Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva"

Transcript

1 Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili. Basata su una probabilità matematica o a priori. 1 Probabilità frequentista Probabilità soggettiva La probabilità di un evento casuale è il limite a cui essa tende al crescere del numero delle osservazioni, in una serie di esperienze fatte nelle stesse condizioni. Si parla anche di probabilità a posteriori di legge empirica del caso o di probabilità statistica. La probabilità è una stima del grado di aspettativa di un evento, secondo l esperienza di un individuo. Si parla anche di probabilità Bayesiana. 3 4

2 Alcune distribuzioni discrete Sono le distribuzioni di probabilità per variabili casuali discrete. Distribuzione di Poisson Detta anche di Bernoulli in onore del matematico svizzero J. Bernoulli ( ). Distribuzione discreta che modellizza il problema delle prove ripetute; viene utilizzata per eventi classificati con una variabile binaria (pallina bianca o nera, testa o croce, ) quando interessa la ricorrenza dell evento e non la sua intensità. 5 6 Dato un esperimento che consiste di n prove identiche (lancio di una moneta, estrazione di una pallina, ). Ci siano solo due possibili risultati per ogni prova: S (successo) e F (insuccesso). Sia p la probabilità di S e q quella di F (costanti per ogni prova) tali che p+q=1. Le prove siano indipendenti. La variabile binomiale Y conta il numero di successi S 7 La distribuzione di probabilità per una variabile binomiale Y è data da dove p( Y ) = ( ) p n Y Y q n Y n n! ( Y ) = Y!( n Y )! ( Y = 0,1,,..., n) 8

3 Stima la probabilità che un evento, con probabilità a priori o frequentista p, avvenga rispettivamente 0,1,,,i,...,n volte, nel corso di n prove identiche ed indipendenti. La distribuzione binomiale dipende dai due parametri: p ed n. Le statistiche caratteristiche della binomiale sono: Esempi di variabili binomiali: Media µ = n * p Difetto lieve/difetto catastrofico successo/insuccesso difettoso/non difettoso 9 Varianza σ = n * p * q 10 Distribuzione di Poisson Il grafico della distribuzione binomiale è simmetrico solo quando p=0,5. P=.5 E' sempre più asimmetrico quanto più p si avvicina a 0 oppure a 1. P=.1 P=.3 11 Dal nome del matematico francese S.D. Poisson ( ) è anche detta Legge degli eventi rari. Distribuzione discreta che fornisce un modello per la frequenza relativa di un numero di eventi rari che si presentano nell unità di tempo, area, volume, (p.e. numero di piante infestanti per unità di superficie, numero di difetti in un modulo, ). 1

4 Distribuzione di Poisson Distribuzione di Poisson Si può ricavare come caso particolare della binomiale quando il numero di prove n diventa molto grande e nello stesso tempo la probabilità di successo S in una singola prova molto piccola, in modo tale che il loro prodotto sia finito (non diverga) e diverso da zero. 13 Dato un esperimento che consiste nel misurare il numero Y di volte che un evento particolare si verifica in una data unità di tempo (o in una data area, volume, o qualsiasi unità di misura) La probabilità che un evento si presenti in quell unità di tempo ( ) sia la stessa per ogni unità. Il numero di eventi che si verifica in una unità di tempo ( ) sia indipendente dal numero di eventi che si verifica in altre unità. Sia la media del numero di eventi in ogni unità. λ 14 Distribuzione di Poisson Distribuzione di Poisson La distribuzione di probabilità per una variabile di Poisson Y è data da p ( Y ) = Y λ e Y! λ ( Y = 0,1,,...) E la probabilità di osservare Y volte un evento che si manifesta in media λ volte. 15 La distribuzione di probabilità per una variabile di Poisson Y è data da Y λ λ e p ( Y ) = ( Y = 0,1,,...) Y! Le statistiche caratteristiche della poissoniana sono: Media Varianza µ = λ σ = λ 16

5 Distribuzione di Poisson Il grafico della distribuzione poissoniana è molto asimmetrico e la classe più frequente è zero, quando µ è inferiore a 1. E ancora asimmetrica per valori di µ inferiori a 3 ma una media uguale a 6-7 determina una distribuzione simmetrica. µ = 0.9 µ = Alcune distribuzioni continue Sono le distribuzioni di probabilità per variabili casuali continue. Distribuzione t di Student Detta anche di Gauss dal nome del matematico C.F. Gauss ( ) che la propose come modello per la distribuzione degli errori. E la più importante distribuzione continua poiché molti fenomeni, da quelli biologici a quelli fisici, normalmente si distribuiscono secondo la curva gaussiana. Sotto l aspetto matematico può essere considerata come il limite della distribuzione binomiale quando il numero di prove n tende all infinito e nello stesso tempo né p né q tendono a 0 (condizione che la differenzia dalla poissoniana). 19 0

6 La distribuzione normale per una variabile aleatoria X è caratterizzata da una densità di probabilità della forma: ( y µ ) 1 σ ( ) p y = e σ π dove µ R e σ > 0 sono rispettivamente la media e la deviazione standard. Brevemente si indica p(y) con N( µ, σ ). 1 Grafico della distribuzione di Gauss N( µ, σ ) con media µ e varianza σ (Gaussiana o funzione a campana). Effetti sul grafico di una modifica apportata alla µ σ media o alla varianza. 3 4

7 Frequenza e distribuzione di frequenza relativa per i pesi Istogramma della frequenza relativa per i pesi 5 6 standard Per una variabile normalmente distribuita, la percentuale di tutte le possibili osservazioni che cadono dentro ad uno specifico range eguaglia la corrispondente area sotto alla curva normale associata, espressa in percentuale. Questo resta vero approssimativamente per una variabile che approssimativamente è normalmente distribuita. 7 Una variabile normalmente distribuita con media 0 e deviazione standard 1 si dice che ha una distribuzione normale standard. La curva normale ad essa associata è detta curva normale standard. La versione standardizzata z della variabile x normalmente distribuita z = x µ σ ha una distribuzione normale standard. 8

8 Effetti della standardizzazione Standardizzazione della distribuzione normale La standardizzazione è una trasformazione che consiste nel rendere la media µ nulla; prendere la deviazione standard σ come unità di misura ( σ = 1 ) della nuova variabile. La distribuzione normale ridotta viene indicata con N(0,1) Distribuzione t di Student Distribuzione t di Student Dallo pseudonimo del chimico inglese W.S.Gosset, la distribuzione t di Student considera le relazioni tra media e varianza in campioni di piccole dimensioni, estratti da una popolazione normalmente distribuita, utilizzando la varianza del campione. La scelta tra normale e t di Student dipende appunto dalla conoscenza della varianza σ della popolazione o dal fatto che essa sia ignota (in questo caso si usa la varianza campionaria s ). 31 Data una popolazione distribuita normalmente, si estrae un campione casuale di n osservazioni e si calcola la variabile aleatoria t, definita dalla seguente equazione: x µ t = s / n t segue una legge t di Student con n-1 gradi di libertà. La quantità al numeratore si chiama errore standard campionario. 3

9 Distribuzione t di Student La forma della distribuzione dipende dai g.d.l., cioè dalla numerosità del campione. Per n grande (>30) t tende ad una Normale. normale (Stessa media e stessa varianza) T di Student con gdl 5 33

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Statistica. Lezione 4

Statistica. Lezione 4 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica Ulteriori Conoscenze di Informatica e Statistica Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 (I piano) tel.: 06 55 17 72 17 meneghini@fis.uniroma3.it Indici di forma Descrivono le

Dettagli

Variabili aleatorie. Variabili aleatorie

Variabili aleatorie. Variabili aleatorie Variabili aleatorie Distribuzione binomiale Si supponga che uno studente affronti un esame composto da domande chiuse. Una sola delle 5 alternative di risposta proposta per ciascuna domanda è vera Supponiamo

Dettagli

Alcune v.a. discrete notevoli

Alcune v.a. discrete notevoli Alcune v.a. discrete notevoli Variabile aleatoria Bernoulliana Il risultato X di un esperimento aleatorio può essere classificato nel modo che segue: successo oppure insuccesso. Indichiamo: Successo =

Dettagli

Modelli di probabilità

Modelli di probabilità Modelli di probabilità Corso di STATISTICA Ordinario di, Università di Napoli Federico II Professore supplente, Università della Basilicata a.a. 0/0 Obiettivo dell unità didattica Definire i concetti di

Dettagli

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti

Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti Laurea in Scienze dell Educazione Insegnamento di Pedagogia Sperimentale (Prof. Paolo Frignani) Modulo di Statistica e Tecnologia (Dott. Giorgio Poletti giorgio.poletti@unife.it) (discrete) variabile casuale

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

Università del Piemonte Orientale. Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia. Corso di Statistica Medica

Università del Piemonte Orientale. Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia. Corso di Statistica Medica Università del Piemonte Orientale Corso di Laurea Triennale di Infermieristica Pediatrica ed Ostetricia Corso di Statistica Medica Le distribuzioni teoriche di probabilità La distribuzione Normale (o di

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Università del Piemonte Orientale Corsi di Laurea triennale di area tecnica. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità

Università del Piemonte Orientale Corsi di Laurea triennale di area tecnica. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità Università del Piemonte Orientale Corsi di Laurea triennale di area tecnica Corso di Statistica Medica Le distribuzioni teoriche di probabilità La distribuzione binomiale La distribuzione Normale (o di

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali A.A 2009-2010 Esercitazione E Scopo dell esercitazione Applicazioni del teorema del limite centrale. Rappresentazione delle incertezze

Dettagli

Probabilità e Statistica Esercizi

Probabilità e Statistica Esercizi Corso di PIANIFICAZIONE DEI TRASPORTI 1 ing. Antonio Comi Marzo 2006 Probabilità e Statistica Esercizi 1 Variabile aleatoria X(E): funzione che associa ad un evento E dello spazio delle prove un numero

Dettagli

Variabili Casuali Continue

Variabili Casuali Continue Distribuzione Normale Concentrazione di cloro nel sudore Variabili Casuali Continue 9 8 7 6 5 4 3 media = 98.8 meq/l mediana =. meq/l moda =. meq/l < 3 6 5 me/l La distribuzione empirica (diagramma a barre)

Dettagli

Elaborazione statistica di dati

Elaborazione statistica di dati Elaborazione statistica di dati 1 CONCETTI DI BASE DI STATISTICA ELEMENTARE 2 Taratura strumenti di misura IPOTESI: grandezza da misurare identica da misura a misura Per la presenza di errori casuali,

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 4 Abbiamo visto: Distribuzioni discrete Modelli probabilistici nel discreto Distribuzione uniforme

Dettagli

LA DISTRIBUZIONE NORMALE. La distribuzione Gaussiana. Dott.ssa Marta Di Nicola

LA DISTRIBUZIONE NORMALE. La distribuzione Gaussiana. Dott.ssa Marta Di Nicola LA DISTRIBUZIONE NORMALE http://www.biostatistica.unich.itit «È lo stesso delle cose molto piccole e molto grandi. Credi forse che sia tanto facile trovare un uomo o un cane o un altro essere qualunque

Dettagli

La legge di Gauss degli errori come limite di una binomiale

La legge di Gauss degli errori come limite di una binomiale Esiste una dimostrazione rigorosa dovuta a Laplace che la distribuzione degli scarti delle misure affette da errori casuali e indipendenti è la funzione normale di Gauss La legge di Gauss degli errori

Dettagli

ES.2.2. Consideriamo un esperimento statistico definito da un insieme Ω di risultati possibili. Una partizione finita di Ω è una sequenza di K eventi

ES.2.2. Consideriamo un esperimento statistico definito da un insieme Ω di risultati possibili. Una partizione finita di Ω è una sequenza di K eventi ES22 1 Variabili aleatorie discrete Consideriamo un esperimento statistico definito da un insieme Ω di risultati possibili Una partizione finita di Ω è una sequenza di K eventi A 1, A 2 A k A K necessari

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA PSICOMETRIA Corso di laurea triennale (classe 34) DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONE DI PROBABILITA I possibili risultati di un esperimento costituiscono uno spazio campionario di n eventi A ciascun

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II

Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II Fondamenti di statistica per il miglioramento genetico delle piante Antonio Di Matteo Università Federico II Modulo 2 Variabili continue e Metodi parametrici Distribuzione Un insieme di misure è detto

Dettagli

ESERCITAZIONE N. 5 corso di statistica

ESERCITAZIONE N. 5 corso di statistica ESERCITAZIONE N. 5corso di statistica p. 1/27 ESERCITAZIONE N. 5 corso di statistica Marco Picone Università Roma Tre ESERCITAZIONE N. 5corso di statistica p. 2/27 Introduzione Variabili aleatorie discrete

Dettagli

Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale

Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona DISTRIBUZIONI TEORICHE DI

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA.

UNIVERSITA DEGLI STUDI DI BRESCIA-FACOLTA DI MEDICINA E CHIRURGIA CORSO DI LAUREA IN INFERMIERISTICA SEDE DI DESENZANO dg STATISTICA MEDICA. Lezione 4 DISTRIBUZIONE DI FREQUENZA 1 DISTRIBUZIONE DI PROBABILITA Una variabile i cui differenti valori seguono una distribuzione di probabilità si chiama variabile aleatoria. Es:il numero di figli maschi

Dettagli

Variabili aleatorie gaussiane

Variabili aleatorie gaussiane Variabili aleatorie gaussiane La distribuzione normale (riconoscibile dalla curva a forma di campana) è la più usata tra tutte le distribuzioni, perché molte distribuzioni che ricorrono naturalmente sono

Dettagli

Questo calcolo richiede che si conoscano media e deviazione standard della popolazione.

Questo calcolo richiede che si conoscano media e deviazione standard della popolazione. Università del Piemonte Orientale Corso di laurea in biotecnologie Corso di Statistica Medica La distribuzione t - student 1 Abbiamo visto nelle lezioni precedenti come il calcolo del valore Z, riferito

Dettagli

PROBABILITA. Distribuzione di probabilità

PROBABILITA. Distribuzione di probabilità DISTRIBUZIONI di PROBABILITA Distribuzione di probabilità Si definisce distribuzione di probabilità il valore delle probabilità associate a tutti gli eventi possibili connessi ad un certo numero di prove

Dettagli

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica La distribuzione t - student 1 Abbiamo visto nelle lezioni precedenti come il calcolo del valore Z,

Dettagli

Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. La distribuzione Normale (o di Gauss)

Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia. Corso di Statistica Medica. La distribuzione Normale (o di Gauss) Università del Piemonte Orientale Corso di Laurea in Medicina e Chirurgia Corso di Statistica Medica La distribuzione Normale (o di Gauss) Corso di laurea in medicina e chirurgia - Corso di Statistica

Dettagli

Le variabili casuali o aleatorie

Le variabili casuali o aleatorie Le variabili casuali o aleatorie Intuitivamente un numero casuale o aleatorio è un numero sul cui valore non siamo certi per carenza di informazioni - ad esempio la durata di un macchinario, il valore

Dettagli

Il campionamento e l inferenza. Il campionamento e l inferenza

Il campionamento e l inferenza. Il campionamento e l inferenza Il campionamento e l inferenza Popolazione Campione Dai dati osservati mediante scelta campionaria si giunge ad affermazioni che riguardano la popolazione da cui essi sono stati prescelti Il campionamento

Dettagli

1.1 Obiettivi della statistica Struttura del testo 2

1.1 Obiettivi della statistica Struttura del testo 2 Prefazione XV 1 Introduzione 1.1 Obiettivi della statistica 1 1.2 Struttura del testo 2 2 Distribuzioni di frequenza 2.1 Informazione statistica e rilevazione dei dati 5 2.2 Distribuzioni di frequenza

Dettagli

Tipi di variabili. Indici di tendenza centrale e di dispersione

Tipi di variabili. Indici di tendenza centrale e di dispersione Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

LA DISTRIBUZIONE DEGLI ERRORI DI MISURA. La distribuzione normale. Dott.ssa Marta Di Nicola

LA DISTRIBUZIONE DEGLI ERRORI DI MISURA. La distribuzione normale. Dott.ssa Marta Di Nicola LA DISTRIBUZIONE DEGLI ERRORI DI MISURA La distribuzione normale http://www.biostatistica.unich.itit «È lo stesso delle cose molto piccole e molto grandi. Credi forse che sia tanto facile trovare un uomo

Dettagli

Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale

Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona La distribuzione normale

Dettagli

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a

Corso di Statistica. Distribuzioni di probabilità per variabili casuali discrete. Prof.ssa T. Laureti a.a Corso di Statistica Distribuzioni di probabilità per variabili casuali discrete Prof.ssa T. Laureti a.a. 2013-2014 1 Variabili casuale di Bernoulli La v.c. di Bernoulli trae origine da una prova nella

Dettagli

LEZIONI DI STATISTICA MEDICA

LEZIONI DI STATISTICA MEDICA LEZIONI DI STATISTICA MEDICA Lezione n.11 - Principi dell inferenza statistica - Campionamento - Distribuzione campionaria di una media e di una proporzione - Intervallo di confidenza di una media e di

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate

Dettagli

Ulteriori Conoscenze di Informatica e Statistica. Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie.

Ulteriori Conoscenze di Informatica e Statistica. Popolazione. Campione. I risultati di un esperimento sono variabili aleatorie. Ulteriori Conoscenze di Informatica e Statistica Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 (I piano) tel.: 06 55 17 72 17 meneghini@fis.uniroma3.it I risultati di un esperimento

Dettagli

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)

Dettagli

Verifica delle ipotesi

Verifica delle ipotesi Statistica inferenziale Stima dei parametri Verifica delle ipotesi Concetti fondamentali POPOLAZIONE o UNIVERSO Insieme degli elementi cui si rivolge il ricercatore per la sua indagine CAMPIONE Un sottoinsieme

Dettagli

Corso in Statistica Medica

Corso in Statistica Medica Corso in Statistica Medica Introduzione alle tecniche statistiche di elaborazione dati Distribuzione Normale Dott. Angelo Menna Università degli Studi di Chieti G. d Annunziod Annunzio Anno Accademico

Dettagli

Statistica. Lezione : 18, 19. Variabili casuali

Statistica. Lezione : 18, 19. Variabili casuali Corsi di Laurea: a.a. 2017-18 Diritto per le Imprese e le istituzioni Scienze dell Amministrazione e Consulenza del Lavoro sienze Internazionali dello Sviluppo e della Cooperazione Statistica Variabili

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Distribuzione degli Errori di Misura. La distribuzione normale

Distribuzione degli Errori di Misura. La distribuzione normale Distribuzione degli Errori di Misura La distribuzione normale Errori casuali e sistematici Gli errori vengono generalmente suddivisi in due categorie: errori casuali ed errori sistematici. Gli errori casuali

Dettagli

STATISTICA A D (72 ore)

STATISTICA A D (72 ore) STATISTICA A D (72 ore) Marco Riani mriani@unipr.it http://www.riani.it Tipologia di v.a. v.a. discreta numero finito di valori (infinità numerabile) x 1 x 2,, x k con probabilità p 1 p 2, p k Esempio:

Dettagli

Laboratorio di Chimica Fisica. Analisi Statistica

Laboratorio di Chimica Fisica. Analisi Statistica Università degli Studi di Bari Dipartimento di Chimica 9 giugno F.Mavelli- Laboratorio Chimica Fisica - a.a. 3-4 F.Mavelli Laboratorio di Chimica Fisica a.a. 3-4 Analisi Statistica dei Dati Analisi Statistica

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Si sono diverse distribuzioni di probabilità: quelle di cui parleremo sono la distribuzione binomiale, quella di Poisson, quella uniforme, quella normale, quella del χ² e la

Dettagli

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco

Esercitazione 5 del corso di Statistica 2 Prof. Domenico Vistocco Esercitazione del corso di Statistica Prof. Domenico Vistocco Alfonso Iodice D Enza May 30, 007 1 Esercizio Si consideri una popolazione caratterizzata dai numeri, 3, 6, 8, 11. Si considerino tutti i possibili

Dettagli

Gli intervalli di confidenza. Intervallo di confidenza per la media (σ 2 nota) nel caso di popolazione Gaussiana

Gli intervalli di confidenza. Intervallo di confidenza per la media (σ 2 nota) nel caso di popolazione Gaussiana Statistica Lez. 1 Gli intervalli di confidenza Intervallo di confidenza per la media (σ nota) nel caso di popolazione Gaussiana Sia X una v.c Gaussiana di media µ e varianza σ. Se X 1, X,..., X n è un

Dettagli

Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale

Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona media e varianza campione

Dettagli

distribuzione normale

distribuzione normale distribuzione normale Si tratta della più importante distribuzione di variabili continue, in quanto: 1. si può assumere come comportamento di molti fenomeni casuali, tra cui gli errori accidentali; 2.

Dettagli

NOZIONI DI CALCOLO DELLE PROBABILITÀ

NOZIONI DI CALCOLO DELLE PROBABILITÀ NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni

Dettagli

MEDIA aritmetica semplice (Gli indicatori di posizione)

MEDIA aritmetica semplice (Gli indicatori di posizione) STATISTICA E RICERCA DIDATTICA Note di statistica e metodi di ricerca Il 94.5 % delle statistiche e' sbagliato. Woody Allen Non esistono i dati, solo interpretazioni! Friedrich Nietzsche Laurea in Scienze

Dettagli

Indice. Prefazione. 4 Sintesi della distribuzione di un carattere La variabilità Introduzione La variabilità di una distribuzione 75

Indice. Prefazione. 4 Sintesi della distribuzione di un carattere La variabilità Introduzione La variabilità di una distribuzione 75 00PrPag:I-XIV_prefazione_IAS 8-05-2008 17:56 Pagina V Prefazione XI 1 La rilevazione dei fenomeni statistici 1 1.1 Introduzione 1 1.2 Caratteri, unità statistiche e collettivo 1 1.3 Classificazione dei

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

Utilizzando la terminologia generica di prima, la variabile standardizzata X si calcola quindi

Utilizzando la terminologia generica di prima, la variabile standardizzata X si calcola quindi La variabile standardizzata Utilizzando la terminologia generica di prima, la variabile standardizzata X si calcola quindi X'= X Media(X ) DS(X ) Visto l ampio uso in statistica di questa procedura, la

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio

Corso di Laurea: Diritto per le Imprese e le istituzioni a.a Statistica. Probabilità. Lezioni : 11, 12. Docente: Alessandra Durio Corso di Laurea: Diritto per le Imprese e le istituzioni a.a. 2016-17 Statistica Probabilità Lezioni : 11, 12 Docente: Alessandra Durio 1 Contenuti 1. Variabili casuali notevoli DISCRETE (uniforme, di

Dettagli

La casualità nello spazio o nel tempo: la distribuzione di Poisson

La casualità nello spazio o nel tempo: la distribuzione di Poisson La casualità nello spazio o nel tempo: la distribuzione di Poisson Cosa potrebbero rappresentare questi punti? o Organismi o eventi presenti in una certa area Per esempio, ci interessa capire come avviene

Dettagli

University of Messina, Italy

University of Messina, Italy ERRORI CASUALI NELL ANALISI CHIMICA 1 Errori casuali Gli errori casuali si incontrano tutte le volte che un sistema di misura viene usato al massimo della sua sensibilità. In queste circostanze i risultati

Dettagli

LEZIONE 2.5. corso di statistica. Francesco Lagona Università Roma Tre. LEZIONE 2.5 p. 1/12

LEZIONE 2.5. corso di statistica. Francesco Lagona Università Roma Tre. LEZIONE 2.5 p. 1/12 LEZIONE 2.5 p. 1/12 LEZIONE 2.5 corso di statistica Francesco Lagona Università Roma Tre LEZIONE 2.5 p. 2/12 distribuzione doppia di due variabili aleatorie consideriamo la distribuzione doppia di due

Dettagli

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )=

assuma valori in un determinato intervallo è data dall integrale della sua densità ( = )= VARIABILI ALEATORIE CONTINUE Esistono parecchi fenomeni reali per la cui descrizione le variabili aleatorie discrete non sono adatte. Per esempio è necessaria una variabile aleatoria continua ovvero una

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 17-18, I semestre Settembre 18 Scritto del - 9-18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

Outline. 1 v.c. continue. 2 v.c. Normale. 3 v.c. Esponenziale. Lezione 13. A. Iodice. v.c. continue. v.c. Normale. v.c.

Outline. 1 v.c. continue. 2 v.c. Normale. 3 v.c. Esponenziale. Lezione 13. A. Iodice. v.c. continue. v.c. Normale. v.c. Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 48 Outline 1 2 3 () Statistica 2 / 48 Variabili casuali continue Una variabile casuale X è continua

Dettagli

Presentazione dell edizione italiana

Presentazione dell edizione italiana 1 Indice generale Presentazione dell edizione italiana Prefazione xi xiii Capitolo 1 Una introduzione alla statistica 1 1.1 Raccolta dei dati e statistica descrittiva... 1 1.2 Inferenza statistica e modelli

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Scritto del

Scritto del Dip. di Ingegneria, Univ. Roma Tre Prof. E. Scoppola, Dott.M. Quattropani Probabilità e Statistica, 2017-18, I semestre 26 Giugno 2018 Scritto del 26-6 -18 Cognome Nome Matricola Esercizio 1. Un urna contiene

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. 1/2 LA DISTRIBUZIONE NORMALE o DI GAUSS Osservando gli istogrammi delle misure e degli scarti, nel caso di osservazioni ripetute in identiche condizioni Gli istogrammi sono campanulari e simmetrici,

Dettagli

C.I. di Metodologia clinica

C.I. di Metodologia clinica C.I. di Metodologia clinica Modulo 5. I metodi per la sintesi e la comunicazione delle informazioni sulla salute Quali errori influenzano le stime? L errore casuale I metodi per la produzione delle informazioni

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità UNIVERSITÀ DI BOLOGNA FACOLTÀ DI MEDICINA VETERINARIA LAUREA IN SANITA E QUALITA DEI PRODOTTI DI ORIGINE ANIMALE Introduzione alla probabilità Probabilità = metodologia per lo studio di fenomeni aleatori

Dettagli

Probabilità e Statistica

Probabilità e Statistica Corso PON Competenze per lo sviluppo Liceo Scientifico "Bonaventura Rescigno Baronissi Ing. Ivano Coccorullo Prof.ssa Angela D Ambrosio Teoria delle probabilità Si è soliti far risalire la nascita della

Dettagli

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta

L analisi dei dati. Primi elementi. EEE- Cosmic Box proff.: M.Cottino, P.Porta L analisi dei dati Primi elementi Metodo dei minimi quadrati Negli esperimenti spesso si misurano parecchie volte due diverse variabili fisiche per investigare la relazione matematica tra le due variabili.

Dettagli

DISTRIBUZIONI DI PROBABILITA (parte 3) 1 / 34

DISTRIBUZIONI DI PROBABILITA (parte 3) 1 / 34 DISTRIBUZIONI DI PROBABILITA (parte 3) 1 / 34 Distribuzione Binomiale 2 / 34 La più importante distribuzione di probabilità per variabili casuali discrete è la distribuzione binomiale. Questa distribuzione

Dettagli

tabelle grafici misure di

tabelle grafici misure di Statistica Descrittiva descrivere e riassumere un insieme di dati in maniera ordinata tabelle grafici misure di posizione dispersione associazione Misure di posizione Forniscono indicazioni sull ordine

Dettagli

PROBABILITÀ E STATISTICA - 23 Giugno 2017 Scrivere le risposte negli appositi spazi. Motivare dettagliatamente le risposte su fogli allegati

PROBABILITÀ E STATISTICA - 23 Giugno 2017 Scrivere le risposte negli appositi spazi. Motivare dettagliatamente le risposte su fogli allegati PROBABILITÀ E STATISTICA - 23 Giugno 2017 Scrivere le risposte negli appositi spazi. Motivare dettagliatamente le risposte su fogli allegati 1. - Un urna contiene 2 palline bianche e 28 nere; da essa vengono

Dettagli

Intervallo di confidenza

Intervallo di confidenza Intervallo di confidenza Prof. Giuseppe Verlato, Prof. Roberto de Marco Sezione di Epidemiologia e Statistica Medica, Università di Verona campione inferenza popolazione Media Riportare sempre anche Stima

Dettagli

Intervallo di confidenza

Intervallo di confidenza Intervallo di confidenza Prof. Giuseppe Verlato, Prof. Roberto de Marco Sezione di Epidemiologia e Statistica Medica, Università di Verona campione inferenza popolazione Media Riportare sempre anche Stima

Dettagli

Propagazione delle varianze, conosciuta come propagazione degli errori.

Propagazione delle varianze, conosciuta come propagazione degli errori. Propagazione delle varianze, conosciuta come propagazione degli errori. Siano x 1, x 2, x n n variabili casuali e poniamo,, ) = y ( ) Supponiamo inoltre nota la matrice delle covarianze delle x e vogliamo

Dettagli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 3: Variabili aleatorie discrete notevoli

Costruzione di macchine. Modulo di: Progettazione probabilistica e affidabilità. Marco Beghini. Lezione 3: Variabili aleatorie discrete notevoli Costruzione di macchine Modulo di: Progettazione probabilistica e affidabilità Marco Beghini Lezione 3: Variabili aleatorie discrete notevoli Esperimenti binari ripetuti o esperimenti bernoulliani (Bernoulli

Dettagli

Esercizi di statistica inferenziale

Esercizi di statistica inferenziale Dipartimento di Fisica SMID a.a. 004/005 Esercizi di statistica inferenziale Prof. Maria Antonietta Penco tel. 0103536404 penco@fisica.unige.it 6/1/005 Esercizio1 E noto che un grande numero di pazienti

Dettagli

Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale

Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale Distribuzioni teoriche di probabilità: distribuzione binomiale e distribuzione normale Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona media e varianza campione

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 2 Concetti di base

INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte 2 Concetti di base INTRODUZIONE AL DOE come strumento di sviluppo prodotto Francesca Campana Parte Concetti di base Pagina CONCETTI STATISTICI DI PARTENZA - DESCRITTORI DI UNA VARIABILE RANDOM - GRAFICI UTILI - DISTRIBUZIONI

Dettagli

Probabilità: teoremi e distribuzioni

Probabilità: teoremi e distribuzioni Probabilità: teoremi e distribuzioni OBIETTIVO DIDATTICO DELLA LEZIONE Illustrare le più importanti distribuzioni di probabilità che vengono utilizzate in statistica Distribuzioni di probabilità 1. La

Dettagli

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.

La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi. La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA

Dettagli