α2u2() ] ( α u ( ) α u ( ), α y ( ) α y ( ) ) B ad y y a ad y a y b u B 14

15 Propreà: Il ssema Σ è sazonaro. Dm. ( (), ()) B ( u ( T), y ( T )) u y B T Infa (ancora per semplcà n= 1, m= 0): ady () + a y () = bu () T : a Dy( T) + a y( T) = b u( T) y ( T) = y( τ ) τ = T d dy dτ y ( T) = = Dy( T) d dτ d τ = T d a1 y( T) + a0y( T) = b0u( T) d 15

16 Un problema fondamenale nell anals d un ssema Σ: Noo l segnale d ngresso u ( ) [ 0, + ) y Dy D y n 1 e le condzon nzal (0), (0),, (0) deermnare l segnale d usca y ( ). [ 0, + ) 16

17 Esemp: Σ defno da Dy( ) y( ) = u( ) 1) u ( ) = 0, 0 e y(0) = 1 (eq. omogenea) y ( ) = ce, c (nseme d ue le soluzon) y(0) = 1 c= 1 Soluzone: y ( ) = e, 0. 2) u ( ) = 5, 0 e y(0) = 1 (eq. non omogenea) Indvduaa una soluzone parcolare y ( ) y ( ) = ce+ y ( ), c è l'nseme d ue le soluzon. y () p? p p 17

18 v Suggermeno: yp ( ) = e 5dv 0 0 v v 0 ( ) yp () = 5e e dv= 5e e = 5e e + 1 = 5+ 5e verfca: ( ) Dy () y () = 5e 5+ 5e = 5 o! p p ( ) ( 0 ) y () = ce+ y (), y(0) = 1 c+ 5+ 5e = 1 c= 1 p Soluzone: y ( ) = e e = e, 0 18

19 Esempo: Σ + + = 2 defno da D y ( ) 3 Dy ( ) 2 y ( ) u ( ) Noo u ( ), 0 e le condzon nzal y(0) = 1 e Dy(0) = 1 rovare y ( ), 0? 19

20 Emerge la necessà d: 1) dsporre d un meodo generale per deermnare l segnale d usca noo l segnale d ngresso e le condzon nzal; 2) raare anche l caso d segnal d ngresso e usca connu e dervabl a ra. 20

21 Esemp d segnal u() per l conrollo avo: 21

22 La classe de segnal con cu lavoreremo è PC ( pecewse C - funcons or pecewse smooh funcons) Defnzone: ( { 1 2 }) { } PC è l'nseme d ue le funzon f :,,,, al che Inseme delle funzon a ra ndefnvamene dervabl 1. f C,,,, lm (fn) lm Df ( ) e lm Df ( ), = 0,1, { } L'nseme,,,, può avere cardnalà fna, nfna od essere ( ) l'nseme vuoo. Ques'ulmo caso sgnfca che C PC. Negl san d dsconnuà la funzone f o una sua dervaa può essere o non essere defna. Df 22

23 D f f () I sono san d possble dsconnuà per f( ) PC e le sue dervae. Se f ( ) f( + ) la fun. è dsconnua n ed ha qu l "salo" f( + ) f( ) Se f( ) = f( + ) s può defnre f( ) : = f( ) e la fun. è connua n. () () () Se f ( ) f ( + ) con 1 la fun. dervaa f ( ) è dsconnua n () () ed ha qu l "salo" f ( + ) f ( ) () () Se f ( ) = f ( + ) con 1 può accader () () () - esse la dervaa d ordne -esmo n e ( ) ( ) ( ) - non esse la dervaa d ordne -esmo n Esempo: cos < 0 f() = 1 + cos 0 e: f = f = f + (0 ) = (0 + ), = 1,2, ma ( ) non è dervable n = 0. () () f f f 23

24 Propreà d PC C C ( ) Se f ( ) PC Df( ) PC ed anche a, f( v) dv PC C C C C C e C PC ma n generale, C PC a Esempo: 1 per < 0 () = 1 1 ( 1) per [0,1] ; 0 per > f f C f PC f () Consdereremo la classe { : ( ) è dervable con dervaa connua fno all'ordne } C PC = f PC f,, 1, 1, 0, C = C PC C C C C C PC : 24

25 Grado d connuà d una funzone o segnale defnzon, Se f C, è l grado d connuà d f. { } C : = f : : f C f C,, + 1,, Se f C allora è l grado massmo d connuà d f. Esempo: 0 < 0 f ( ) =, f C, C, C, C 3 0 0, 1, 2, 2, 25

26 Il meodo generale proposo per negrare l equazone dfferenzale d Σ s basa sulla rasformaa d Laplace. La comprensone del meodo della rasformaa d Laplace rchede l nroduzone d cenn d eora delle funzon complesse d varable complessa (anals maemaca complessa) 26

27 Equazone dfferenzale Trasformaa d Laplace Equazone algebrca Soluzone dell equazone dfferenzale Anrasformaa d Laplace Soluzone dell equazone algebrca 27

28 I conce nrodo dalla lezone: Le legg elemenar per la modellsca elerca e de componen meccanc. L equazone dfferenzale lneare quale modello maemaco d un ssema dnamco orenao. L nseme de behavours. Il problema della deermnazone dell usca d Σ noo l ngresso e le condzon nzal. La classe delle funzon a ra ndefnvamene dervabl. Grado d connuà d un segnale. 28

Fisica Generale B. Correnti elettriche stazionarie. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale B. Correnti elettriche stazionarie. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fsca Generale Corren elerche sazonare Scuola d Ingegnera e rcheura UNIO Cesena nno ccademco 14 15 Inensà d correne Fenomen sazonar: le carche sono n movmeno con caraersche nvaran nel empo n cascun puno.

Dettagli

Analisi delle reti con elementi dinamici

Analisi delle reti con elementi dinamici Prncp d ngegnera elerca ezone a Anals delle re con elemen dnamc Induore Connesson d nduor Induore nduore è un bpolo caraerzzao da una relazone ensonecorrene d po dfferenzale: ( d( d e hanno ers coordna

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Componenti dotati di memoria (dinamici)

Componenti dotati di memoria (dinamici) omponen doa d memora (dnamc) S raa d componen elerc che esprmono una relazone cosua ra ensone e correne che rchama anche alor d ensone e/o correne rfer ad san d empo preceden. a relazone cosua è n queso

Dettagli

Esercitazioni di Teoria dei Circuiti: circuiti in evoluzione dinamica

Esercitazioni di Teoria dei Circuiti: circuiti in evoluzione dinamica Unersà degl Sud d assno sercazon d Teora de rcu: crcu n eoluzone dnamca prof nono Maffucc maffucc@uncas er oobre 7 Maffucc: rcu n eoluzone dnamca er-7 rcu dnamc del prmo ordne S Nel seguene crcuo è assegnaa

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod Rpoa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca

Dettagli

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio

Cap. 6 Rappresentazione e analisi dei circuiti elettrici in regime transitorio orso d leroecnca NO er. 0000B orso d leroecnca NO Angelo Baggn ap. 6 appresenazone e anals de crcu elerc n regme ransoro Inroduzone rcuo resso () 0 00V 0Ω > 0 rcuo puramene resso () 00V 0A V ondensaor

Dettagli

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla).

C = Consideriamo ora un circuito RC aperto, cioè tale in cui non circoli corrente(pertanto la carica presente sulle armature è nulla). I crcu Defnzone: s defnsce crcuo un crcuo elerco n cu al generaore d fem sono collega una ressenza e un condensaore. V cordamo che per un condensaore è possble defnre la capacà come l rapporo ra la carca

Dettagli

Regimi periodici non sinusoidali

Regimi periodici non sinusoidali Regm perodc non snusodal www.de.ng.unbo./pers/masr/ddaca.hm versone del -- Funzon perodche S dce che una funzone y è perodca se esse un > ale che per ogn e per ogn nero y y l pù pccolo valore d per cu

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod poa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca OMA

Dettagli

Equazioni dei componenti

Equazioni dei componenti Equazon de componen Eserczo Nella fgura è rappresenao un quadrupolo la cu sruura nerna alla superfce lme conene ressor R e R. Deermnare le equazon del componene ulzzando come arabl descre quelle corrsponden

Dettagli

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica

Esercitazioni di Elettrotecnica: circuiti in evoluzione dinamica Unersà degl Sud d assno sercazon d leroecnca: crcu n eoluzone dnamca nono Maffucc maffucc@uncas er oobre 7 rcu dnamc del prmo ordne S Nel seguene crcuo è assegnaa la correne nell nduore all sane caare

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Trasformae e ssem lnear Trasformaa d Laplace Funzone d Trasfermeno Mod Rsposa Impulsva Calcolo dell usca noo l ngresso (ved Marro par. 2. a 2.3,2.5, C 2.2, C 2.3) (ved Vell-Peernella par. II. a II.4, III.

Dettagli

Elettrotecnica /2009 Totale ore: 30; Crediti corrispondenti: 3

Elettrotecnica /2009 Totale ore: 30; Crediti corrispondenti: 3 Eleroecnca 2 28/29 Toale ore: 3; re corrsponden: 3 Anals de crcu n funzonameno dnamco Anals nel domno del empo rcu del prmo ordne e del secondo ordne, elazone ngresso/usca ed equazon d sao, Prncpal segnal

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

ESPONENTI DI LIAPUNOV

ESPONENTI DI LIAPUNOV ESPONENTI DI IAPUNOV Ssem a empo dscreo, mono- e mul-dmensonal Problemache d calcolo Ssem a empo connuo C. Pccard e F. Dercole Polecnco d Mlano - 9/0/200 /8 MAPPE MONO-DIMENSIONAI Consderamo l ssema a

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE III Ingegnera Elettrca Poltecnco d Torno Luca Carlone ControllAutomatcI LEZIONE III Sommaro LEZIONE III Trasformata d Laplace Propretà e trasformate notevol Funzon d trasfermento Scomposzone n fratt semplc

Dettagli

v R i = legge di ohm Conv.. Utilizzatori R resistenza Esiste proporzionalità diretta tra V ed I. Il resistore è lineare

v R i = legge di ohm Conv.. Utilizzatori R resistenza Esiste proporzionalità diretta tra V ed I. Il resistore è lineare I bpol elerc Sono sede d un unco fenomeno eleromagneco. Nella realà all nerno d un componene reale sono presen ders fenomen fsc d cu uno preponderane. Il ressore deale Il ressore è un bpolo la cu relazone

Dettagli

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate)

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate) Modell elemenar n forma d ssem dnamc Fondamen d Aomaca G. Ferrar Trecae rc elerc Ressore v ngresso sca R E n ssema LTI SISO d ordne ssema saco e propro D, D R rc elerc Indore v ngresso sca sao L E n ssema

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) Ing. Eleronca - II a Esperenza del aboraoro d Fsca Generale II Oscllazon lbere e rsonanza d un crcuo -sere (Traazone analca del crcuo -sere on quesa breve noa s vuole fornre la raazone eorca del crcuo

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI Fondamen d Segnal e Trasmssone Segnal deermnsc e casual Un segnale () s dce DETEMIISTICO se e una funzone noa d, coe se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale

Dettagli

Circuiti del secondo ordine

Circuiti del secondo ordine Crcu el secono orne Un crcuo el secono orne è caraerzzao a un equazone fferenzale el secono orne I crcu el secono orne conengono una o pù ressenze e ue elemen namc L e/o C Teora e Crcu Prof. Luca Perregrn

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTOTECNICA Ingegnera Indusrale BIPOLI E TASFOMATE Sefano Pasore Dparmeno d Ingegnera e Archeura Corso d Eleroecnca 43IN a.a. 3-4 Classfcazone de componen Dpende dalle equazon cosue del modello del componene,

Dettagli

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste Modell reologc Romano Lapasn Dparmeno d Ingegnera e Archeura Approcc fenomenologc e approcc molecolar/mcroreologc Problema cenrale della reologa: defnzone dell equazone cosuva (relazone ra ensore degl

Dettagli

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste

Modelli reologici. Romano Lapasin. Dipartimento di Ingegneria e Architettura Università di Trieste Modell reologc Romano Lapasn Dparmeno d Ingegnera e Archeura Approcc fenomenologc e approcc molecolar/mcroreologc Problema cenrale della reologa: defnzone dell equazone cosuva (relazone ra ensore degl

Dettagli

Equazioni di stato per circuiti del I ordine

Equazioni di stato per circuiti del I ordine Lezone 5 Equazon d sao per crcu del ordne Lezone n.5 Equazon d sao per crcu del ordne. Equazone d sao per crcu del ordne. Dmensone fsca de coeffcen dell equazone d sao. Esercz. sere e parallelo. L sere

Dettagli

Campo magnetico stazionario

Campo magnetico stazionario Campo magneco sazonaro www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Equazon fondamenal Equazon per l campo magneco H J B H B n d J n d Equazon d legame maerale ezzo lneare soropo B H H ) ( ezzo

Dettagli

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO

PRINCIPI DI SISTEMI ELETTRICI SEDE DI MILANO same d PINCIPI DI SISTMI TTICI SD DI MINO I Compno del 0 05 07 ) Il crcuo d Fg., n regme sazonaro, è così assegnao: () 0 V 0 V 5 V 8 0 5 5 0 00 mh nerruore S è apero da un empo nfno e s chude all sane

Dettagli

Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici

Modellistica. Cos è un modello Caratteristiche dei modelli Metodi formali Esempi per sistemi semplici Modellstca Cos è un modello Caratterstche de modell Metod formal Esemp per sstem semplc (ved Marro par. 1.1, 1.4) (ved Vtell-Petternella par. I.1, I.1.1, I.1.2, I.2, I.2.1 ) Automatca ROMA TRE Stefano

Dettagli

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015

Istituzioni di Probabilità Laurea magistrale in Matematica 15 Gennaio 2015 Iuzon d Probablà Laurea magrale n Maemaca 5 Gennao 5 Eerczo. pun S conder l equazone dfferenzale ocaca S dmor che dx = X d +, X = x. X = B + e x e B d è l unca oluzone. S mpo la verfca che ale oluzone

Dettagli

Circuiti Elettrici Lineari Condensatori e induttori

Circuiti Elettrici Lineari Condensatori e induttori Facolà d Ingegnera Unersà degl sud d Paa orso d aurea Trennale n Ingegnera Eleronca e Informaca rcu Elerc near ondensaor e nduor rcu Elerc near a.a. 8/9 Prof. uca Perregrn ondensaor e nduor, pag. Sommaro

Dettagli

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale

STATISTICA PSICOMETRICA a.a. 2004/2005 Corsi di laurea. Scienze e tecniche neuropsicologiche Modulo 3 Statistica Inferenziale STATISTICA PSICOMETRICA a.a. 004/005 Cors d laurea Scenze e tecnche neuropscologche Modulo 3 Statstca Inferenzale Probabltà Dstrbuzon d probabltà Dstrbuzon camponare Stma ntervallare Verfca delle potes

Dettagli

Soluzione di sistemi di equazioni differenziali

Soluzione di sistemi di equazioni differenziali Soluzone d ssem d equazon dfferenzal Porese aere l mpressone d non sapere nulla sulle equazon dfferenzal e d non aerne ma nconraa una. In realà quesa mpressone è sbaglaa perché la legge d Neon F ma s può

Dettagli

I bipoli elettrici. Il resistore I generatori ideali Equivalenze I generatori reali Condensatore Induttore

I bipoli elettrici. Il resistore I generatori ideali Equivalenze I generatori reali Condensatore Induttore I bpol elerc Il ressore I generaor deal Equalenze I generaor real Condensaore Induore Sono sede d un unco fenomeno eleromagneco. Nella realà all nerno d un componene reale sono presen ders fenomen fsc

Dettagli

A i = E. R i. R i. dt Moltiplico per idt e ottengo energie: 2. q RC. Quindi Lidi rappresenta energia magnetica immagazzinata in L.

A i = E. R i. R i. dt Moltiplico per idt e ottengo energie: 2. q RC. Quindi Lidi rappresenta energia magnetica immagazzinata in L. Maemaca e Fsca classe 5G ppun: crcu PPUNTI: IUITI SS nn eess,,, ssoo ool ll nneeaa uurree,,, nn eegg rraa zz oo nn aal ll eess oo IIUIITO = ED ENEGII DE MPO MGNETIIO d d = = + d d Molplco per d e oengo

Dettagli

Meccanica Cinematica del punto materiale

Meccanica Cinematica del punto materiale Meccanca 7-8 Puno maerale Corpo d dmenson rascurabl rspeo allo spazo nel quale s muoe e neragsce con alr corp Approssmazone Terra-Sole R d Earh Sun-Earh 6 6.4 m.5 m 4.3 5 E una buona approssmazone? - rba

Dettagli

I bipoli elettrici. Il resistore I generatori ideali Equivalenze I generatori reali Condensatore Induttore

I bipoli elettrici. Il resistore I generatori ideali Equivalenze I generatori reali Condensatore Induttore I bpol elerc Il ressore I generaor deal Equalenze I generaor real ondensaore Induore Sono sede d un unco fenomeno eleromagneco. Nella realà all nerno d un componene reale sono presen ders fenomen fsc d

Dettagli

Campi Elettromagnetici e Circuiti I Condensatori e induttori

Campi Elettromagnetici e Circuiti I Condensatori e induttori Facolà d Ingegnera Unersà degl sud d Paa orso d aurea Trennale n Ingegnera Eleronca e Informaca amp Eleromagnec e rcu I ondensaor e nduor amp Eleromagnec e rcu I a.a. 3/4 Prof. uca Perregrn ondensaor e

Dettagli

CONDUTTIMETRIA. La conduttanza è l inverso della resistenza e la resistenza Conduttanza C = R

CONDUTTIMETRIA. La conduttanza è l inverso della resistenza e la resistenza Conduttanza C = R ODUTTIMETIA La condumera è una ecnca basaa sulla conducblà degl on presen n soluzone. I conduor possono essere : I spece generalmene meall e meallod, sono caraerzza dall assenza del rasporo d maera, n

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Lezione 11. Polinomi a coefficienti in un campo.

Lezione 11. Polinomi a coefficienti in un campo. Lezone Prerequs: Lezone 0. Polnom a coeffcen n un campo. Sa K un campo. In quesa lezone sudamo le propreà armeche dell'anello d polnom K[ X ], che sono analoghe a quelle valde nell'anello Z e da no consderae

Dettagli

Verifica reti con più serbatoi (II)

Verifica reti con più serbatoi (II) Verfca ret con pù serbato (I) Condzon al contorno per gl N nod della rete e corrspondent ncognte: Condzone mposta Incognta A) carco pezometrco portata concentrata B) portata concentrata carco pezometrco

Dettagli

Laboratorio di Didattica della Fisica I

Laboratorio di Didattica della Fisica I Laboraoro d Ddaca della Fsca I Daa Oraro Aula Tpo 08-mar 5-7:5 A Lezone 3-mar 5-7:5 A Lezone 5-mar 5-7:5 Lab. MM e Dd. Laboraoro 0-mar 5-7:5 A Lezone -mar 5-7:5 Lab. MM e Dd. Laboraoro 7-mar 5-7:5 A Lezone

Dettagli

s F(s) f(0 ) nel dominio della pulsazione complessa. Per determinare le e at sen(ωt +ϕ) u(t) e at cos(ωt +ϕ) u(t)

s F(s) f(0 ) nel dominio della pulsazione complessa. Per determinare le e at sen(ωt +ϕ) u(t) e at cos(ωt +ϕ) u(t) A TASFOMATA D APAE E A SUA APPAZONE A UT NEA ON MEMOA. DEFNZONE E POPETÀ a raformaa d aplace d una funzone f( è defna dalla eguene relazone: [ f (] f ( e F ( dove F( è dea raformaa d aplace della funzone

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

GENERATORE DI IMPULSO CON AMPLIFICATORE OPERAZIONALE

GENERATORE DI IMPULSO CON AMPLIFICATORE OPERAZIONALE GENEAOE DI IMPULSO CON AMPLIFICAOE OPEAZIONALE Un generaore d mpulso, o mulvbraore monosable, è un crcuo che presena due possbl sa: uno sao sable ed uno sao quas sable Il crcuo s rova, normalmene, nello

Dettagli

G. SUPERTI FURGA MODELLISTICA DEI SISTEMI ELETTROMECCANICI Marzo 2005 SISTEMI DI INDUTTORI pag. 1 di 12

G. SUPERTI FURGA MODELLISTICA DEI SISTEMI ELETTROMECCANICI Marzo 2005 SISTEMI DI INDUTTORI pag. 1 di 12 G. SUPERTI FURGA MODELLISTICA DEI SISTEMI ELETTROMECCANICI Marzo 5 SISTEMI DI INDUTTORI pag. d SISTEMI DI INDUTTORI. INDUTTORI Gl nsem d nduor sono un argomeno parcolarmene mporane, cò ne gusfca una raazone

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione

Equilibrio e stabilità di sistemi dinamici. Stabilità dell equilibrio di sistemi dinamici non lineari per linearizzazione Equlbro e stabltà d sstem dnamc Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem dnamc non lnear per lnearzzazone Stabltà dell equlbro d sstem NL TC Crter d stabltà

Dettagli

MODELLI DI SISTEMI. Modelli di sistemi dinamici Operatore D. Trasformate di Laplace. CONTROLLI AUTOMATICI Ingegneria Meccatronica

MODELLI DI SISTEMI. Modelli di sistemi dinamici Operatore D. Trasformate di Laplace. CONTROLLI AUTOMATICI Ingegneria Meccatronica Modell d sstem dnamc CONTOI UTOMTICI Ingegnera Meccatronca http://www.automazone.ngre.unmore.t/pages/cors/utomazone%20industrale.htm MODEI DI SISTEMI S prenderanno n esame alcun esemp d modell matematc

Dettagli

Circuiti dinamici del primo e del secondo ordine

Circuiti dinamici del primo e del secondo ordine rcu namc el prmo e el secono orne www.e.ng.unbo./pers/masr/aca.hm ersone el -4-4 rcu elemenar el prmo orne rcuo el prmo orne: crcuo l cu sao è efno meane una sola arable a eermnazone ella rsposa rchee

Dettagli

Seminario. Analisi dei transitori circuitali con il simulatore Pspice. tenuto dalla prof. Mariangela Usai

Seminario. Analisi dei transitori circuitali con il simulatore Pspice. tenuto dalla prof. Mariangela Usai Semnaro Anals de ransor crcal con l smlaore Pspce. eno dalla prof. Marangela Usa docene del DI Dparmeno d Ingegnera lerca ed leronca Facolà d Ingegnera dell Unversà degl Sd d aglar I pare egme dnamco nel

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Circuiti magnetici. (versione del ) Campo magnetico stazionario o quasi stazionario

Circuiti magnetici.  (versione del ) Campo magnetico stazionario o quasi stazionario Crcu magnec www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Campo magneco sazonaro o quas sazonaro Condzon sazonare: grandezze eleromagneche cosan nel empo Condzon quas sazonare: varazon nel empo

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione marzo 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 25 17 marzo 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/26? Convesstà Sa I un ntervallo

Dettagli

Corso di Elettrotecnica

Corso di Elettrotecnica Unerstà degl Stud d Paa Facoltà d Ingegnera orso d orso d Elettrotecnca Teora de rcut rcut elettrc n funzonamento perturbato rcut elettrc n funzonamento perturbato I IRUITI OMPRENONO: Sorgent nterne d

Dettagli

INDICE. Scaricabile su: Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata

INDICE. Scaricabile su:   Derivate TEORIA. Derivata in un punto. Significato geometrico della derivata P r o f Gu d of r a n c n Anteprma Anteprma Anteprma www l e z o n j md o c o m Scarcable su: ttp://lezonjmdocom/ INDICE TEORIA Dervata n un punto Sgnfcato geometrco della dervata Funzone dervata e dervate

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energa e Lavoro Fnora abbamo descrtto l moto de corp (puntform) usando le legg d Newton, tramte le forze; abbamo scrtto l equazone del moto, determnato spostamento e veloctà n funzone del tempo. E possble

Dettagli

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi

Stabilità dei Sistemi Dinamici. Stabilità Semplice. Stabilità Asintotica. Stabilità: concetto intuitivo che può essere formalizzato in molti modi Gustavo Belforte Stabltà de Sstem Dnamc Gustavo Belforte Stabltà de Sstem Dnamc Stabltà de Sstem Dnamc Il Pendolo Stabltà: concetto ntutvo che può essere formalzzato n molt mod Intutvamente: Un oggetto

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria

Università degli Studi della Calabria Facoltà di Ingegneria Unersà degl Sud della Calabra Facolà d Ingegnera Corso d Laurea n Ingegnera Eleronca Indro Telecomuncaon Tes d Laurea Anenna pach sacked ad onde superfcal rdoe Relaore: Prof. Gandomenco AMENDOLA Canddao:

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 21 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 2: 21 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Defnzone. f : R R s dce addtva se per ogn

Dettagli

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate)

Modelli elementari in forma di sistemi dinamici. (Fondamenti di Automatica G. Ferrari Trecate) Modell elemenar n forma d ssem dnamc Fondamen d Aomaca G. Ferrar Trecae rc elerc Ressore v : : ngresso sca Ssema dnamco R E n ssema LTI SISO d ordne 0 ssema saco e propro D 0 D R rc elerc Indore v :ngresso

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese.

Adrien-Marie Legendre (Parigi, 18 settembre 1752 Parigi, 10 gennaio 1833) è stato un matematico francese. Adren-Mare Legendre (Parg, 18 seembre 175 Parg, 10 gennao 1833) è sao un maemaco francese. 1 Trasformazon d Legendre per cambare varable ndpendene Supponamoche samo neressa a conoscere una grandezza f

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Modell 1 lezone 15 23 novembre 211 Funzon Eulerane - robabltà professor Danele Rtell www.unbo.t/docent/danele.rtell 1/2? Cambo

Dettagli

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che

( ) d R L. = ρ. w D R L. L 1 = -a -3 b + c + d T -2 = -a - c Risolvendo il sistema M 0 = a + b. In generale possiamo dire che Fsca Tecnca G. Grazzn Facoltà d Ingegnera In generale possamo dre che R L f ( µ,,, D Dal punto d vsta matematco possamo approssmare la funzone con una sere d potenze e qund: R L ( a b c d µ B D ma per

Dettagli

Prova scritta di Elettronica I 26 giugno 2001

Prova scritta di Elettronica I 26 giugno 2001 Prova scrtta d Elettronca I 26 gugno 2001 Soluzone 1. Dato l seguente crcuto, determnare: Q3 BC179 BC179 Q4 RL 100k Q2 RE 2.3k I. l punto d rposo e parametr per pccol segnal. (S consgla d trovare la relazone

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzone e modellstca de sstem Element fondamental Rappresentazone n arabl d stato Esemp d rappresentazone n arabl d stato 007 Poltecnco d Torno Resstore deale Resstore deale d resstenza R R R equazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 4: 28 febbraio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 4: 28 febbrao 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/25? Usando le equazon dfferenzal a varabl separabl,

Dettagli

Controllo predittivo (MPC o MBPC)

Controllo predittivo (MPC o MBPC) Conrollo predvo MPC o MBPC Nella sa formlaone pù enerale, l conrollo predvo consa d re dee d base:. L lo d n modello maemaco ao a prevedere le sce del processo nel san d empo fr l orone. Le sce fre, comprese

Dettagli

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta

Metodi ad un passo espliciti con passo adattivo Metodi Runge - Kutta Metod ad un passo esplct con passo adattvo Metod Runge - Kutta Scrvere un programma che approssm l problema d Cauchy: u (t) = f(t, u), t 0 t T, u R d, u(t 0 ) = v per un sstema d equazon dfferenzal ordnare

Dettagli

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini.

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini. Lezone Peequs: Lezone. Funzon polnomal. Radc d un polnomo. Teoema d Ruffn. Sa K un campo e sa L un campo d cu K è soocampo (n al caso s dce anche che L è un'esensone d K). Sa f ( X ) K[ X ] e sa α L. Alloa,

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

- Transitori nelle reti RC ed RL. prof. Cleto Azzani IPSIA Moretto Brescia 12/11/95 - SOMMARIO

- Transitori nelle reti RC ed RL. prof. Cleto Azzani IPSIA Moretto Brescia 12/11/95 - SOMMARIO - SOMMAIO FNOMNI ANSIOI IN IUII... serczo :... Osservazon... 6 AIA DI UN ONDNSAO A ON OSAN... 7 Osservazon... 7 IUII FOMAOI DI IMPUSO... 7 Osservazon... 8 FNOMNI ANSIOI IN IUII... 9 Osservazon... 0 AIA

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Carla Seatzu, 8 Marzo 28 Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto

Dettagli

Controlli Automatici A

Controlli Automatici A .Introduzione Controlli Automatici A Corsi di laurea triennali in Ingegneria Elettronica, Informatica, Telecomunicazioni a.a. 00/00 Docente: Prof. Aurelio Piazzi Email: aurelio@ce.unipr.it http://www.ce.unipr.it/people/piazzi/

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Analisi Class info sul corso Lezione 1 22 settembre 2014

Analisi Class info sul corso Lezione 1 22 settembre 2014 CLASS Bologna Anals Matematca @ Class nfo sul corso Lezone 1 22 settembre 2014 professor Danele Rtell danele.rtell@unbo.t 1/27? Codce docente 030508 Codce corso 00013 Anals Matematca roflo scentfco del

Dettagli

Abusi di Mercato. S.A.I.Vi.M.: la procedura probabilistica per l individuazione di Abusi di Mercato. Market Abuse Detection. c.d.

Abusi di Mercato. S.A.I.Vi.M.: la procedura probabilistica per l individuazione di Abusi di Mercato. Market Abuse Detection. c.d. 90 60 30 gen 998 4 feb 998 8 mar 998 000000 0-000000 -4000000-6000000 -8000000-0000000 -000000-4000000 44 43 4 4 40 39 38 37 36 9-5-99 4-5-99 7-5-99-6-99 4-6-99 Mare Abuse Penomenon: defnzone Abus d Mercao

Dettagli

Modelli Clamfim Equazioni differenziali esatte, cambio di variabili, equazioni del secondo ordine 28 settembre 2015

Modelli Clamfim Equazioni differenziali esatte, cambio di variabili, equazioni del secondo ordine 28 settembre 2015 CLAMFIM Bologna Modell 1 @ Clamfm Equazon dfferenzal esatte, cambo d varabl, equazon del secondo ordne 28 settembre 2015 professor Danele Rtell danele.rtell@unbo.t 1/21? Exact dfferental equatons If Q

Dettagli

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007 Meod quanav per la sma del rscho d mercao Aldo Nassgh 16 Oobre 007 METODI NUMERICI Boosrap della curva de ass Prncpal Componen Analyss Rsk Mercs Meod d smulazone per l calcolo del VaR basa su Full versus

Dettagli

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z)

Le soluzioni della prova scritta di Matematica per il corso di laurea in Farmacia (raggruppamento M-Z) Le soluzon della prova scrtta d Matematca per l corso d laurea n Farmaca (raggruppamento M-Z). Data la funzone a. trova l domno d f f ( ) ln + b. scrv, esplctamente e per esteso, qual sono gl ntervall

Dettagli

Compito di SISTEMI E MODELLI 25 Gennaio 2016

Compito di SISTEMI E MODELLI 25 Gennaio 2016 Compto d SISTEMI E MODELLI 5 Gennao 06 È vetato l uso d lbr o quadern. Le rsposte vanno gustfcate. Saranno rlevant per la valutazone anche l ordne e la charezza espostva. Consegnare SOLO la bella copa,

Dettagli

Corso di. Gasdinamica II Tommaso Astarita

Corso di. Gasdinamica II Tommaso Astarita Corso d Gasdnamca II Tommaso Astarta astarta@unna.t www.docent.unna.t Gasdnamca II Tommaso Astarta 5.0.008 Metodo d Eulero S supponga d avere una equazone dfferenzale del prmo ordne: f ( x, ) x xo o Defnendo

Dettagli

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R

ω 0 =, abbiamo L = 1 H. LC 8.1 Per t il condensatore si comporta come un circuito aperto pertanto la corrente tende a zero: la R 8. Per t l condensatore s comporta come un crcuto aperto pertanto la corrente tende a zero: la funzone non può essere la (c). caando α e ω 0 s ottengono seguent alor: α 5 0 e ω 0 0. Essendo α > ω 0 l crcuto

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del --04) Teorema d Tellegen potes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 2: 18 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 2: 18 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? Defnzone. f : R R s dce moltplcatva se per

Dettagli

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese

Sistemi Intelligenti Relazione tra ottimizzazione e statistica - IV Alberto Borghese Sstem Intellgent Relazone tra ottmzzazone e statstca - IV Alberto Borghese Unverstà degl Stud d Mlano Laboratory of Appled Intellgent Systems (AIS-Lab) Dpartmento d Informatca borghese@dunmt Anals dell

Dettagli

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI

Equilibrio e stabilità di sistemi dinamici. Stabilità interna di sistemi dinamici LTI Equlbro e stabltà d sstem dnamc Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI Stabltà nterna d sstem dnamc LTI TC Crter d stabltà per sstem dnamc LTI TC Stabltà nterna d sstem dnamc

Dettagli

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009

Dipartimento di Matematica per le scienze economiche e sociali Università di Bologna. Matematica aa lezione febbraio 2009 Dpartmento d Matematca per le scenze economche e socal Unverstà d Bologna Matematca aa 2008-2009 lezone 17 13 febbrao 2009 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? 2/19? Fgura 1: ( 5y

Dettagli

Predimensionamento reti chiuse

Predimensionamento reti chiuse Predmensonamento ret chuse Rspetto ad una rete aperta, ogn magla aggunge un grado d lbertà (una nfntà d soluzon) nella determnazone delle portate Q,Q 1, e Q 2, utlzzando le sole equazon d contnutà. La

Dettagli

5.1 Controllo di un sistema non lineare

5.1 Controllo di un sistema non lineare 5.1 Controllo d un sstema non lneare Sa dato l sstema non lneare rappresentato n fgura 5.1, con h g θ Θ,m,r Fgura 5.1: Sstema non lneare F m (,d) = k m la forza che esercta l elettromagnete percorso da

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 0-0-03) Teorema d Tellegen Ipotes: Crcuto con n nod e l lat ers d rfermento scelt per tutt lat secondo la conenzone dell utlzzatore {,...,

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca

Ministero dell Istruzione, dell Università e della Ricerca Noa ecnca La formula per la ulzzazone degl Indcaor conenua nell allegao al D.M. n. 506/2007, è defna araverso seguen passagg logco-algebrc, n relazone a quano prevso dal D.M. 3 luglo 2007, n. 362 (lnee

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 16: 2 maggio 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 16: 2 maggo 2012 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/19? CCT/CCTEu S tratta d un ttolo a cedola varable:

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

I componenti ideali 1

I componenti ideali 1 I componen eal I bpol elerc Sono see un unco fenomeno eleromagneco. Nella realà all nerno un componene reale sono presen ers fenomen fsc cu uno preponerane. Il ressore eale Il ressore è un bpolo la cu

Dettagli