Sm, T 1/ 2. Il decadimento alfa

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sm, T 1/ 2. Il decadimento alfa"

Transcript

1 Il decadimento alfa L emissione di particelle α da parte di vari radionuclidi rappresenta una delle prime scoperte della fisica moderna: nel 1908 utherford dimostrò che tale radiazione è costituita da nuclei di 4 He. Tra i componenti delle famiglie radioattive troviamo circa 30 emettitori α. La maggior parte degli isotopi creati artificialmente con numero di massa maggiore del Piombo sono emettitori α. Non vi sono emettitori α con A<146 ( Sm, T 1/ 2 = y ). L emissione di nuclei di 4 He è spiegata dall andamento dell energia di legame B/A in funzione di A. L energia di legame B/A per lo 4 He vale 7.07 MeV (contro i 2.57 e 2.83 MeV per lo 3 He ed il 3 H rispettivamente, e di 5.33 MeV per il 6 Li ecc. ecc.). Pertanto emettendo α un sistema nucleare guadagna molto in energia di legame, ma solo se si trova nella zona al di là del massimo della curva B/A: in questa regione il valore di B/A aumenta al diminuire di A (e quindi all emissione di particelle α). Questo non è però più vero quando ci si avvicina al massimo (e a maggior ragione a sinistra del massimo), dove l emissione α non è più un fenomeno che permetta guadagno di energia. Il decadimento α è energeticamente possibile quando : Q = M(Z,A) - M(Z-2,A-4) - M(2,4) > 0

2 Nel grafico è rappresentata la quantità Q in funzione del numero di massa A, dove le masse sono dedotte dal modello a goccia e si è posta la condizione: A Z = A 2/ 3

3 Il Q-valore della reazione rappresenta in pratica l energia cinetica della particella α. Infatti, considerando il nucleo a riposo nell istante del decadimento: 0 = p α + P p α = - P M 0 = m α + + M + T + T = M 0 - M - m α = Q Dove M 0 è la massa del nucleo iniziale e P, T ed M si riferiscono al nucleo residuo. 2 p α + P 2 2M = p 2 α m α M = Q p α m α M = Q = Q M Q M + m, essendo mα << M α In generale l energia delle particelle alfa emesse varia tra 4 e 9 MeV ed i tempi di dimezzamento dei nuclei che le emettono variano tra y e 10-7 s. Confrontando energia delle particelle alfa e tempo di dimezzamento si nota che ad energie più basse corrispondono tempi di dimezzamento più lunghi e viceversa: questa è una regola generale osservata e studiata fin dal 1911 da Geiger e Nuttal, che formularono la seguente legge: per una stessa serie radioattiva, il logaritmo della costante di

4 decadimento λ dipende linearmente dal logaritmo dell energia delle particelle alfa emesse: ln(λ) = A + B ln(e) La relazione originaria trovata era del tipo: ln(λ) = a + b ln() dove indica il percorso (range) delle particelle alfa in un mezzo assorbitore: ma poichè, come vedremo nel seguito, il range è legato all energia da una legge del tipo: = E n (e quindi ln lne), si vede che le due relazioni sono del tutto equivalenti. Se si raggruppano radionuclidi α-emettitori appartenenti agli stessi elementi si ottengono i risultati riportati nelle figure che seguono.

5 andamento di λ in funzione del range delle particelle α

6 La regola di Geiger e Nuttal fu trovata fenomenologicamente, ma può essere dedotta rigorosamente attraverso la meccanica quantistica: anzi, le teoria del decadimento α fu uno dei primi successi dell applicazione della meccanica quantistica ad un problema di fisica nucleare (1928, Gamow, Condon e Gurney). Possedendo questa energia cinetica ΔE in eccesso, le particelle α dovrebbero lasciare il nucleo in un tempo dell ordine di : t /v α dove rappresenta il raggio del nucleo e v α la velocità della particella. Anche per la minima energia cinetica osservata = 4 MeV, il calcolo numerico fornisce il valore: t = v α = m α = m c 2 α 2 2 c = = s Viceversa le vite medie dei radionuclidi α-emettitori possono essere anche dell ordine del miliardo di anni. Se si analizza l andamento dell energia potenziale U(r) in funzione della distanza, si ottiene un andamento del tipo riportato nella figura che segue:

7 andamento dell energia potenziale α-nucleo in funzione della distanza r dove rappresenta il raggio nucleare; per r< prevalgono le forze nucleari (schematizzate come una buca di potenziale costante), mentre per r> le forze nucleari, a causa del loro cortissimo range, sono inefficaci e prevale il campo colombiano, il cui potenziale ha il tipico andamento 1/r. La particella alfa, immersa nella materia nucleare, si trova nella zona con r<.

8 Se si misura la sua energia cinetica una volta emessa dal nucleo (e quindi per r ), abbiamo visto che si trovano valori compresi tra 4 e 9 MeV. Viceversa, l altezza della barriera colombiana vale: U C ( r = ) = zze2 per z=2, Z=90, =10 fm, e ricordando che e 2 =1.44 MeV fm, si ottiene: U C 30 MeV, quindi U C >>. Nasce allora il problema inverso: classicamente la particella α non potrebbe mai lasciare il nucleo, e non esisterebbero nuclei α-emettitori. Questo paradosso fu risolto da Gamow e da Condon e Gurney (1928), i quali, trattando quantisticamente il problema, mostrarono l esistenza di una probabilità di fuga finita anche nel caso in cui la meccanica classica avrebbe predetto una barriera assolutamente insormontabile, cioè completa stabilità nucleare.

9 L effetto tunnel quantistico Nel caso generale l equazione di Schroedinger per il moto della particella α si scrive nel seguente modo: 2 2m 2 ψ ( r) + V ( r) ψ ( r) = Eψ ( r) Separando le variabili si può scrivere: ψ ( r) = ρ( r) Θ( θ) Φ( ϕ), e se si scrive: ρ ( r ) = radiale seguente: ( ) d 2 u r dr 2 Il termine ( ) + 2m α T 2 α V( r) + r 2 2 ( + 1) u r ( ) = 0 u( r) r, si arriva all equazione differenziale 2 r rappresenta il potenziale centrifugo (segno +) e la quantità ( + 1) rappresenta il momento angolare l con il quale la particella α lascia il nucleo.

10 Vediamo, con un ragionamento semi-classico, quanto vale l. Il massimo parametro d urto l max con il quale la particella può uscire dal nucleo è appunto il raggio nucleare. ( ) l l max = p α, dove p α rappresenta il momento della particella. Pertanto si + 1 ricava: p α = 2m T α α = c2 c per = 5 MeV e =10 fm, si ottiene: l 11. l però non può assumere qualsiasi valore: infatti, a causa del principio di conservazione del momento angolare, deve essere: J = J a + J, avendo indicato con J e J i momenti angolari totali del nucleo padre e figlio e con J a il momento angolare totale della particella α. Considerando la regola di addizione dei momenti angolari in meccanica quantistica, si ha: J -J J α J +J dove J a = I a + l α rappresenta lo spin totale della particella α, somma del suo spin intrinseco I a e del suo momento angolare orbitale l α. Essendo I a = 0, risulta che l α può avere solo questo intervallo di valori: J -J l α J +J

11 In genere, a causa di questa limitazione, risulta l α = 0, 1, 2. Con l α = 2 risulta che il termine di barriera centrifuga vale 0.25 MeV e risulta quindi ben minore di V C () = 26 MeV. ( ) r calcolato per r = Nella trattazione semplificata che segue trascureremo il contributo della barriera centrifuga (considerando quindi l α = 0). L equazione di Schroedinger si riscrive allora nella forma più semplice: d 2 u( r) dr 2 + 2m ( α T 2 α V( r) )u( r) = 0 Consideriamo come primo passo una barriera di potenziale più semplice (vedi figura), descritta da: V(r) = V 0 per < r < 1 V(r) = 0 altrove.

12 V(r) = V 0 per < r < 1 V(r) = 0 altrove. V r schematizzazione di una barriera quantistica ad altezza costante Se consideriamo il moto di una particella α che si trova nella regione 1 avente una energia cinetica < V 0, l equazione di Schroedinger nelle zone 1, 2 e 3 prende la forma: d 2 u dr u = 0 (regioni 1 e 3) d 2 u dr + ( T 2 2 α V 0 )u = 0 (regione 2) La soluzione risulta:

13 u 1 = u 1 ( ) + u ( 1 ) = exp i r + A exp i r u 2 = B 1 exp V 0 ( ) r u 3 = u ( 3 ) = C exp i r + B 2 exp V 0 ( ) r Abbiamo posto uguale all unità il coefficiente dell onda incidente sulla barriera in quanto, ai fini della probabilità di penetrazione della barriera, ha importanza solo l ampiezza relativa delle onde. Abbiamo inoltre considerato nella regione 3 solo l onda che si sposta verso r crescente (la particella α si allontana dal nucleo). La penetrabilità della barriera D è data da: D = Φ 3 Φ 1 = u 2 3 u 2 1 ( ) v 3 = ( ) v 1 u 3 2 u 1 2 ( ) ( ) = C2

14 Φ 1 e Φ 3 rappresentano il flusso quantistico di particelle α nelle regioni 1 e 3 (nel verso di r crescente), mentre v 1 = v 3 rappresenta la velocità delle particelle α nelle rispettive regioni 1 e 3. Le costanti A, B 1, B 2 e C, sono determinate dalle condizioni di continuità della funzione u e della sua derivata prima nei punti di discontinuità del potenziale. Sviluppando i calcoli, nel caso di V 0 >> (come nel nostro caso), si ottiene la soluzione approssimata: D = exp 2 2m V 0 α ( ) ( 1 ) il risultato può essere esteso ad una barriera di altezza variabile V(r). Nel caso di potenziale colombiano: D = exp 2 zze 2 dr = exp( 2G) r dove è la distanza alla quale si annulla il radicando: = zze2 (punto di ritorno classico)

15 Il fattore: G = 1 zze 2 r dr si chiama fattore di Gamow. Svolgendo l integrale (vedi Appendice) si trova: G = 2 zze cos 1 1 Poichè e sono legati all energia cinetica della particella α e all altezza B della barriera dalle relazioni: B = zze2 e = zze2, risulta: = B e possiamo esprimere G in termini della sola variabile energia: G = La penetrabilità risulta quindi: 2 zze cos 1 B D = exp ( 2G) 1 B B

16 La penetrabilità della barriera è legata alla costante di decadimento λ. Infatti D esprime la probabilità di attraversamento della barriera per urto, λ rappresenta la probabilità di attraversamento per unità di tempo. Le due quantità sono legate tra loro dal valore di f, che rappresenta la frequenza degli urti contro la barriera ed e dato da: f = v α 2, dove v α è la velocità della particella α nel nucleo di raggio. Si ottiene pertanto: λ = f D In una trattazione più rigorosa si dovrebbe scrivere: λ = P f D P rappresenta la probabilità che all interno del nucleo esista preformata una particella α in seguito alla interazione tra protoni e neutroni. Il calcolo di P è molto complicato e comunque a tutt oggi una sua valutazione esatta non esiste.. Noi assumiamo P=1, che è comunque una stima realistica per nuclei ad alto A, specie per i nuclei pari-pari.

17 Per particelle α di energia cinetica pari a 4 MeV, il valore numerico di f è: f = v α 2 = β α c 2 = p α E α Esplicitando D: λ = f D = f exp 2 che si riscrive: c 2 = In forma generale diventa: T c ( α + m α c 2 ) 2 2 m α c 2 c 2 = s 1 zze 2 T r α dr = f exp ϕ ln λ = ln f + ϕ ln λ = A + B dove A e B sono costanti che non variano (o variano pochissimo) con Z. Questa espressione coincide con la relazione trovata sperimentalmente da Geiger e Nuttal. La teoria di Gamow rappresentò il primo grande successo della meccanica quantistica.

18 Per la verità Geiger e Nuttal trovarono una espressione leggermente diversa: lnλ = A + B ln Ma nel range di variabilità dell energia cinetica delle particelle α le espressioni sono del tutto equivalenti (vedi figura). Andamento delle funzioni e ln ( ) e del loro rapporto tra 4 e 9 MeV

19 La dipendenza trovata spiega come mai l intervallo di variazione di λ è molto maggiore dell intervallo di variazione dell energia cinetica. Spiega inoltre anche l esistenza di un limite inferiore per l energia cinetica della particella α. Una variazione del 10% in cambia la costante di disintegrazione di un fattore Per < 2 MeV la vita media diventa talmente lunga che è praticamente impossibile rivelare particelle α. Questo spiega anche il fatto che non esistono in pratica nuclei α radioattivi per Z < 62, per i quali il ΔE risulta minore di 2 MeV.

20 Appendice. Soluzione dell integrale di Gamow G = 1 zze 2 dr r = zze2 = zze2 G = 1 zze 2 r zze2 dr = 1 1 zze 2 r 1 dr G = 1 zze 2 2m T α r 1 dr = 2m α r 1 dr Effettuiamo il cambiamento di variabile: r = cos 2 ϑ (nel range di variabilità r ), dr = 2 sin ϑ cos ϑ dϑ

21 r 1 dr = cos cos 2 ϑ 1 2 cos ϑ sin ϑ dϑ = 2 sin 2 ϑ dϑ cos 1 0 La funzione sin 2 è integrabile e si ottiene: r 1 1 dr = 2 ( T ϑ sin ϑ cos ϑ) 2 0 cos 1 = T ϑ 1 cos 2 ϑ cos ϑ cos 1 0 T r 1 dr = cos 1 1 Quindi: G = arccos 1 E sostituendo = zze2 : G = 2 zze cos 1 1

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata Radioattività 1. Massa dei nuclei 2. Decadimenti nucleari 3. Legge del decadimento XVI - 0 Nucleoni Protoni e neutroni sono chiamati, indifferentemente, nucleoni. Il numero di protoni (e quindi di elettroni

Dettagli

ARGOMENTO: Cenni di Fisica del Nucleo

ARGOMENTO: Cenni di Fisica del Nucleo UNIVERSITA DEGLI STUDI DI GENOVA C.L. TECNICHE DIAGNOSTICHE RADIOLOGICHE CORSO INTEGRATO: MISURE ELETTRICHE ED ELETTRONICHE MATERIA: FISICA APPLICATA 2 (2 anno 1 sem) ARGOMENTO: Cenni di Fisica del Nucleo

Dettagli

CAPITOLO 5. Il potenziale si assume a simmetria sferica. V (r) = V n (r) + V C (r) V n (r) = V 0 per r < R

CAPITOLO 5. Il potenziale si assume a simmetria sferica. V (r) = V n (r) + V C (r) V n (r) = V 0 per r < R CAPITOLO 5 1 TEOIA DECADIMENTO α Modello : particella α sente un potenziale nucleare effettivo che e la somma di una componente attrattiva presente solo al bordo del nucleo e di una componente repulsiva

Dettagli

CAPITOLO 20 LA CHIMICA NUCLEARE

CAPITOLO 20 LA CHIMICA NUCLEARE CAPITOLO 20 LA CHIMICA NUCLEARE 20.5 (a) La soma dei numeri atomici e la somma dei numeri di massa, da entrambi i lati dell equazione nucleare, deve coincidere. Dalla parte sinistra di questa equazione

Dettagli

Fondamenti di Meccanica Quantistica (Prof. Tarantelli)

Fondamenti di Meccanica Quantistica (Prof. Tarantelli) Fondamenti di Meccanica Quantistica (Prof. Tarantelli) 1 MOTO LINEARE E L OSCILLATORE ARMONICO 2 EQUAZIONE DI SCHRODINGER Equazione di Schrödinger: descrive il comportamento di un insieme di particelle:

Dettagli

FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE

FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per MEDICINA NUCLEARE (lezione I, 07.05.13) Marta Ruspa 1 L

Dettagli

Il modello a shell fallisce nella predizione dello spin totale del nucleo 6 3

Il modello a shell fallisce nella predizione dello spin totale del nucleo 6 3 Problema 1 Il modello a shell fallisce nella predizione dello spin totale del nucleo 6 3 Li. Tuttavia la misura del suo momento magnetico fornisce il valore µ = 0.82 µ N. I momenti magnetici del protone

Dettagli

Scattering di Rutherford

Scattering di Rutherford Scattering di Rutherford Solo interazione con il campo Coulombiano Da V=T ricavare d d= (1/4πε 0 zze 2 )/T b= (d/2) cotθ/2 Cu 27 Al 13 A parita di energia e angolo c e un fattore 4 in piu di particelle

Dettagli

Eccitazioni nucleari. Capitolo Spettro rotazionale

Eccitazioni nucleari. Capitolo Spettro rotazionale Capitolo 1 Eccitazioni nucleari 1.1 Spettro rotazionale Consideriamo un nucleo pari pari, con spin zero, che abbia però una deformazione permanente. Supponiamo inoltre che il nucleo goda di una simmetria

Dettagli

Eccitazioni nucleari

Eccitazioni nucleari 1 Spettro rotazionale Lezione 28 Eccitazioni nucleari Consideriamo un nucleo pari pari, con spin zero, che abbia però una deformazione permanente. Supponiamo inoltre che il nucleo goda di una simmetria

Dettagli

Se prendiamo in considerazione una sfera rotante su se stessa con velocità periferica C p

Se prendiamo in considerazione una sfera rotante su se stessa con velocità periferica C p Effetti giroscopici su una sfera rotante, teoria dell effetto Magnus, massa longitudinale e massa trasversale, Abbiamo visto che la presenza di materia può essere rilevata ( e dunque la materia esiste)

Dettagli

Sezione d urto classica

Sezione d urto classica Capitolo Sezione d urto classica In meccanica classica, ogni particella del fascio incidente segue una traiettoria ben definita sotto l azione del potenziale. Se V (r) è centrale, il momento angolare è

Dettagli

Risultati della teoria di Hartree

Risultati della teoria di Hartree Risultati della teoria di Hartree Il potenziale è a simmetria sferica, come nell atomo di idrogeno, quindi: ψ n, l, m = Rn, l ( r) Θ l, m ( θ ) Φ m ( ϕ ) l l l La dipendenza angolare delle autofunzioni

Dettagli

La buca di potenziale di altezza infinita.

La buca di potenziale di altezza infinita. La buca di potenziale di altezza infinita. Un caso semplice, ma interessante per le implicazioni, anche intuitive, che ne derivano, è quello della particella quantistica in una buca di potenziale. Consideriamo

Dettagli

FAM. = 5 4 Mc2 = E C = 5 2 Mc2 1 v2. c 2. 2 M 2M) = 1 2 Mc2

FAM. = 5 4 Mc2 = E C = 5 2 Mc2 1 v2. c 2. 2 M 2M) = 1 2 Mc2 Serie 19: Soluzioni FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Utilizziamo la conservazione dell energia e della quantità di moto (sistema isolato) in cui trattiamo A e B all inizio

Dettagli

Capitolo 3 Modelli nucleari collettivi: il modello a goccia di liquido

Capitolo 3 Modelli nucleari collettivi: il modello a goccia di liquido Capitolo 3 Modelli nucleari collettivi: il modello a goccia di liquido 3.1 Introduzione Già nel 1911 Rutherford, per spiegare i risultati del suo esperimento di diffusione di particelle α da nuclei pesanti

Dettagli

FNPA1 Prova parziale del 16/04/2012

FNPA1 Prova parziale del 16/04/2012 FNPA1 Prova parziale del 16/04/01 Problema 1 L energia di legame dei nuclei 4 He e 7 3 Li è rispettivamente 8.3 e 39.3 MeV. a) Verificare se la reazione p + 7 3 Li 4 3 He + 4 3 He è esotermica o endotermica.

Dettagli

e, non dipendendo da A, è la stessa per tutti i nuclei. 3A 4πr 3 0 n = A V = A = cm -3

e, non dipendendo da A, è la stessa per tutti i nuclei. 3A 4πr 3 0 n = A V = A = cm -3 Modelli nucleari collettivi: il modello a goccia di liquido Già nel 1911 Rutherford, per spiegare i risultati del suo esperimento di diffusione di particelle α da nuclei pesanti ricavò che il nucleo è

Dettagli

FNPA1 prova scritta del 22/06/2011

FNPA1 prova scritta del 22/06/2011 FNPA1 prova scritta del 22/06/2011 Problema 1 Il nucleo di deuterio, 1 2 H, ha energia di legame Bd = 2.23 MeV. Il nucleo di trizio, 1 3 H, ha energia di legame Bt = 8.48 MeV. Calcolare lʼenergia che occorre

Dettagli

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z

ed infine le interazioni nucleari forte e debole? dove E rappresenta l energia cinetica della particella α, e K è: K = e2 2Z Introduzione 1. Stima il valore delle energie dei fotoni necessarie per risolvere distanze atomiche, e poi nucleari. 2. Per quali ragioni fisiche le interazioni fondamentali sono state storicamente identificate

Dettagli

Come esempio consideriamo i nuclei 1 3 H e 2 3 He che differiscono nelle loro proprietà

Come esempio consideriamo i nuclei 1 3 H e 2 3 He che differiscono nelle loro proprietà Il formalismo dello spin isotopico Le proprietà dei nuclei isobari sono estremamente diverse a seconda del diverso numero atomico Z e di conseguenza del numero di neutroni N = A Z. Questi nuclei hanno

Dettagli

La struttura elettronica degli atomi

La struttura elettronica degli atomi 1 In unità atomiche: a 0 me 0,59A unità di lunghezza e H 7, ev a H=Hartree unità di energia L energia dell atomo di idrogeno nello stato fondamentale espresso in unità atomiche è: 4 0 me 1 e 1 E H 13,

Dettagli

Iniziamo, a questo punto, lo studio del nucleo atomico con la determinazione delle caratteristiche orbitali dei protoni.

Iniziamo, a questo punto, lo studio del nucleo atomico con la determinazione delle caratteristiche orbitali dei protoni. Espressione teorica delle forze nucleari e caratteristiche di moto dei nucleoni. Nell Art. 5 abbiamo visto che il nucleo atomico, per poter fornire incrementi dell energia di legame, per aggiunta di un

Dettagli

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3)

L atomo di idrogeno (1) H T = p2 1 2m 1. + p2 2 2m 2. + V ( r 1 r 2 ) (2) Definiamo le nuove variabili: 1. La massa totale M M = m 1 + m 2 (3) L atomo di idrogeno Il problema dell atomo di idrogeno é un problema esattamente risolubili ed i suoi risultati possono essere estesi agli atomi idrogenoidi, in cui solo c é solo un elettrone sottoposto

Dettagli

Meccanica quantistica (5)

Meccanica quantistica (5) Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (

Dettagli

FNPA1 prova scritta del 14/09/2011

FNPA1 prova scritta del 14/09/2011 FNPA1 prova scritta del 14/09/011 Problema 1 Irraggiando nuclei 9 4 Be con particelle α si formano nuclei 1 6 C. a) Completare la reazione. b) Calcolare lʼenergia cinetica minima delle particelle α per

Dettagli

Il nucleo dell atomo

Il nucleo dell atomo Il nucleo dell atomo Ci sono quattro interazioni(forze) i i(f tra le particelle: Gravita ElettroMagnetica Nucleare Forte Nucleare Debole Le forze La forza nucleare forte è responsabile del legame tra i

Dettagli

Il nucleo dell atomo

Il nucleo dell atomo Il nucleo dell atomo Ci sono quattro interazioni(forze) i i(f tra le particelle: Gravita ElettroMagnetica Nucleare Forte Nucleare Debole Le forze La forza nucleare forte è responsabile del legame tra i

Dettagli

Rivelatori Caratteristiche generale e concetti preliminari

Rivelatori Caratteristiche generale e concetti preliminari Rivelatori Caratteristiche generale e concetti preliminari Stage Residenziale 2012 Indice Caratteristiche generali sensibilità, risposta, spettro d ampiezza, risoluzione energetica, efficienza, tempo morto

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 16 luglio 2001 Teoria 1. La posizione del centro di massa di un sistema di N particelle puntiformi è data da Ni r i m i

Dettagli

Soluzione i) possiamo cotruire una analoga tabella in funzione della frequenza ricordando che. Hz)

Soluzione i) possiamo cotruire una analoga tabella in funzione della frequenza ricordando che. Hz) Corso di Introduzione alla Fisica Quantistica (f) Soluzioni Prova scritta 19 Giugno 2006 1.) In tabella è riportato il valore del potenziale di arresto (V A ) per diverse lunghezze d onda incidenti su

Dettagli

e, non dipendendo da A, è la stessa per tutti i nuclei. 3A 4πr 3 0 n = A V = A = cm -3

e, non dipendendo da A, è la stessa per tutti i nuclei. 3A 4πr 3 0 n = A V = A = cm -3 Modelli nucleari collettivi: il modello a goccia di liquido Già nel 1911 Rutherford, per spiegare i risultati del suo esperimento di diffusione di particelle α da nuclei pesanti ricavò che il nucleo è

Dettagli

Interazione Radiazione materia (intro) Sistema a due livelli e coefficienti di Einstein. Assorbimento

Interazione Radiazione materia (intro) Sistema a due livelli e coefficienti di Einstein. Assorbimento Interazione Radiazione materia (intro) Sistema a due livelli e coefficienti di Einstein Emissione Spontanea b Assorbimento b Emissione Stimolata b a a a -Energia del fotone (Emesso/Assorbito) uguale alla

Dettagli

Soluzioni I anno FisMat

Soluzioni I anno FisMat Soluzioni I anno FisMat ) La velocitá delle formiche puó essere separata in una componente tangenziale, v t e una radiale, v r Poiché ad ogni istante le formiche sono poste sul vertice del N-gono, esse

Dettagli

Fisica delle Interazioni Fondamentali. All'inizio del '900 due grandi rivoluzioni scientifiche. Meccanica Quantistica. Relatività Ristretta

Fisica delle Interazioni Fondamentali. All'inizio del '900 due grandi rivoluzioni scientifiche. Meccanica Quantistica. Relatività Ristretta Fisica delle Interazioni Fondamentali All'inizio del '900 due grandi rivoluzioni scientifiche Meccanica Quantistica Relatività Ristretta (più tardi anche Relatività Generale) ONDE GRAVITAZIONALI MECCANICA

Dettagli

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L.

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Lozzi Testi degli esercizi svolti in aula Corpo Nero 1. Il corpo

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni ionizzanti 11/3/2005 Struttura atomica Atomo Nucleo Protone 10 10 m 10 14 m 10 15 m ev MeV GeV 3 3,0 0,3 0 0 0 Atomo Dimensioni lineari

Dettagli

Equazioni differenziali - Applicazioni

Equazioni differenziali - Applicazioni Equazioni differenziali - Applicazioni Antonino Polimeno Università degli Studi di Padova Equazione di Schrödinger 1D - 1 Equazione di Schrödinger i ψ(x, t) = Ĥ ψ(x, t) t al tempo t = 0 la funzione è definita

Dettagli

FM210 / MA - Prima prova pre-esonero ( )

FM210 / MA - Prima prova pre-esonero ( ) FM10 / MA - Prima prova pre-esonero (4-4-018) 1. Una particella di massa m si muove in una dimensione sotto l effetto di una forza posizionale, come descritto dalla seguente equazione: mẍ = A x xx 0 3x

Dettagli

Metodo variazionale e applicazione all atomo di elio

Metodo variazionale e applicazione all atomo di elio Metodo variazionale e applicazione all atomo di elio Descrizione del metodo Il metodo detto variazionale è un metodo approssimato che si usa per ottenere una stima dell energia dello stato fondamentale

Dettagli

FM210 - Fisica Matematica 1 Tutorato VII - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi)

FM210 - Fisica Matematica 1 Tutorato VII - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi) Corso di laurea in Matematica - Anno Accademico 0/0 FM0 - Fisica Matematica Tutorato VII - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi) Esercizio. Problema del secondo esonero A.A. 0-0

Dettagli

Esercizi terzo principio

Esercizi terzo principio Esercizi terzo principio Esercitazioni di Fisica LA per ingegneri - A.A. 4-5 Esercizio 1 Una ruota di massa m = 1 kg e raggio R = 1 m viene tirata contro un gradino di altezza h = 3 cm con una velocità

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

La radiazione elettromagnetica nucleare deve avere una lunghezza d onda dell ordine delle dimensioni del nucleo, e pertanto: c A 1/ 3

La radiazione elettromagnetica nucleare deve avere una lunghezza d onda dell ordine delle dimensioni del nucleo, e pertanto: c A 1/ 3 Emissione gamma La radiazione γ è l emissione spontanea di quanti da parte del nucleo. Emettendo fotoni il nucleo passa da uno stato eccitato ed uno stato meno eccitato. Vi possono essere transizioni radiative

Dettagli

Introduzione al corso. Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora...

Introduzione al corso. Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora... Introduzione al corso Cenni storici ed evidenze sperimentali determinanti lo sviluppo della fisica atomica come la conosciamo ora... Legge di Boyle (1662)-> La pressione di un gas cresce quando decresce

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti.

Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Punteggi degli esercizi: Es.1: 8 punti; Es.2: 8 punti; Es.3: 8 punti; Es.4: 8 punti. Es Es Es Es Totale Analisi e Geometria Secondo compito in itinere 0 Gennaio 0 Compito A Docente: Politecnico di Milano Ingegneria Industriale Cognome: Nome: Matricola: Punteggi degli esercizi: Es: 8 punti;

Dettagli

Energia nucleare per livello ( valori corretti ), per l uso del sistema periodico dei nuclidi

Energia nucleare per livello ( valori corretti ), per l uso del sistema periodico dei nuclidi Energia nucleare per livello ( valori corretti ), per l uso del sistema periodico dei nuclidi Trattando la teoria generale degli spazi rotanti atomico e nucleare, abbiamo ricavato l espressione teorica

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

Lezione 19 Fisica nucleare

Lezione 19 Fisica nucleare Lezione 19 Fisica nucleare Nucleo Il nucleo atomico è costituito da nucleoni (N), ovvero: protoni (p) e neutroni (n). Il numero di p è caratteristico di ogni elemento; è detto numero atomico ed è indicato

Dettagli

LA STRUTTURA DELL ATOMO

LA STRUTTURA DELL ATOMO Università degli studi di MILANO Facoltà di AGRARIA El. di Chimica e Chimica Fisica Mod. 1 CHIMICA Lezione 2 Anno Accademico 2010-2011 Docente: Dimitrios Fessas LA STRUTTURA DELL ATOMO IL NUCLEO In fisica

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2. 8 marzo 2017

INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2. 8 marzo 2017 INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2 8 marzo 2017 Piano della presentazione Trasformazioni di Lorentz Red Shift Relatività e leggi di Newton Galileo Seconda Legge

Dettagli

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg.

Emissione α. La sua carica elettrica è pari a +2e La sua massa a riposo è circa 7x10-27 kg. Reazioni nucleari Un nucleo instabile può raggiungere una nuova condizione di stabilità attraverso una serie di decadimenti con emissione di particelle α, β, γ o di frammenti nucleari (fissione). Emissione

Dettagli

Particella in un campo elettromagnetico

Particella in un campo elettromagnetico Particella in un campo elettromagnetico Vogliamo descrivere dal punto di vista quantistico una particella carica posta in un campo elettromagnetico. Momento di una particella Dal punto di vista classico

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

Capitolo 6 : Decadimenti, Risonanze, Modello di Yukawa, Interazioni tra Particelle

Capitolo 6 : Decadimenti, Risonanze, Modello di Yukawa, Interazioni tra Particelle Capitolo 6 : Decadimenti, Risonanze, Modello di Yukawa, Interazioni tra Particelle Corso di Fisica Nucleare e Subnucleare I Professor Carlo Dionisi A.A. 2004-2005 1 Legge di decadimento Decadimento di

Dettagli

Mg. Lo stato fondamentale del 10. Mg sono riportati qui di seguito.

Mg. Lo stato fondamentale del 10. Mg sono riportati qui di seguito. Esercizio 1 Il 24 10 Ne decade β - in 24 11 Na, che a sua volta decade β - in 24 12 Mg. Lo stato fondamentale del 10 da: J Π = 0 +. Gli schemi dei livelli dei nuclei 24 11 Na e 24 12 Mg sono riportati

Dettagli

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni

Dettagli

RISOLUZIONE DI PROBLEMI DI FISICA

RISOLUZIONE DI PROBLEMI DI FISICA RISOUZIONE DI PROBEMI DI FISICA Problema 1 Una massa puntiforme m = 2 kg è soggetta ad una forza centrale con associata energia potenziale radiale U( r) 6 A =, dove A = 2 J m 6. Il momento angolare della

Dettagli

Esercizio: pendolo sferico. Soluzione

Esercizio: pendolo sferico. Soluzione Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

PARITA. Parità Parità intrinseca Conservazione della Parità

PARITA. Parità Parità intrinseca Conservazione della Parità PARITA Parità Parità intrinseca Conservazione della Parità PARITÀ L operatore di inversione spaziale è una trasformazione discreta che inverte il segno delle tre coordinate spaziali: P x, y, z -x, -y,

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f 7/4 URTO SU UN POTENZIALE CENTRALE 0/ DIFFUSIONE DA UN POTENZIALE CENTRALE Nel caso di diffusione da un potenziale centrale V x) = V r), l ampiezza di diffusione f Ω) = f x) che specifica la dipendenza

Dettagli

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton Democrito IV secolo A.C. ATOMO Lavoisier Proust Legge della conservazione della massa Legge delle proporzioni definite Dalton (808) Teoria atomica Gay-Lussac volumi di gas reagiscono secondo rapporti interi

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Comune ordine di riempimento degli orbitali di un atomo

Comune ordine di riempimento degli orbitali di un atomo Comune ordine di riempimento degli orbitali di un atomo Le energie relative sono diverse per differenti elementi ma si possono notare le seguenti caratteristiche: (1) La maggior differenza di energia si

Dettagli

sezione d urto di interazione neutroni - 12 C

sezione d urto di interazione neutroni - 12 C Interazione dei neutroni con la materia Poiché il neutrone ha carica nulla esso non interagisce elettricamente con gli elettroni dell atomo, ma subisce solo interazioni nucleari con i nuclei della materia

Dettagli

Beta decay. max e ) -5 Legge di Sargent

Beta decay. max e ) -5 Legge di Sargent Beta decay Nuclei emettono elettroni con una distribuzione continua di energia Il valore massimo dell energia energia cinetica dell elettrone elettrone e circa uguale alla differenza di massa tra i nuclei

Dettagli

FM210 / MA - Terzo scritto ( ), con l > 0. Il vincolo può supporsi ideale. Oltre alle forze di reazione vincolare, il punto è soggetto a

FM210 / MA - Terzo scritto ( ), con l > 0. Il vincolo può supporsi ideale. Oltre alle forze di reazione vincolare, il punto è soggetto a FM10 / MA - Terzo scritto (9-9-017) Esercizio 1. Un punto materiale P di massa m è vincolato a muoversi senza attrito sulla superficie di equazione z = l log x +y, con l > 0. Il vincolo può l supporsi

Dettagli

Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ

Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ 4.1 Grandezze fondamentali e derivate Come abbiamo già osservato la scelta di un Sistema di unità di misura è largamente arbitraria e dettata in gran parte da

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Terza legge di Keplero, teoria e significato fisico della costante di Planck. m V p2

Terza legge di Keplero, teoria e significato fisico della costante di Planck. m V p2 estratto da : L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Terza legge di Keplero, teoria e significato fisico della costante di Planck La relazione E p h p p ci dice che all energia

Dettagli

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C.

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C. Serie 19: Relatività VIII FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Considera la collisione frontale di due particelle A e B di massa M A = M B = M e v A = v B = 3/5c, tale che alla

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Guida allo studio

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Guida allo studio Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Guida allo studio Libri di testo A. Das and T. Ferbel. Introduction to nuclear and particle physics - 2. ed. World Scientific, 2003 Bogdan

Dettagli

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno:

La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: La Teoria dell Atomo di Bohr Modello di Bohr dell atomo di idrogeno: Vedi documento Atomo di Bohr.pdf sul materiale didattico per la derivazione di queste equazioni Livelli Energetici dell Atomo di Idrogeno

Dettagli

Programma della I parte

Programma della I parte Programma della I parte Cenni alla meccanica quantistica: il modello dell atomo Dall atomo ai cristalli: statistica di Fermi-Dirac il modello a bande di energia popolazione delle bande livello di Fermi

Dettagli

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f

DIFFUSIONE DA UN POTENZIALE CENTRALE. 1 exp(i k x) + f 7/4 URTO SU UN POTENZIALE CENTRALE /2 DIFFUSIONE DA UN POTENZIALE CENTRALE Nel caso di diffusione da un potenziale centrale V x) = V r), l ampiezza di diffusione f Ω) = f x) che specifica la dipendenza

Dettagli

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda

Esercizio I Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda Compito I di MQ. Febbraio 0 Sia data una particella libera in tre dimensioni descritta a t = 0 dalla funzione d onda ψ( x = f(r (r + ix con Hamiltoniana H = µbl y determinare la funzione d onda al tempo

Dettagli

Relazioni fondamentali nella dinamica dei sistemi

Relazioni fondamentali nella dinamica dei sistemi Relazioni fondamentali nella dinamica dei sistemi L. P. 2 Maggio 2010 1. Quantità di moto e centro di massa Consideriamo un sistema S costituito da N punti materiali. Il punto i (i = 1,..., N) possiede

Dettagli

Interazioni nucleone-nucleone

Interazioni nucleone-nucleone Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 6 Interazioni nucleone-nucleone Interazioni nucleone-nucleone (cap. 4 del Krane) Finora abbiamo descritto delle proprietà dei nuclei,

Dettagli

Capitolo 14 Interazione radiazione-materia: i neutroni

Capitolo 14 Interazione radiazione-materia: i neutroni Capitolo 14 Interazione radiazione-materia: i neutroni 14.1 Interazione dei neutroni con la materia Poiché il neutrone ha carica nulla esso non interagisce elettricamente con gli elettroni dell atomo,

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Si consideri il moto di un punto materiale di massa m soggetto ad un poten- ziale centrale. 1 r

Si consideri il moto di un punto materiale di massa m soggetto ad un poten- ziale centrale. 1 r 1 3 o tutorato - FM - 4/3/017 Si consideri il moto di un punto materiale di massa m soggetto ad un poten- Esercizio 1 ziale centrale dove V 0, r 0 > 0. V ( r ) = V 0 ( 1 10 ( r0 r ) 10 1 6 ( r0 ) ) 6 r

Dettagli

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. B Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. A Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

geometria di un apparato di conteggio

geometria di un apparato di conteggio La Sezione d urto Supponiamo di avere un fascio di particelle (protoni, elettroni, fotoni o qualsiasi altra particella) di ben definita energia che incide su un bersaglio (target). L intensità I di un

Dettagli

Molecole. 04/09/13 3-MOL-0.doc 0

Molecole. 04/09/13 3-MOL-0.doc 0 Molecole 04/09/13 3-MOL-0.doc 0 Legame covalente H 2 + Il potenziale cui è soggetto l elettrone ha 2 minimi equivalenti 1) H + si avvicina a H 2) Se la barriera diventa abbastanza sottile la probabilità

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 10 Fusione nucleare Fusione nucleare (Das-Ferbel, cap. 5.3) Abbiamo già accennato alla fusione nucleare che costituisce la sorgente

Dettagli

Dato un intervallo limitato A di estremi a e b con a b, si definisce misura dell intervallo il numero b a e si indica con :

Dato un intervallo limitato A di estremi a e b con a b, si definisce misura dell intervallo il numero b a e si indica con : E-school di Arrigo Amadori Analisi I Integrali di Riemann 01 Introduzione. L integrale è, oltre alla derivata, l altro oggetto fondamentale che sta alla base del calcolo differenziale. Con gli integrali

Dettagli

LA CRISI DELLA FISICA CLASSICA III a PARTE

LA CRISI DELLA FISICA CLASSICA III a PARTE LA CRISI DELLA FISICA CLASSICA III a PARTE Prof. V.Lubicz Dualità onda-particella - Esperimenti ideali di interferenza con pallottole, onde ed elettroni - Principio di indeterminazione La Meccanica Quantistica

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Primo Scritto [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Primo Scritto [1-6-018] 1. Si consideri il sistema meccanico bidimensionale per x R. ẍ = ( x 4 1)x, (a) Si identifichino due integrali

Dettagli

Concorso per l ammissione al Dottorato in Fisica

Concorso per l ammissione al Dottorato in Fisica Concorso per l ammissione al Dottorato in Fisica AA 2009-2010 - XXV ciclo (D.R. 552) Prova A Si svolga a scelta uno dei tre temi (in non più di 3 facciate) e si risolvano due dei cinque esercizi proposti

Dettagli

TECNICHE RADIOCHIMICHE

TECNICHE RADIOCHIMICHE TECNICHE RADIOCHIMICHE L ATOMO - Un atomo e costituito da un nucleo carico positivamente, circondato da una nuvola di elettroni carichi negativamente. - I nuclei atomici sono costituiti da due particelle:

Dettagli