ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1"

Transcript

1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell uscita per sistemi lineari Esercizio 1 Si consideri il sistema non lineare del 2 o ordine descritto dalle equazioni ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u ẋ 2 = x 2 (1) 1.1 Si verifichi che x 1 = 0, x 2 = 0 è uno stato di equilibrio associato all ingresso u(t) = 0, t, per il sistema (1). Si scrivano le equazioni del sistema linearizzato attorno a tale stato di equilibrio. x 1 = 0, x 2 = 0 è uno stato di equilibrio per il sistema (1) associato all ingresso u(t) = 0 perchè le derivate delle variabili di stato con u posto uguale a 0 sono identicamente nulle quando x 1 = x 1 e x 2 = x 2 : 2 x 1 + (sen 2 ( x 1 ) + 1) x 2 = 0 x 2 = 0 Le equazioni del sistema linearizzato attorno all equilibrio x 1 = 0, x 2 = 0 associato all ingresso u(t) = 0 sono: x 1 = 2 x 1 + x u x 2 = x 2 y = x Si verifichi che lo stato di equilibrio x 1 = 0, x 2 = 0 associato all ingresso u(t) = 0 è instabile. La matrice dinamica del sistema linearizzato attorno all equilibrio x 1 = 0, x 2 = 0 associato all ingresso u(t) = 0 è A = [ ] Essa ha autovalori λ 1 = 2 e λ 2 = 1. Per il criterio degli autovalori, il sistema linearizzato è instabile. Inoltre, dato che λ 2 = 1 > 0, allora il movimento di equilibrio del sistema non lineare è instabile.

2 1.3 Si supponga che venga applicato in ingresso al sistema u(t) = 0.5x 2 (sen 2 (x 1 ) + 1) + v(t). Si scrivano le equazioni del sistema così ottenuto, con ingresso v ed uscita y. Sostituendo u(t) = 0.5x 2 (sen 2 (x 1 ) + 1) + v(t) nelle equazioni del sistema (1) si ottengono le equazioni del sistema: ẋ 1 = 2x 1 + 2v ẋ 2 = x Si determini il movimento dell uscita del sistema ottenuto al punto 1.3, quando la condizione iniziale è x 1 (0) = x 2 (0) = 0 e v(t) = 1, t 0. Dato che basta calcolare l andamento della variabile di stato x 1 (t) risolvendo l equazione differenziale: ẋ 1 = 2x 1 + 2v, v(t) = 1, t 0, x 1 (0) = 0. La sua soluzione si ricava nel modo seguente x 1 (t) = e 2t x 1 (0) + t 0 e 2(t τ) 2v(τ)dτ = 1 e 2t, t 0. Il movimento dell uscita cercato è quindi y(t) = x 1 (t) = 1 e 2t, t 0.

3 Esercizio 2 Si consideri il sistema non lineare descritto dalle seguenti equazioni: ẋ 1 = x x 1 + x 2 + u + 1 ẋ 2 = x 1 + x 2 + u + x Determinare il movimento di equilibrio associato all ingresso costante u(t) = 1, t, e scrivere le equazioni del sistema linearizzato attorno ad esso. Ponendo a zero le derivate ẋ 1 e ẋ 2 con u(t) = 1, t si ottiene il sistema di equazioni: x x 1 + x 2 = 0 x 1 + x 2 1 = 0 da cui si ricava lo stato di equilibrio x 1 = 1, x 2 = 0. L uscita di equilibrio corrispondente è ȳ = 1. Il movimento di equilibrio dello stato associato a u(t) = 1, t, è x 1 (t) = 1 t x 2 (t) = 0 Il movimento di equilibrio dell uscita è y(t) = 1, t. Le equazioni del sistema linearizzato attorno al movimento di equilibrio calcolato sono x 1 (t) = 2 x 1 (t) + x 2 (t) + u(t) x 2 (t) = x 1 (t) + x 2 (t) + u(t) y(t) = x 1 (t) + x 2 (t) 2.2 Valutare le proprietà di stabilità del movimento di equilibrio calcolato al punto 1.1. La matrice dinamica A del sistema linearizzato è: [ ] 2 1 A = 1 1 Il polinomio caratteristico di A è: det(λi A) = λ 2 + λ 3. Gli autovalori di A sono quindi λ 1,2 = 1/2 ± 13/2. Dato che uno di essi è a parte reale positiva, allora il movimento di equilibrio calcolato al punto 2.1 è instabile.

4 Esercizio 3 Si consideri il sistema lineare descritto dalle seguenti equazioni: ẋ 1 = 2x 1 + x 2 + u ẋ 2 = 3x 2 + 3u (2) y = x Determinare l espressione analitica del movimento dell uscita del sistema (3) quando l ingresso applicato è u(t) = 2, t 0, e x 1 (0) = 0, x 2 (0) = 1. Dato che y = x 2 e il movimento della variabile di stato x 2 non dipende da x 1, allora basta risolvere l equazione differenziale ẋ 2 (t) = 3x 2 (t) + 3u(t) con u(t) = 2, t 0 e x 2 (0) = 1. La soluzione è y(t) = x 2 (t) = e 3t + t 0 e 3(t τ) 6dτ = 2 e 3t, t 0

5 Esercizio 4 Si consideri un carrello di massa unitaria (m = 1) che si muove su di una guida rettilinea orizzontale soggetto ad una forza F, in presenza di una forza di attrito F a proporzionale alla velocità del carrello, con costante di proporzionalità α > 0. La posizione del carrello lungo la guida rettilinea è indicata con s. 4.1 Posto x 1 = s e x 2 = ṡ, si scrivano le equazioni nelle variabili di stato x 1 e x 2 del sistema carrello con ingresso u dato dalla forza F e uscita y data dalla sua posizione s lungo la guida rettilinea. ẋ 1 = x 2 ẋ 2 = αx 2 + u 4.2 Posto α = 2, si determini l espressione analitica del movimento libero dell uscita del sistema, a partire dalla condizione iniziale x 1 (0) = x 2 (0) = 2. ẋ 1 = x 2 ẋ 2 = 2x 2 + u Calcoliamo prima il movimento libero della componente x 2 risolvendo ẋ 2 = 2x 2, x 2 (0) = 2. Si ottiene: x 2 (t) = 2e 2t, t 0. Sostituiamo questa espressione nell equazione ẋ 1 = x 2

6 ottenendo l equazione che governa l evoluzione di x 1 ẋ 1 (t) = 2e 2t, x 1 (0) = 2 Risolvendo questa equazione differenziale si ottiene: x 1 (t) = da cui t 0 2e 2τ dτ + 2 = 3 e 2t, t 0, y(t) = x 1 (t) = 3 e 2t, t 0.

7 Esercizio 5 Si consideri il sistema descritto dalle seguenti equazioni: ẋ 1 = x 5 1 2x 1 + x 2 + u ẋ 2 = x 5 1 x 2 u 5.1 Dire, motivando la risposta, se il sistema è lineare o non lineare, statico o dinamico, proprio o improprio. Il sistema è: non lineare, perchè il secondo membro delle equazioni di stato non è una combinazione lineare delle variabili di stato e dell ingresso. dinamico, perchè l uscita al generico istante t non può essere determinata sulla base della conoscenza del solo ingresso allo stesso istante t. proprio, perchè nella trasformazione di uscita non compare l ingresso. 5.2 Determinare il movimento di equilibrio associato all ingresso costante u(t) = 2, t, e scrivere le equazioni del sistema linearizzato attorno ad esso. Il valore dell equilibrio si ottiene uguagliando a zero il secondo membro delle equazioni di stato calcolati ponendo x 1 (t) = x 1, x 2 (t) = x 2 e u(t) = 2, t. x x 1 + x = 0 x 5 1 x 2 2 = 0 da cui si ottiene x 1 = 0 x 2 = 2 Le equazioni del sistema linearizzato sono: x 1 = 2 x 1 + x 2 + u x 2 = x 2 u 5.3 Dire se è possibile valutare le proprietà di stabilità del movimento di equilibrio calcolato al punto 5.2 tramite l analisi di stabilità del sistema linearizzato corrispondente.

8 La matrice dinamica del sistema linearizzato è [ ] 2 1 A = 0 1 Gli autovalori di A sono reali negativi. Questa è condizione sufficiente per concludere che il movimento di equilibrio è asintoticamente stabile.

9 Esercizio 6 Si consideri il sistema lineare descritto dalle seguenti equazioni: ẋ 1 = 10x 1 x 2 + u ẋ 2 = x 2 + u (3) 6.1 Determinare l espressione analitica del movimento dell uscita del sistema (3) quando l ingresso applicato è u(t) = 3, t 0, e x 1 (0) = 2, x 2 (0) = 3. La seconda equazione di stato non dipende dalla prima. x 2 = 3 è il valore di equilibrio di x 2 associato a u(t) = 3, t. Il movimento di x 2 associato a u(t) = 3, t 0, e x 2 (0) = 3 è quindi x 2 (t) = 3, t 0. Sostituito nella prima equazione con u(t) = 3, t 0, si ha ẋ 1 = 10x 1. Il movimento di x 1 è quindi il movimento libero associato a x 1 (0) = 2, cioè Dalla trasformazione di uscita segue: x 1 (t) = 2e 10t, t 0. y(t) = 2e 10t, t 0.

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1 AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 1 settembre 28: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema non lineare descritto dalle seguenti equazioni: ẋ 1

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

ẋ 1 = x x 1 + u ẋ 2 = 2x 2 + 2u y = x 2

ẋ 1 = x x 1 + u ẋ 2 = 2x 2 + 2u y = x 2 Testo e soluzione dell appello del 2 settembre 2. Si consideri il sistema descritto dalle seguenti equazioni: ẋ = x 2 2 + 2x + u ẋ 2 = 2x 2 + 2u y = x 2. Determinare l espressione analitica del movimento

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h.

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h. Politecnico di Milano Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 206 Tempo a disposizione:.30 h. Nome e Cognome................................................................................

Dettagli

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere 29 aprile 2016 (2h) Prof. Marcello Farina marcello.farina@polimi.it Fondamenti di Automatica 1 Sistemi a tempo discreto Un azienda

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1 FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 21: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema descritto dalle seguenti equazioni: ẋ 1 = x 2 2 + x 1 ẋ 2 =

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola FONDAMENTI DI AUTOMATICA novembre 28 Prima prova in itinere Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da 7 pagine compresi il foglio di carta semilogaritmica. Scrivere

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME Prima prova in itinere 07 maggio 014 Anno Accademico 013/014 ESERCIZIO 1 Si consideri il sistema S descritto

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 29/06/2017 Prof. Marcello Farina SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A. Scrivere le equazioni del sistema linearizzato

Dettagli

Analisi dei Sistemi. Pre-esame 2 Novembre 2002

Analisi dei Sistemi. Pre-esame 2 Novembre 2002 Analisi dei Sistemi Pre-esame 2 Novembre 22 Esercizio Si consideri un sistema descritto dal seguente modello ingresso-uscita dove ϱ e η sono parametri reali costanti (4 punti) Individuare le proprietà

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 giugno 24 Esercizio In riferimento allo schema a blocchi in figura. y r s s s2 y 2 K s dove Domanda.. Determinare una realizzazione in equazioni di

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D = n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.

Dettagli

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA Ingegneria Informatica e Ingegneria delle Telecomunicazioni Allievi da CM (incluso) a IM (escluso) Prof. Maria Prandini Anno Accademico 2017/18 Appello del

Dettagli

Esercitazione 04: Sistemi a tempo discreto

Esercitazione 04: Sistemi a tempo discreto 18 marzo 2019 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state scritte e redatte dal Prof. Alessandro Papadopoulos, Mälardalen University

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Seconda Prova Scritta [16-2-212] Soluzioni Problema 1 1. Chiamiamo A la matrice del sistema e cerchiamo anzitutto gli autovalori della matrice: l equazione secolare è (λ + 2β)λ

Dettagli

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE

Politecnico di Milano. Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO SOLUZIONE A.A. 25/6 Prima prova di Fondamenti di Automatica (CL Ing. Gestionale) 27 Novembre 25 ESERCIZIO punti: 8 su 32 Si consideri il sistema

Dettagli

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1.

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1. ESERCIZIO 1 Un sistema dinamico lineare invariante e a tempo continuo è descritto dall equazione differenziale che lega l ingresso all uscita:... y (t) + ÿ(t) + 4ẏ(t) + 4y(t) = u(t) 1. Si determinino le

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

Esercizi di Fondamenti di Automatica

Esercizi di Fondamenti di Automatica Esercizi di Fondamenti di Automatica Bruno Picasso Esercizio Sia dato il sistema lineare { ẋ(t) = Ax(t), x R n x() = x.. Mostrare che se x è tale che Ax = λx, λ R, allora il corrispondente movimento dello

Dettagli

Sistemi LTI a tempo continuo

Sistemi LTI a tempo continuo Esercizi 4, 1 Sistemi LTI a tempo continuo Equazioni di stato, funzioni di trasferimento, calcolo di risposta di sistemi LTI a tempo continuo. Equilibrio di sistemi nonlineari a tempo continuo. Esercizi

Dettagli

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento

Esercizi. Sistemi LTI a tempo continuo. Esempio. Funzioni di trasferimento Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 2 Sistemi LTI a tempo continuo Trasformando con Laplace si ottiene la seguente espressione

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m.

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m. I prova in itinere di Fondamenti di Automatica A.A. - 8 Novembre Prof. SILVIA STRADA Tempo a disposizione: h. 45 m. SOLUZIONE N.B. Svolgere i vari punti nello spazio che segue ogni esercizio. ESERCIZIO

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 18 febbraio 2014 Anno Accademico 2012/2013 ESERCIZIO 1 Si consideri il sistema descritto dalle

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 4/5 settembre 5 TESTO E Esercizio In riferimento allo schema a blocchi in figura. y y u - s5 sk y k s y 4 Domanda.. Determinare una realizzazione in equazioni

Dettagli

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato:

Esercizi. Funzioni di trasferimento. Dato un sistema LTI descritto dalle equazioni di stato: Esercizi 4, 1 Esercizi Funzioni di trasferimento Dato un sistema LTI descritto dalle equazioni di stato: Trasformando con Laplace si ottiene la seguente espressione per l uscita: Risposta libera Risposta

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ gennaio 2004 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/2004 4 gennaio 2004 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi. La chiarezza

Dettagli

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t)

Si considerino i sistemi elettrici RL rappresentati nella seguente figura: L u 1 (t) Esercizio Circuiti R in serie). Si considerino i sistemi elettrici R rappresentati nella seguente figura: + + + + u t) R y t) u t) R y t) Si consideri inoltre il sistema ottenuto collegando in serie i

Dettagli

ESERCIZI DEL TUTORATO DI FISICA MATEMATICA. 1. Prima parte Esercizio 1.1 (G. Stefani). Sia X il campo vettoriale lineare associato alla matrice A =.

ESERCIZI DEL TUTORATO DI FISICA MATEMATICA. 1. Prima parte Esercizio 1.1 (G. Stefani). Sia X il campo vettoriale lineare associato alla matrice A =. ESERCIZI DEL TUTORATO DI FISICA MATEMATICA GIORGIO STEFANI Sommario. I seguenti esercizi sono stati svolti durante il tutorato per il corso di Fisica Matematica dell a.a. 0-03, tenuto dal Prof. A. Lovison.

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2005/ febbraio 2006 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 25/26 13 febbraio 26 TESTO E SOLUZIONE Esercizio 1 Si consideri il sistema lineare descritto dalle equazioni di stato seguenti: ẋ 1 (t) = 2x 1 (t) αx 2 (t)

Dettagli

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/2006 2 aprile 2006 TESTO E SOLUZIONE Esercizio Assegnato il sistema dinamico, non lineare, tempo invariante x (k + ) = x (k) + x 2 (k) 2 + u(k) x 2

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2014-15 Prof. Silvia Strada Prima prova intermedia 28 Novembre 2014 Nome e Cognome:........................... Matricola...........................

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 09/02/2017 Prof. Marcello Farina SOLUZIONI Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema a tempo discreto non lineare descritto dalle seguenti

Dettagli

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 20 Settembre 2005 PARTE A P O LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA ESAME 0 Settembre 005 PARTE A Esercizio 1. Nel piano cartesiano Oxy con asse y verticale ascendente, un punto materiale P di massa m è

Dettagli

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento 20 aprile 2016 (3h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina 1 Schema

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di tipologia quadricottero.

Dettagli

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es.

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es. Equilibrio di sistemi dinamici Esercizio (derivato dall es. #8 del 8/9/22) Dato il sistema dinamico, non lineare, a tempo continuo, descritto dalle seguenti equazioni: ẋ (t) = x (t).5x 2 2 (t)+4u(t) ẋ

Dettagli

FM1 - Equazioni differenziali e meccanica

FM1 - Equazioni differenziali e meccanica Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica Prima prova d esonero (03-04-2006) CORREZIONE Esercizio 1. Lo spettro Σ(A) della matrice A si trova risolvendo

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 21/09/2016 - Soluzioni Prof Marcello Farina Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A Spiegare

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I FM21 - Fisica Matematica I Prima Prova Scritta [26-1-212] Soluzioni Problema 1 1. Riscriviamo il sistema come e risolviamo la prima equazione: xt) = x e 3t + 2 ẋ = 3x + 2, ẏ = y + z 3, ż = 2x + z, Inserendo

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 1 01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 Esercizio 1 - Date le matrici A = 2p 1 1 2p 2 C = 1 p di un modello LTI in variabili di stato a tempo

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati Capitolo. INTRODUZIONE. Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento

Dettagli

Prof. SILVIA STRADA Cognomi LF - PO

Prof. SILVIA STRADA Cognomi LF - PO Politecnico di Milano Prof. SILVIA STRADA Cognomi LF - PO A.A. 2015/16 Appello di Fondamenti di Automatica (CL Ing. Gestionale) 1 Marzo 2016 Tempo a disposizione: 2.00 h. Nome e Cognome:... Matricola...

Dettagli

Teoria dei Sistemi s + 1 (s + 1)(s s + 100)

Teoria dei Sistemi s + 1 (s + 1)(s s + 100) Teoria dei Sistemi 03-07-2015 A Dato il sistema dinamico rappresentato dalla funzione di trasferimento 10s + 1 (s + 1)(s 2 + 16s + 100) A.1 Si disegnino i diagrammi di Bode, Nyquist e i luoghi delle radici.

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 3 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 3 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 3 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

Appello di Febbraio di Fondamenti di Automatica A.A Febbraio 2011 Prof. SILVIA STRADA Tempo a disposizione: 2 h. 30 m.

Appello di Febbraio di Fondamenti di Automatica A.A Febbraio 2011 Prof. SILVIA STRADA Tempo a disposizione: 2 h. 30 m. Appello di Febbraio di Fondamenti di Automatica A.A. 1-11 Febbraio 11 Prof. SILVIA STRADA Tempo a disposizione: h. 3 m. Nome e Cognome: Matricola: Firma: N.B. Svolgere i vari punti nello spazio che segue

Dettagli

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g)

Modellazione e controllo Ca1 (a,b,c) Ca2 (d,e,f,g) Mec(a,c,d,e,g) Modellazione e controllo Ca1 (a,b,c) Ca (d,e,f,g) Mec(a,c,d,e,g) 13 Luglio 011 a) Una corpo di massa M e soggetto a una forza di richiamo elastica F el = K(x)x, una forza di attrito F att = hẋ e una forza

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

Introduzione ai sistemi dinamici

Introduzione ai sistemi dinamici Introduzione ai sistemi dinamici Prof. G. Ferrari Trecate, Prof. D.M. Raimondo Dipartimento di Ingegneria Industriale e dell Informazione (DIII) Università degli Studi di Pavia Fondamenti di Automatica

Dettagli

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande Esame scritto di Teoria dei Sistemi - Modena - Giugno 5 - Domande Per ciascuno dei seguenti test a risposta multipla segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 9 giugno 2017 SOLUZIONE ESERCIZIO 1. Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 29 gennaio 2018 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema robotico, costituito da un attuatore lineare che integra il circuito elettronico

Dettagli

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica Parte 3, 1 Stabilità Parte 3, 2 Stabilità: - del movimento (vedere libro ma non compreso nel programma) - dell equilibrio - del sistema (solo sistemi lineari) Analizzeremo separatamente sistemi a tempo

Dettagli

Stabilità: Stabilità. Stabilità: il caso dei sistemi dinamici a tempo continuo. Stabilità dell equilibrio

Stabilità: Stabilità. Stabilità: il caso dei sistemi dinamici a tempo continuo. Stabilità dell equilibrio Parte 3, 1 Parte 3, 2 Stabilità: - del movimento (vedere libro ma non compreso nel programma) Stabilità - dell equilibrio - del sistema (solo sistemi lineari) Analizzeremo separatamente sistemi a tempo

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/ giugno 2014 PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2013/2014 30 giugno 2014 nome e cognome: numero di matricola: prova d esame da CFU : 6 CFU 9 CFU Note: Scrivere le risposte negli spazi appositi. Non consegnare

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali In un equazione differenziale l incognita da trovare è una funzione, di cui è data, dall equazione, una relazione con le sue derivate (fino ad un certo ordine) e la variabile libera:

Dettagli

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010

1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 1 Sistemi Dinamici Esercizio del Parziale del 29/11/2010 Si consideri il sistema dinamico con { ẋ = y ẏ = d U(x) U(x) = 2 ( x 2 3 x + 4 ) e x/2. (2) 1. Tracciare qualitativamente le curve di fase del sistema

Dettagli

Esercizio 1, 6 punti [ ] Sapendo che una grandezza P(t) è caratterizzata dalle seguenti proprietà:

Esercizio 1, 6 punti [ ] Sapendo che una grandezza P(t) è caratterizzata dalle seguenti proprietà: Modellistica Ambientale/Modelli Matematici Ambientali - A.A. 2014/2015 Quinta prova scritta, Appello estivo 23 Settembre 2015 Parte comune a Modellistica Ambientale e Modelli Matematici Ambientali Schema

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Secondo compitino e primo appello, 12 gennaio 2017 Testi 1 Secondo compitino e primo appello, gennaio 7 Testi Prima parte, gruppo.. Determinare l insieme di definizione della funzione arcsin(e ).. Determinare lo sviluppo di Taylor di ordine 4 (in ) della funzione

Dettagli

Consideriamo un sistema dinamico tempo-invariante descritto da:

Consideriamo un sistema dinamico tempo-invariante descritto da: IL PROBLEMA DELLA STABILITA Il problema della stabilità può essere affrontato in vari modi. Quella adottata qui, per la sua riconosciuta generalità ed efficacia, è l impostazione classica dovuta a M. A.

Dettagli

Appello di Settembre (II)

Appello di Settembre (II) Appello di Settembre (II) 8 Settembre 22 Fondamenti di Automatica Ingegneria Gestionale Prof. Bruno Picasso Esercizio Sia dato il seguente sistema dinamico: { ẋ(t) = u(t)sin ( x(t) ) + u 3 (t) y(t) = e

Dettagli

Punti di equilibrio: sistemi tempo continui

Punti di equilibrio: sistemi tempo continui Capitolo 3 ANALISI DELLA STABILITÀ 31 Punti di equilibrio: sistemi tempo continui Si consideri il seguente sistema tempo continuo: ẋ(t) A x(t) + B u(t) y(t) C x(t) + D u(t) I punti di equilibrio x 0 del

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento

Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento Esercizi di modellistica, linearizzazione, punti di equilibrio e calcolo funzione di trasferimento Esercizio Si considerino 3 popolazioni P, P, P 3 che vivono nelle regioni A, B, C le cui numerosità sono

Dettagli

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 Prof.ssa Mara Tanelli 1. Si consideri il sistema dinamico non lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

Modelli nello spazio degli stati

Modelli nello spazio degli stati Modelli nello spazio degli stati Modelli nello spazio degli stati Stato: informazione che riassume, in ogni istante, l effetto della storia passata del sistema sul suo comportamento futuro. x(t) stato

Dettagli

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 2008 PARTE A

LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 2008 PARTE A LAUREA DI PRIMO LIVELLO IN FISICA ISTITUZIONI DI FISICA MATEMATICA PRIMO COMPITINO 11 Febbraio 008 PARTE A Esercizio 1. Si consideri il sistema di equazioni differenziali in R (x, y) ẋ = x 3x + y 3y +

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 28 giugno 2018 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema robotico per la lucidatura automatica della superficie

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff e le formule di base

Dettagli

Soluzione del Compitino di Sistemi Dinamici del 21 dicembre 2016

Soluzione del Compitino di Sistemi Dinamici del 21 dicembre 2016 Soluzione del Compitino di Sistemi Dinamici del dicembre 06 Esercizio Si consideri il sistema newtoniano con dissipazione ẍ = x cosx γẋ, γ 0, ed il sistema dinamico continuo ad esso associato a Si trasformi

Dettagli

Spazio degli stati. G(s) = Y (s) X(s) = b m s m + b m 1 s m b 1 s + b 0

Spazio degli stati. G(s) = Y (s) X(s) = b m s m + b m 1 s m b 1 s + b 0 .. MODELLISTICA - Modellistica dinamica 2. Spazio degli stati I sistemi dinamici lineari vengono tipicamente descritti utilizzando la trasformata di Laplace e il concetto di funzione di trasferimento.

Dettagli

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita:

Il modello preda predatore. Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: Modelli Matematici Ambientali, 2015/16 Dinamiche di Crescita: 2 popolazioni Il modello preda predatore Interazione di due popolazioni: il modello Preda-Predatore Il modello Preda-Predatore è stato sviluppato

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

FM210 - Fisica Matematica 1. Esercizio 1. Si consideri il sistema di equazioni differenziali lineari

FM210 - Fisica Matematica 1. Esercizio 1. Si consideri il sistema di equazioni differenziali lineari TUTORATO 1 (5-03-2019) FM210 - Fisica Matematica 1 sercizio 1. Si consideri il sistema di equazioni differenziali lineari ( ) ẋ = Ax, x R 2 3 2, A = 6 1 1. Si calcolino gli autovalori e gli autovettori.

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI Primo compitino 26 aprile 202 Anno Accademico 20/202 ESERCIZIO Si consideri il sistema descritto

Dettagli

TEORIA DELLA STABILITÀ. Esercizi con soluzione. G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza

TEORIA DELLA STABILITÀ. Esercizi con soluzione. G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza TEORIA DELLA STABILITÀ Esercizi con soluzione G. Oriolo Dipartimento di Informatica e Sistemistica Università di Roma La Sapienza Esercizio 1 Si consideri il sistema non lineare descritto dalle seguenti

Dettagli

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO

Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Fondamenti di Automatica (10 cfu) Corso di Studi in Ingegneria Gestionale A.A. 2011/12 TESTI ESERCIZI PRIMA PARTE DEL CORSO Prof. SILVIA STRADA Esercitatore ANDREA G. BIANCHESSI ESERCIZIO 1 1. Scrivere

Dettagli

Equazioni differenziali lineari

Equazioni differenziali lineari Sito Personale di Ettore Limoli Lezioni di Matematica Prof. Ettore Limoli Sommario Lezioni di Matematica... Equazioni differenziali lineari... Generalità... Equazione differenziale lineare omogenea del

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali.

In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Sistemi dinamici In questa lezione ci occuperemo di sistemi dinamici in tempo continuo, rappresentati da equazioni differenziali. Le equazioni differenziali sono delle equazioni in cui le incognite rispetto

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 CFU): 6 degli 8 esercizi numerici + 4 delle 5 domande a risposta multipla (v. ultime due pagine) NOTA: nell effettiva prova d esame

Dettagli

Esercizi 3, 1. Prof. Thomas Parisini. Esercizi 3, 3 Regola:

Esercizi 3, 1. Prof. Thomas Parisini. Esercizi 3, 3 Regola: Esercizi 3, 1 Esercizi 3, 2 Esercizi Stabilità per sistemi a tempo continuo Analisi degli autovalori Analisi del polinomio caratteristico, criterio di Routh-Hurwitz Stabilità per sistemi a tempo continuo

Dettagli

Stabilità per sistemi a tempo continuo

Stabilità per sistemi a tempo continuo Esercizi 3, 1 Stabilità per sistemi a tempo continuo Analisi degli autovalori Analisi del polinomio caratteristico, criterio di Routh-Hurwitz Calcolo di Esercizi 3, 2 Esercizi Stabilità per sistemi a tempo

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 21/06/2018 Prof Marcello Farina TRACCIA DELLE SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A Derivare e scrivere le

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 20 settembre 2013 Anno Accademico 2012/2013 ESERCIZIO 1 Si consideri il sistema descritto dalle

Dettagli

Raggiungibilità e Controllabilità Esercizi risolti

Raggiungibilità e Controllabilità Esercizi risolti Raggiungibilità e ontrollabilità Esercizi risolti 1 Esercizio Dato il seguente sistema dinamico LTI a tempo discreto descritto dalle matrici A e B: [ [ 1 k k A, B 0 1 + k 1 studiare le proprietà di raggiungibilità

Dettagli

Modulo 3. Mercato reale e mercato monetario

Modulo 3. Mercato reale e mercato monetario Modulo 3 Mercato reale e mercato monetario Esercizio. In un sistema economico, le funzioni che descrivono le principali variabili macroeconomiche sono: C = 400 + 0.8Y d I= 200 20000i G=3000 M d /P=0.5Y-0000i.

Dettagli

Il modello preda predatore. Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popo

Il modello preda predatore. Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popo Modellistica Ambientale, 2013/14 Dinamiche di Crescita: 2 popolazioni Il modello preda predatore Interazione di due popolazioni: il modello Preda-Predatore Il modello Preda-Predatore è stato sviluppato

Dettagli