Vettori e geometria analitica in R 3 1 / 25
|
|
- Beata Lupi
- 2 anni fa
- Visualizzazioni
Transcript
1 Vettori e geometria analitica in R 3 1 / 25
2 Sistemi di riferimento in R 3 e vettori 2 / 25 In fisica, grandezze fondamentali come forze, velocità, campi elettrici e magnetici vengono convenientemente descritte mediante l uso dei vettori. Dal nostro punto di vista, i vettori e le loro operazioni ci consentiranno di capire come descrivere e studiare rette, piani e altre figure geometriche mediante l utilizzo delle coordinate cartesiane (e della trigonometria). L ambiente geometrico più naturale nel quale introdurre il concetto di vettore è lo spazio euclideo tridimensionale (denotato R 3 ), in cui assumeremo che sia fissato un sistema di assi cartesiani. Stabiliamo una corrispondenza biunivoca tra punti dello spazio R 3 e terne ordinate di numeri reali. Scrivendo P 0 =[x 0,y 0,z 0 ], diremo che x 0, y 0, z 0 sono le coordinate (cartesiane) di P 0.
3 Figura 3 / 25 z z 0 P 0 = [x 0, y 0, z 0 ] O y 0 y x 0 x
4 Prime formule 4 / 25 Semplici formule, già viste in R 2, consentono di calcolare rispettivamente la distanza tra due punti P 0, P 1 e il punto medio M di un segmento P 0 P 1. Più precisamente, siano P 0 =[x 0,y 0,z 0 ] e P 1 =[x 1,y 1,z 1 ]: allora una doppia applicazione del Teorema di Pitagora fornisce P 0 P 1 = (x 1 x 0 ) 2 +(y 1 y 0 ) 2 +(z 1 z 0 ) 2. (1) Inoltre, [ x0 + x 1 M =, y 0+ y 1, z ] 0+ z (2)
5 5 / 25 Vettori Il modo più intuitivo, anche se matematicamente non completamente rigoroso, per introdurre questo concetto è il seguente: diremo che un vettore v è identificato mediante l assegnazione di 1 una lunghezza; 2 una direzione; 3 un verso. La maniera più semplice per rappresentare simultaneamente queste tre cose consiste nell utilizzare un segmento orientato, diciamo da un punto P 0 ad un punto P 1.
6 Vettori rappresentati da segmenti orientati 6 / 25 v P 1 z P 0 P 1 x y v = v P 0
7 Vettori 7 / 25 La lunghezza di v coincide con la distanza fra i suoi estremi. La direzione di v è quella della retta che passa per P 0 e P 1. Il verso è quello indicato dalla freccia. Una simbologia alternativa per v è (P 1 P 0 ). P 0 è detto punto di applicazione del vettore. Osservazione: se consideriamo un segmento orientato (P 1 P 0 ) ottenuto da (P 1 P 0 ) mediante traslazione rigida, ci rendiamo conto subito che (P 1 P 0 ) e (P 1 P 0 ) hanno uguale lunghezza, direzione e verso. In altre parole, essi costituiscono due diverse rappresentazioni dello stesso vettore v. Allora, per descrivere nel modo più semplice possibile le operazioni con i vettori, converrà da ora in avanti fissare l origine O come punto di applicazione dei vettori.
8 Vettori 8 / 25 Ne segue che le coordinate di (P 1 P 0 ) sono date da [x 1 x 0,y 1 y 0,z 1 z 0 ], dove [x i,y i,z i ] sono le coordinate di P i,i=0,1. Questo spiega anche la simbologia (P 1 P 0 ) (si legge P 1 meno P 0 ) per il vettore che va da P 0 a P 1. Per vari motivi di natura algebrica e fisica, conviene introdurre un vettore anomalo, che chiameremo vettore nullo e identificheremo con l origine O =[0, 0, 0]. Il vettore nullo, anche denotato 0, ha lunghezza zero, direzione e verso non precisati.
9 Vettori Punto della situazione: identifichiamo dunque un vettore v con le coordinate del suo estremo P : di solito, scriveremo v=[v 1,v 2,v 3 ]. La lunghezza di v (detta anche modulo) si indica v e, in funzione delle sue coordinate, è espressa da v = v v2 2 + v2 3. (3) 9 / 25
10 Vettori applicati in O 10 / 25 z P = [v 1, v 2, v 3 ] v x O v = (P O) y
11 Operazioni sui vettori 11 / 25 Le prime operazioni che possiamo definire sono la somma di due vettori e la moltiplicazione di un vettore per un numero reale. Siano v=[v 1,v 2,v 3 ], u=[u 1,u 2,u 3 ] due vettori, e sia λ R: definiamo u+ v=[u 1 + v 1, u 2 + v 2, u 3 + v 3 ] ; (4) λ v=[λv 1, λv 2, λv 3 ]. (5) Si può notare che, se λ 0, λ v ha la stessa direzione di v e verso coincidente con quello di v se e solo se λ > 0. Inoltre, usando (9), è immediato verificare che λ v = λ v.
12 Regola del parallelogramma 12 / 25 Se u e v non sono allineati, allora u+ v coincide con la diagonale del parallelogramma da essi individuato. Inoltre, considerando uno dei due triangoli in cui la diagonale divide il parallelogramma, vediamo che l intuizione geometrica supporta la validità della seguente disuguaglianza: u+ v u + v u, v R 3, (6) detta, appunto, disuguaglianza triangolare.
13 Versori 13 / 25 Definizione: Diciamo che un vettore v è un versore se v =1. Siano i=[1,0,0], j=[0,1,0] e k=[0,0,1]. Questi tre versori sono detti versori, rispettivamente, dell asse x, y e z. Notiamo che ogni vettore v=[v 1,v 2,v 3 ] può essere riscritto, usando le (4) e (5), come v=v 1 i+v 2 j+v 3 k. (7) Ciò evidenzia anche il significato di v i,i=1,2,3, come componenti di v lungo i tre assi.
14 Componenti di un vettore 14 / 25 z v 3 k v ı j v 2 y x v 1
15 Esercizio Esercizio: Sia v=[2, 2 5, 5]. Determinare un versore w parallelo a v. Soluzione: [ 2 w= 7, 2 ] 5 7, 5 7 oppure w= [ ] 2 7, 2 5 7, 5 7. Nota: si usa indicare vers( v)= v v. (8) In parole, vers( v) è quel vettore che ha modulo 1 e direzione e verso coincidenti con quelli di v. 15 / 25
16 Prodotto scalare 16 / 25 DEFINIZIONE: Siano u=[u 1,u 2,u 3 ] e v=[v 1,v 2,v 3 ] due vettori. Il loro prodotto scalare, denotato u v, è definito da: u v=u 1 v 1 + u 2 v 2 + u 3 v 3 ( 3 i=1 u i v i ). (9)
17 17 / 25 Prodotto scalare È immediato notare che u u= u 2 (10) u v= v u (λ u) v=λ( u v)= u (λ v) λ R.
18 Ortogonalità tra vettori 18 / 25 La proprietà fondamentale del prodotto scalare (che non dimostriamo) è u v= u v cos θ, (11) dove abbiamo indicato con θ l angolo formato da u e v, con 0 θ π. In particolare, deduciamo da (11) che, se u, v 0, allora u v u v=0 (12) dove indica che u e v sono tra loro ortogonali.
19 Esercizio 19 / 25 Esercizio: Siano v, u due vettori non nulli. Determinare il vettore w proiezione di v lungo u. Soluzione: v ϑ w u w=( v vers( u)) vers( u)= ( v u) u. (13) u 2 Nota: questo risultato vale anche per π 2 θ π (verificarlo!).
20 Prodotto vettoriale 20 / 25 Definizione: Siano u=[u 1,u 2,u 3 ], v=[v 1,v 2,v 3 ]. Il loro prodotto vettoriale (indicato u v, oppure u v) è il vettore definito da u v=[u 2 v 3 u 3 v 2, u 3 v 1 u 1 v 3, u 1 v 2 u 2 v 1 ]. (14) Calcolo di u v mediante il concetto di determinante di una matrice quadrata di ordine 3.
21 21 / 25 Proprietà del prodotto vettoriale Proprietà algebriche: u v= ( v u) u, v R 3 ; (15) u ( v+ w)=( u v)+( u w) u, v, w R 3 ; (λ u) v=λ( u v)= u (λ v) u, v R 3, λ R.
22 22 / 25 Proprietà del prodotto vettoriale Proprietà geometriche: indicando ancora con θ (0 θ π) l angolo compreso tra u e v, si ha: (i) u v = u v sinθ ; (ii) Se u v 0, allora u v è ortogonale al piano individuato da u e v; (iii) Se u v 0, allora i tre vettori { u, v, u v} formano una terna destrorsa. La dimostrazione matematica completa di queste proprietà geometriche non è elementare e perciò è omessa.
23 Terna destrorsa 23 / 25 u v E u ϑ v Terna destrorsa significa che l omino solidale con u v vede u andare a sovrapporsi su v muovendosi in senso antiorario nell angolo θ.
24 Prodotto misto 24 / 25 Definizione: Siano u, v, w tre vettori. Allora il loro prodotto misto è u ( v w) ( R). (16) Nota: il calcolo del prodotto misto equivale a quello del determinante di una matrice quadrata di ordine 3.
25 Prodotto misto Volume Parallelepipedo = u ( v w). v w u w h α v Dimostrazione:Volume= v w h= v w ucosα = u ( v w). 25 / 25
x 1 Fig.1 Il punto P = P =
Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi
misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x
4. Geometria di R 3. Questo paragrafo è molto simile al paragrafo : tratta infatti delle proprietà geometriche elementari dello spazio R 3. Per assegnare delle coordinate nello spazio, fissiamo innanzitutto
Prodotto scalare e prodotto vettoriale. Elisabetta Colombo
Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a
Argomenti Capitolo 1 Richiami
Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri:
DEFINIZIONE Un vettore (libero) è un ente geometrico rappresentato da un segmento orientato caratterizzato da tre parametri: 1. modulo: la lunghezza del segmento 2. direzione: coincidente con la direzione
Esercitazione di Analisi Matematica II
Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare
Prodotto scalare e ortogonalità
Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano
I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: Fax
I.T.I.S «G. MARCONI» - PADOVA Via Manzoni, 80 Tel.: 049.80.40.211 Fax 049.80.40.277 marconi@provincia.padova.it www.itismarconipadova.it Settore tecnologico Indirizzo meccanica meccatronica ed energia
Prodotto scalare e norma
Capitolo 7 Prodotto scalare e norma Riprendiamo ora lo studio dei vettori da un punto di vista più geometrico. È noto, per esempio dalla Fisica, che spesso è comodo visualizzare un vettore del piano o
LEZIONE 8. k e w = wx ı + w y j + w z. k di R 3 definiamo prodotto scalare di v e w il numero
LEZINE 8 8.1. Prodotto scalare. Dati i vettori geometrici v = v x ı + v y j + v z k e w = wx ı + j + k di R 3 definiamo prodotto scalare di v e w il numero v, w = ( v x v y v z ) w x = v x + v y + v z.
VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.
VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:
Geometria Analitica nello Spazio
Geometria Analitica nello Spazio Andrea Damiani 4 marzo 2015 Equazione della retta - forma parametrica Se sono dati il punto A(x 0, y 0, z 0 ) e il vettore v (v x, v y, v z ), il generico punto P (x, y,
Appunti sul corso di Complementi di Matematica (modulo Analisi)
Appunti sul corso di Complementi di Matematica (modulo Analisi) prof. B.Bacchelli. 04 - Vettori topologia in R n : Riferimenti: R.Adams, Calcolo Differenziale 2. Cap. 1.2: In R n : vettori, somma, prodotto
LEZIONE 6. Typeset by AMS-TEX
LEZINE 6 6.1. Vettori geometrici. In questo lezione inizieremo a studiare enti geometrici ben noti quali punti, segmenti (orientati), rette, piani nel piano S 2 e nello spazio S 3 ordinari (cioè in cui
La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.
Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale
Geometria analitica del piano pag 32 Adolfo Scimone
Geometria analitica del piano pag 32 Adolfo Scimone CAMBIAMENTI DI SISTEMA DI RIFERIMENTO Consideriamo il piano cartesiano R 2 con un sistema di riferimento (O,U). Se introduciamo in R 2 un secondo sistema
Corso di Fisica. Lezione 2 Scalari e vettori Parte 1
Corso di Fisica Lezione 2 Scalari e vettori Parte 1 Scalari e vettori Consideriamo una libreria. Per determinare quanti libri ci sono su uno scaffale basta individuare lo scaffale in questione e contare
x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3
Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando
(P x) (P y) = x P t (P y) = x (P t P )y = x y.
Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici
e la lunghezza della proiezione del vettore B sul vettore A. s = A B =A b
8) Prodotto scalare o prodotto interno Si definisce prodotto scalare s di due vettori A e B, l area del rettangolo che ha per lati il modulo del vettore A e la lunghezza della proiezione del vettore B
vettori V Sia inoltre l angolo che il primo vettore deve percorrere per sovrapporsi al secondo. * **
Prodotto scalare di vettori. Consideriasmo due vettori u e v e siano O e O due rappresentanti applicati in O. Indichiamo come al solito con u = O la norma (cioè l intensità) del vettore u Sia inoltre l
I numeri complessi. Andrea Corli 31 agosto Motivazione 1. 2 Definizioni 1. 3 Forma trigonometrica di un numero complesso 3
I numeri complessi Andrea Corli 3 agosto 009 Indice Motivazione Definizioni 3 Forma trigonometrica di un numero complesso 3 4 Radici di un numero complesso 4 5 Equazioni di secondo grado e il teorema fondamentale
Prodotto interno (prodotto scalare definito positivo)
Contenuto Prodotto scalare. Lunghezza, ortogonalità. Sistemi e basi ortonormali. Somma diretta: V = U U. Proiezioni. Teorema di Pitagora, disuguaglianza di Cauchy-Schwarz. Angoli. Federico Lastaria. Analisi
Parte 11. Geometria dello spazio II
Parte 11. Geometria dello spazio II A. Savo Appunti del Corso di Geometria 2010-11 Indice delle sezioni 1 Il prodotto scalare, 1 2 Distanze, angoli, aree, 4 3 Il prodotto vettoriale, 6 4 Condizioni di
GEOMETRIA PIANA. 1) sia verificata l uguaglianza di segmenti AC = CB (ossia C è punto medio del segmento AB);
VETTORI E GEOMETRIA ANALITICA 1 GEOMETRIA PIANA Segmenti e distanza tra punti. Rette in forma cartesiana e parametrica. Posizioni reciproche di due rette, parallelismo e perpendicolarità. Angoli e distanze.
ALGEBRA VETTORIALE Corso di Fisica per la Facoltà di Farmacia, Università Gabriele D Annunzio, Chieti-Pescara, Cosimo Del Gratta 2008
LGER VETTORILE DEFINIZIONE DI VETTORE (1) Sia E lo spazio tridimensionale della geometria euclidea. Consideriamo due punti e appartenenti a E Si chiama segmento orientato, e si indica con (,) il segmento
V il segmento orientato. V con VETTORI. Costruzione di un vettore bidimensionale
VETTORI Costruzione di un vettore bidimensionale Nel piano con un righello si traccia una retta r tratteggiata Su r si disegna un segmento di lunghezza l d una delle estremità si disegni la punta di una
Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)
Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni + CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio
= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ
Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti
Capitolo 1 Vettori applicati e geometria dello spazio
Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore
EQUAZIONE DELLA RETTA
EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale
Due vettori si dicono opposti se hanno stessa direzione, stesso modulo ma direzione opposte, e si indica con.
Vettori. Il vettore è un ente geometrico rappresentato da un segmento orientato, che è caratterizzato da una direzione, da un verso e da un modulo. Il punto di partenza si chiama coda (o punto di applicazione),
I VETTORI DELLO SPAZIO
I VETTORI DELLO SPAZIO Riferimento cartesiano ortogonale nello spaio Bisogna assegnare nello spaio un punto O (detto origine e tre rette per esso a due a due perpendicolari e orientate in modo concorde
CENNI DI TRIGONOMETRIA
CENNI DI TRIGONOMETRIA Seno Consideriamo una circonferenza C e fissiamo un sistema di riferimento cartesiano in modo che la circonferenza C sia centrata nell origine degli assi e abbia raggio. Dall origine
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni
Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche
PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi
PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso
Geometria analitica del piano pag 12 Adolfo Scimone
Geometria analitica del piano pag 12 Adolfo Scimone Fasci di rette Siano r e r' due rette distinte di equazioni r: ax + by + c r': a' x + b' y + c' Consideriamo la retta combinazione lineare delle due
(x B x A, y B y A ) = (4, 2) ha modulo
GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()
LEZIONE 9. k, tenendo conto delle formule che permettono di calcolare il prodotto scalare ed il prodotto vettoriale, otteniamo
LEZIONE 9 9.1. Prodotto misto. Siano dati i tre vettori geometrici u, v, w V 3 (O) definiamo prodotto misto di u, v e w il numero u, v w. Fissiamo un sistema di riferimento O ı j k in S 3. Se u = u x ı
LEZIONE 7. k definiamo prodotto scalare di v e w il numero. = v x w x + v y w y + v z w z. w z
LEZINE 7 7.1. Prodotto scalare. Fissiamo un sistema di riferimento ı j k in S 3. Dati i ettori geometrici = ı + y j + k e w = w ı + j + k definiamo prodotto scalare di e w il numero, w = ( y ) w = + y
LA RETTA NEL PIANO CARTESIANO
LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;
TUTTO (o quasi tutto ) SULLA RETTA di Leonardo Calconi
TUTTO (o quasi tutto ) SULLA RETTA di Leonardo Calconi LA RETTA COME INSIEME CONTINUO La retta è una delle più antiche espressioni di continuità, definita da Euclide mediante i postulati 1, che affermano
Esercizi svolti. Geometria analitica: rette e piani
Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;
1.4 Geometria analitica
1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le
RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;
RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z
Parte 12a. Trasformazioni del piano. Forme quadratiche
Parte 12a Trasformazioni del piano Forme quadratiche A Savo Appunti del Corso di Geometria 2013-14 Indice delle sezioni 1 Trasformazioni del piano, 1 2 Cambiamento di coordinate, 8 3 Forme quadratiche,
Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3.
Esercizi. Soluzioni.. Siano dati i vettori,, R. (i) Far vedere che formano una base di R. (ii) Ortonormalizzarla col metodo di Gram-Schmidt. (iii) Calcolare le coordinate del vettore X = 5 Sol. (i) Usiamo
GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO
GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali
1 Sistemi di riferimento
Università di Bologna - Corsi di Laurea Triennale in Ingegneria, II Facoltà - Cesena Esercitazioni del corso di Fisica Generale L-A Anno accademico 2006-2007 1 Sistemi di riferimento Le grandezze usate
Volumi in spazi euclidei 12 dicembre 2014
Volumi in spazi euclidei 12 dicembre 2014 1 Definizioni In uno spazio euclideo reale V di dimensione n siano dati k n vettori linearmente indipendenti e sia Π := Π(v 1 v 2... v k ) il parallelepipedo generato
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette
Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano
a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni
Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)
GEOMETRIA ANALITICA. Il Piano cartesiano
GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,
Momento angolare L. P. Maggio Prodotto vettoriale
Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del
( ) e B( x 2. ( ) 2 + ( y 2. ( ), B( x 2
1 Il punto in R 3 La geometria analitica nello spazio: punti, vettori, rette e piani sintesi e integrazione prof D Benetti Un punto P nello spazio è associato a una terna ordinata di numeri reali numero
y 5z = 7 y +8z = 10 +3z = 3
Sistemi lineari Sistemi lineari in tre incognite; esempi tipici Tre equazioni incognite x, y, z Consideriamo il seguente sistema di tre equazioni lineari nelle tre x 2y +6z = 11 x +3y 11z = 18 2x 5y +20z
La matematica del CAD. Vettori e Matrici
La matematica del CAD Vettori e Matrici IUAV Disegno Digitale Camillo Trevisan I programmi CAD riducono tutti i problemi geometrici in problemi analitici: la proiezione di un punto su un piano viene, ad
Esercizi di Geometria Affine
Esercizi di Geometria Affine Sansonetto Nicola dicembre 01 Geometria Affine nel Piano Esercizio 1. Nel piano affine standard A (R) dotato del riferimento canonico, si consideri la retta τ di equazione
Esercizi sui vettori liberi (i, j, k è una base ortonormale positiva)
Esercizi sui vettori liberi (i, j, k è una base ortonormale positiva) Esercizio 1 Siano v e w due vettori non paralleli.sapendo che v è un versore e che v w =3 trovare l espressione di tutti i vettori
1- Geometria dello spazio. Vettori
1- Geometria dello spazio. Vettori I. Generalità (essenziali) sui vettori. In matematica e fisica, un vettore è un segmento orientato nello spazio euclideo tridimensionale. Gli elementi che caratterizzano
Lezione 3: Ancora sui vettori
Lezione : Ancora sui vettori Norma Abbiamo detto che uno degli elementi che contraddistinguono un vettore è la sua lunghezza. Allora incominciamo a vedere i vantaggi della rappresentazione dei vettori
1 Nozioni utili sul piano cartesiano
Nozioni utili sul piano cartesiano Nozioni utili sul piano cartesiano Il piano cartesiano è un sistema di riferimento costituito da due rette perpendicolari (una orizzontale detta asse delle ascisse x
Condizione di allineamento di tre punti
LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.
Ferruccio Orecchia. esercizi di GEOMETRIA 1
A01 102 Ferruccio Orecchia esercizi di GEOMETRIA 1 Copyright MCMXCIV ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 A/B 00173 Roma (06) 93781065 ISBN 978
Informatica Grafica. Un introduzione
Informatica Grafica Un introduzione Rappresentare la Geometria Operabile da metodi di calcolo automatici Grafica Vettoriale Partiamo dalla rappresentazione di un punto... Spazi Vettoriale SPAZI VETTORIALI
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13
Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano
VETTORI NELLO SPAZIO ORDINARIO ,
VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto
Somma diretta di sottospazi vettoriali
Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso
Elementi di Algebra Lineare. Spazio Vettoriale (lineare)
Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi
Distanza tra punti e punto medio di un segmento. x1 + x 2
Distanza tra punti e punto medio di un segmento Siano P = (x 1, y 1 ) e Q = (x 2, y 2 ) due punti del piano cartesiano. La distanza di P da Q vale: P Q = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 (si utilizza il Teorema
1 Cambiamenti di coordinate nel piano.
Cambiamenti di coordinate nel piano.. Coordinate cartesiane Coordinate cartesiane su una retta. Sia r una retta: dare un sistema di coordinate su r significa fissare un punto O di r e un vettore u = U
LEZIONE 9. Figura 9.1.1
LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione
Geometria analitica nel piano 1 / 47
Geometria analitica nel piano 1 / 47 Sistema di assi cartesiani nel piano 2 / 47 Abbiamo identificato l insieme dei numeri reali R con i punti di una retta. Ora, per prima cosa, stabiliamo una corrispondenza
COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 2012/2013 Prof. Francesca Visentin
COMPLEMENTI DEL CORSO DI MATEMATICA Anno Accademico 0/03 Prof. Francesca Visentin CAPITOLO V ELEMENTI DI GEOMETRIA ANALITICA Riprendiamo alcune nozioni già date nel Capitolo II.. Coordinate cartesiane
(VX) (F) Se A e B sono due matrici simmetriche n n allora anche A B è una matrice simmetrica.
5 luglio 010 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola
Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica
Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale
Funzioni goniometriche
Funzioni goniometriche In questa dispensa vengono introdotte le definizioni delle funzioni goniometriche. Preliminarmente si introducono le convenzioni sull orientazione degli angoli e sulla loro rappresentazione
0.1 Spazi Euclidei in generale
0.1. SPAZI EUCLIDEI IN GENERALE 1 0.1 Spazi Euclidei in generale Sia V uno spazio vettoriale definito su R. Diremo, estendendo una definizione data in precedenza, che V è uno spazio vettoriale euclideo
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari)
Università degli Studi del Piemonte Orientale Facoltà di Scienze M.F.N. Precorso di Matematica APPUNTI (preparati da Pier Luigi Ferrari). Piano cartesiano Per piano cartesiano si intende un piano dotato
LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),
LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con
CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO
CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,
1 Applicazioni lineari
1 Applicazioni lineari 1 Applicazioni lineari 1.1 Definizione Si considerino lo spazio tridimensionale euclideo E e lo spazio vettoriale V ad esso associato. Definizione. 1.1. Sia A una applicazione di
R. Capone Analisi Matematica Integrali multipli
Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale
Esercizi Riepilogativi Svolti. = 1 = Or(v, w)
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia FORMULE DI GEOMETRIA IN R TRASFORMAZIONI DI R CIRCONFERENZE Docente: Prof F Flamini
1.1 Coordinate sulla retta e nel piano; rette nel piano
1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione
Geometria BATR-BCVR Esercizi 9
Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio
Prodotto scalare. Piani e rette nello spazio. Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1
Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Prodotto scalare in n. Piani e rette nello spazio. 17 Gennaio 2016 Indice 1 Prodotto scalare nello spazio
Piano cartesiano e Retta
Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L
La retta nel piano cartesiano
La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle
Geometria Analitica Domande e Risposte
Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano
Piano cartesiano e retta
Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione
Illustrazione 1: Telaio. Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali
Piantanida Simone 1 G Scopo dell'esperienza: Misura di grandezze vettoriali Materiale utilizzato: Telaio (carrucole,supporto,filo), pesi, goniometro o foglio con goniometro stampato, righello Premessa
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
3. Vettori, Spazi Vettoriali e Matrici
3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e
GEOMETRIA /2009 II
Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile e Edile-Architettura - a.a. 008/009 II Emisemestre - Settimana - Foglio 0 Docente: Prof. F. Flamini - Tutore:
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire
Appunti ed esercizi di geometria analitica PRIMA PARTE
Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.
Appunti di Algebra Lineare. Distanze
Appunti di Algebra Lineare Distanze 1 Indice 1 Distanze nel piano 1.1 Distanza punto-punto................................... 1. Distanza punto-retta.................................... 3 1.3 Distanza