COMPITO DI MECCANICA DEI FLUIDI del 29 gennaio olio. acqua. γ o = 8.0 kn/m 3. γ = 9.8 kn/m3. Cognome. Nome Matricola Docente TEMA 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COMPITO DI MECCANICA DEI FLUIDI del 29 gennaio olio. acqua. γ o = 8.0 kn/m 3. γ = 9.8 kn/m3. Cognome. Nome Matricola Docente TEMA 1"

Transcript

1 ognome OMPITO DI MENI DEI FLUIDI del 29 gennaio 2009 TEM 1 ESERIZIO 1. Il serbatoio di figura presenta, sulla parete verticale di destra, un apertura rettangolare alta 1m e larga 2m, chiusa da una paratoia cilindrica di diametro D=1 m incernierata lungo la generatrice superiore di traccia. Il serbatoio contiene acqua per un altezza pari a 2 m con uno strato d olio soprastante di 1 m di spessore. Sapendo che l olio ha un peso specifico di 8.0 kn/m 3, calcolare: - la spinta (modulo, direzione e verso) esercitata dall acqua sulla paratoia, assunta di peso trascurabile; - il momento che è necessario applicare alla paratoia affinchè questa, incernierata in, sia in equilibrio (indicare modulo e verso del momento da applicare). 1 m 2 m olio γ o = 8.0 kn/m 3 acqua γ = 9.8 kn/m3 Q 0 =0.2 m 3 /s ESERIZIO 2. Il sistema illustrato in figura è costituito da due serbatoi collegati mediante una condotta lunga L=400m, di diametro D=0.5m e caratterizzata da un coefficiente di scabrezza di Gauckler-Strickler pari a k S =60 m 1/3 /s. Determinare la quota della superficie libera h del serbatoio quando la saracinesca R è completamente chiusa e tutta la portata Q 0 in ingresso nel serbatoio viene scaricata da un foro in parete sottile di area Ω=0.05 m 2, posto alla quota di 12.0m. Successivamente la saracinesca R viene aperta in modo da suddividere la portata Q 0 in due parti uguali: una scaricata attraverso il foro e l altra attraverso la condotta. In queste nuove condizioni determinare la quota della superficie libera h del serbatoio la perdita di energia localizzata ΔE R in corrispondenza della saracinesca R 12.0 m R 10.0 m

2 ognome ORLE DI MENI DEI FLUIDI del 29 gennaio 2009 TEM 1 Per un foro di dimensioni molto piccole il coeffiente di contrazione vale circa In una tubazione rigida la portata è costante nello spazio quando 4. il fluido è perfetto 5. il fluido è incomprimibile 6. l'area è costante nello spazio I serbatoi e di figura, contenenti acqua, sono collegati mediante una lunga condotta (L/d>>1000). Il punto, che si 200 m trova a metà condotta (L =L ), è caratterizzato da una quota geodetica h =145m. La pressione in risulta quindi superiore alla pressione atmosferica pari alla tensione di vapore inferiore alla pressione atmosferica ma superiore alla tensione di vapore In una tubazione cilindrica a sezione costante fluisce acqua con velocità v=2m/s. Sapendo che lo sforzo alla parete vale τ 0 =15Pa, il coefficiente di resistenza f nella formula di Darcy vale Una tubazione di diametro D=0.5m termina con un piatto flangiato al centro del quale è praticato un foro circolare di diametro d=0.2m. Sapendo che la pressione dell acqua nella condotta poco a monte piatto flangiato P=30 kpa, la portata scaricata vale circa 0.12 m 3 /s 0.18 m 3 /s 0.23 m 3 /s 100 m c =0.5 Disegnare (rappresentazione grafica qualitativamente corretta) ed illustrare a parole il diagramma di Moody

3 OMPITO DI MENI DEI FLUIDI del 15 giugno 2009 ognome TEM m acqua Δh ESERIZIO 1. Nella parete verticale del serbatoio di figura è praticata un apertura rettangolare alta 2.0 m e larga 0.5 m chiusa mediante una paratoia priva di peso e incernierata in. Il serbatoio è a tenuta e contiene acqua. Si determini l indicazione Δh del piezometro semplice in condizioni di equilibrio e, in queste condizioni, la spinta dell acqua sulla paratoia (modulo, direzione, verso e centro di spinta). ESERIZIO 2. Nel sistema illustrato in figura la portata d acqua proveniente dal serbatoio arriva al serbatoio e da qui in parte viene sfiorata al di sopra di una soglia in parete sottile larga b=1.5 m e in parte viene pompata nel serbatoio. Le due condotte che collegano i serbatoi sono entrambe caratterizzate dal diametro d=0.2m e da una scabrezza e=0.2mm; la condotta che collega i serbatoi e è lunga L =215 m mentre quella che collega i serbatoi e è lunga L =1200 m. La potenza utile della pompa P vale P u =50 kw. Sapendo che inizialmente la saracinesca S è completamente aperta e non determina alcuna dissipazione localizzata di energia e che la portata fluente lungo la condotta che collega i serbatoi e vale Q =0.1 m 3 /s, calcolare la quota della superficie libera h del serbatoio ; la portata Q 0 sfiorata dal serbatoio e quella Q pompata nel serbatoio ; la prevalenza H p della pompa e la quota della superficie libera h del serbatoio ; Successivamente la saracinesca S viene parzialmente chiusa in modo da ridurre la portata sollevata dalla pompa al valore Q =0.06 m 3 /s. ssumendo invariate le quote della superficie libera nei serbatoi e e la potenza utile P u della pompa P, calcolare la prevalenza H p della pompa e la quota della superficie libera h del serbatoio ; la portata Q e la perdita di energia localizzata ΔE S della saracinesca S m 28.0 m S Q 0 P

4 ognome ORLE DI MENI DEI FLUIDI del 15 giugno 2009 TEM 1 Nel tratto di tubazione di figura è posto un brusco allargamento dal diametro d 1 =0.1m al diametro d 2 =0.2m. Sapendo che la portata fluente è Q 0 =40 /s. La dissipazione localizzata di energia tra i punti 1 e 2 vale approssimativamente m m m Q In un condotto di scabrezza equivalente e=0.9 mm fluisce acqua (viscosità cinematica ν=10-6 m 2 /s). sapendo che lo sforzo tangenziale alla parete vale τ 0 =50 Pa, stabilire se 4. il moto è turbolento di parete scabra 5. il moto è turbolento di parete liscia 6. i dati sono insufficienti, perché per stabilire le caratteristiche del moto si deve conoscere anche il valore del numero di Reynolds del moto nel condotto. Si consideri il serbatoio a tenuta di figura contenente acqua e aria. l serbatoio è collegato un piezometro nel quale è presente una colonnina, alta H, di liquido avente peso specifico inferiore a quello dell acqua. Dire se la pressione dell aria è superiore a quella atmosferica uguale a quella atmosferica inferiore a quella atmosferica aria acqua H I serbatoi e di figura, contenenti acqua, sono collegati mediante una lunga condotta (L/d>>1000). Il punto, che si 200 m trova a metà condotta (L =L ), è caratterizzato da una quota geodetica h =165m. La pressione in risulta quindi superiore alla pressione atmosferica pari alla tensione di vapore inferiore alla pressione atmosferica ma superiore alla tensione di vapore 100 m Un aeroplano viaggia in aria ferma. Sapendo che la differenza di pressione (tra presa dinamica e statica) rilevata da un tubo di Pitot installato a bordo vale ΔP=5.8 kpa e ricordando che la densità dell'aria vale circa 1.2kg/m 3, la velocità a cui viaggia l'aereo vale circa: km/h km/h km/h Illustrare il principio di funzionamento di una turbina Pelton, evidenziando le ipotesi fatte e stimando il massimo rendimento della stessa. DOMND DDIZIONLE PER GLI STUDENTI DEL ORSO D 9 REDITI - PROF. DEFIN: Illustrare gli sviluppi teorici del problema di oscillazione di massa in un pozzo piezometrico in assenza di dissipazioni di energia ed indicare poi qualitativamente gli effetti delle dissipazioni.

5 OMPITO DI MENI DEI FLUIDI del 2 luglio 2009 ognome TEM m 2.0 m acqua ESERIZIO 1. Nella parete verticale del serbatoio di figura è praticata un apertura circolare di diametro D=2.0 m chiusa mediante una paratoia circolare priva di peso e incernierata in. Il serbatoio contiene acqua. Si determini il momento che è necessario applicare alla paratoia per mantenerla nella posizione indicata (intensità e verso di rotazione). ESERIZIO 2. Nel sistema illustrato in figura la portata d acqua proveniente dal serbatoio arriva al serbatoio e da qui in parte può essere sfiorata al di sopra di una soglia in parete sottile larga b=1.5 m e in parte prosegue verso serbatoio. Le due condotte che collegano i serbatoi sono entrambe caratterizzate da una scabrezza e=0.2mm; le lunghezze e i diametri delle due condotte sono indicati in figura. Lungo la condotta che collega i serbatoi e è presente una turbina T e lungo la condotta che collega i serbatoi e è presente una saracinesca S. Sapendo che la potenza che l acqua cede alla turbina vale P T =50 kw, che inizialmente la saracinesca S è completamente aperta e non determina alcuna dissipazione localizzata di energia e che la portata fluente lungo la condotta che collega i serbatoi e vale Q =0.07 m 3 /s, calcolare la quota della superficie libera h del serbatoio e la portata Q proveniente dal serbatoio ; l energia H T fornita alla turbina e la quota della superficie libera h del serbatoio. Successivamente la saracinesca S viene parzialmente chiusa in modo da ridurre la portata Q al valore Q =0.05 m 3 /s. ssumendo invariate le quote della superficie libera nei serbatoi e e sapendo che in queste condizioni il livello nel serbatoio vale h =20.05 m, calcolare la perdita di energia localizzata ΔE S della saracinesca S la portata Q ; l energia H T e la potenza P T fornite alla turbina 20.0 m 10.0 m L =1500 m d =0.4 m L = 150 m d =0.2 m Q 0 S T

6 ORLE DI MENI DEI FLUIDI del 2 luglio 2009 ognome TEM 2 I serbatoi e di figura, contenenti acqua, sono collegati mediante una lunga condotta (L/d>>1000). Il punto, che si 200 m trova a metà condotta (L =L ), è caratterizzato da una quota geodetica h =155m. La pressione in risulta quindi superiore alla pressione atmosferica pari alla tensione di vapore inferiore alla pressione atmosferica ma superiore alla tensione di vapore Un tubo si dice idraulicamente scabro quando 7. il moto è turbolento 8. la scabrezza è sufficientemente più grande dello spessore del sottostrato limite 9. la scabrezza è superiore a 0.1mm 100 m l recipiente di figura, contenente aria, è collegato un piezometro semplice il cui liquido indicatore ha una densità ρ=800 kg/m 3. Sapendo che Δh=0.1m, la pressione dell aria vale circa 8 Pa 80 Pa 0.8 kpa aria Δh In una tubazione rigida la portata è costante nello spazio quando 4. il fluido è perfetto 5. il fluido è incomprimibile 6. l'area è costante nello spazio Un getto d acqua cilindrico, di sezione =0.2m 2 e animato da una velocità v=1m/s, colpisce una piastra ortogonale all asse del getto stesso. La spinta che il getto esercita sulla piastra vale circa: kN kN kN Disegnare (rappresentazione grafica qualitativamente corretta) ed illustrare a parole il diagramma di Moody DOMND DDIZIONLE PER GLI STUDENTI DEL ORSO D 9 REDITI - PROF. DEFIN: Illustrare gli sviluppi teorici del problema di oscillazione di massa in un pozzo piezometrico in assenza di dissipazioni di energia ed indicare poi qualitativamente gli effetti delle dissipazioni.

7 ognome OMPITO DI MENI DEI FLUIDI del 3 settembre 2009 TEM m a R b 6.0 m N S m tronco N N N L(m) d(m) k S (m 1/3 /s) S m ESERIZIO. Nel sistema illustrato in figura entro il quale circola acqua, inizialmente, la saracinesca S 1 è completamente aperta e non produce alcuna dissipazione localizzata di energia mentre la saracinesca S 2 è parzialmente chiusa. Sapendo che la portata Q N fluente lungo la condotta N è uguale alla portata Q N fluente lungo la condotta N, calcolare: - [2] le portate Q N, Q N e Q N che scorrono nelle tre condotte del sistema, - [1] l energia nel nodo N - [1] la dissipazione di energia ΔE s2 prodotta dalla saracinesca S 2 - [2] la spinta esercitata dall acqua sulla superficia cilindrica di traccia ab, di larghezza unitaria e raggio R=2m, presente nel serbatoio. Successivamente la saracinesca S 1 viene completamente chiusa e la saracinesca S 2 è manovrata in modo che la portata scaricata attraverso la condotta N rimanga invariata. In queste nuove condizioni, restando invariate le quote della superficie libera nei due serbatoi, calcolare: - [1] l energia nel nodo N - [1] la dissipazione di energia ΔE s2 prodotta dalla saracinesca S 2 - [2] la spinta esercitata dall acqua sulla saracinesca S 2 N.. Si trascurino tutte le perdite localizzate (ad eccezione di quelle relative alle due saracinesche S 1 ed S 2 quando sono parzialmente aperte) e i carichi cinetici.

8 ognome ORLE DI MENI DEI FLUIDI del 3 settembre 2009 TEM 1 In una tubazione cilindrica di diametro d=0.05m fluisce acqua (ν=10-6 m 2 /s) con velocità v=0.15m/s. Dire se il moto che si sviluppa è 1. laminare 2. in regime di transizione tra laminare e turbolento (zona critica) 3. turbolento Un getto d'acqua cilindrico di diametro d=4 cm colpisce, ortogonalmente, una piastra. Nell'ipotesi di trascurare l'effetto del peso e sapendo che per mantenere la piastra in posizione è necessario applicare una forza F 0 di 10 N, la velocità del getto vale circa: 3.1 m/s 2.8 m/s 2.5 m/s d=0.04 m F 0 =10 N Dati due serbatoi e, collegati mediante una lunga condotta, un liquido può defluire dal serbatoio (posto a quota maggiore) al serbatoio solo se la condotta non supera mai 1. la piezometrica assoluta 2. la quota piezometrica assoluta del serbatoio di monte 3. il livello del serbatoio di monte In un condotto di diametro d=0.4 m fluisce un liquido di peso specifico γ=7.0 kn/m 3. Sapendo che la pendenza della linea dell energia (ovvero la dissipazione di energia per unità di lunghezza) è i=0.001, lo sforzo tangenziale alla parete vale 4. τ 0 =0.7 Pa 5. τ 0 =2.8 Pa 6. i dati sono insufficienti, perché si deve conoscere anche il valore della viscosità del fluido. Lo scarico di superficie di un piccolo serbatoio è costituito da uno sfioratore in parete sottile lungo 15.0m la cui soglia sfiorante si trova a quota h s =2.5m. Se il livello nel serbatoio è h=2.6m, la portata scaricata vale circa m 3 /s m 3 /s m 3 /s Dimostrare, enunciando le ipotesi semplificative adottate, che in presenza di un brusco allargamento in una condotta si determina una dissipazione di energia localizzata (perdita di orda) ΔE=(v 1 -v 2 ) 2 /2g, essendo v 1 e v 2 le velocità a monte e a valle dell allargamento. DOMND DDIZIONLE PER GLI STUDENTI DEL ORSO D 9 REDITI - PROF. DEFIN: Illustrare gli sviluppi teorici del problema dell avviamento di una condotta e valutare il tempo di avviamento.

9 ognome OMPITO DI MENI DEI FLUIDI del 24 settembre 2009 TEM m b R a 6.0 m tronco N N N L(m) d(m) k S (m 1/3 /s) S N 1.0 m P 2.0 m ESERIZIO. Nel sistema illustrato in figura entro il quale circola acqua, inizialmente, la saracinesca S è completamente aperta e non produce alcuna dissipazione localizzata di energia. Sapendo che la portata Q N fluente lungo la condotta N vale Q N =0.015 m 3 /s, calcolare: - [1] l energia nel nodo N - [1.5] le portate Q N e Q N, - [1] la prevalenza H p e la potenza utile P u della pompa P, - [2] la spinta esercitata dall acqua sulla superficia cilindrica di traccia ab, di larghezza unitaria e raggio R=2m, presente nel serbatoio. Successivamente la saracinesca S viene parzialmente chiusa in modo che la portata attraverso la condotta N si riduca al valore Q N =0.035 m 3 /s. In queste nuove condizioni, restando invariate le quote della superficie libera nei due serbatoi e la potenza utile della pompa P, calcolare: - [0.5] la prevalenza H p della pompa P - [0.5] l energia nel nodo N - [1] le portate Q N e Q N - [1] la dissipazione di energia ΔE s prodotta dalla saracinesca S - [1.5] la spinta esercitata dall acqua sulla saracinesca S N.. Si trascurino tutte le perdite localizzate (ad eccezione di quelle relative alla saracinesca S) e i carichi cinetici.

10 ognome ORLE DI MENI DEI FLUIDI del 24 settembre 2009 TEM 2 In un moto permanente di fluido perfetto e incomprimibile l energia è costante solo lungo una generica linea di corrente (e non in tutto il campo di moto) quando 1. il moto è irrotazionale 2. l accelerazione è nulla 3. sempre In una tubazione cilindrica a sezione costante fluisce acqua con velocità v=2m/s. Sapendo che lo sforzo alla parete vale τ 0 =15Pa, il coefficiente di resistenza f nella formula di Darcy vale In una tubazione cilindrica a sezione costante, le dissipazioni di energia continue determinano 1. una progressiva riduzione della velocità 2. una progressiva riduzione della quota piezometrica 3. una progressiva riduzione di velocità e quota piezometrica Nel tratto di tubazione di figura è posto un brusco allargamento dal diametro d 1 =0.1m al diametro d 2 =0.2m. Sapendo che la dissipazione localizzata di energia tra i punti 1 e 2 vale ΔE=1.0 m, la portata fluente vale approssimativamente l/s l/s l/s Q Un getto di sezione =0.1 m 2, con una velocità di 10 m/s, è deviato di 90 da una piastra ricurva. Sapendo che la densità del fluido è ρ=1000 kg/m 3, La spinta sulla piastra vale circa kn kn 6. 5 kn DOMND PER GLI STUDENTI DEL ORSO D 9 REDITI - PROF. DEFIN: Illustrare gli sviluppi teorici del problema di oscillazione di massa in un pozzo piezometrico in assenza di dissipazioni di energia ed indicare poi qualitativamente gli effetti delle dissipazioni. DOMND PER TUTTI GLI LTRI STUDENTI Dati due serbatoi, posti a quota differente e collegati mediante una condotta di notevole lunghezza, discutere il funzionamento del sistema in relazione all andamento altimetrico della condotta.

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2007

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2007 OMPITO DI MENI DEI FLUIDI del 12 gennaio 2007 Docente TEM 1 0.5 m 1.0 m Δh ESERIZIO 1. Il serbatoio di figura, di profondità unitaria, contiene. La paratoia, incernierata in, è composta da due superfici

Dettagli

COMPITO DI MECCANICA DEI FLUIDI del 11 gennaio 2006

COMPITO DI MECCANICA DEI FLUIDI del 11 gennaio 2006 COMPITO DI MECCNIC DEI FLUIDI del gennaio 006 TEM ESERCIZIO. La valvola cilindrica di altezza H e diametro D (e di peso trascurabile) è incernierata in C ed ottura un foro di pari diametro praticato sulla

Dettagli

COMPITO DI MECCANICA DEI FLUIDI del 8 gennaio 2008

COMPITO DI MECCANICA DEI FLUIDI del 8 gennaio 2008 COMPITO DI MECCNIC DEI FLUIDI del 8 gennaio 008 Docente TEM m m γ=9.8 kn/m m m ESERCIZIO. Il serbatoio di figura è a tenuta e di profondità unit. Utilizzando l'indicazione del piezometro semplice, calcolare

Dettagli

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2005

COMPITO DI MECCANICA DEI FLUIDI del 12 gennaio 2005 COMPITO DI MECCNIC DEI FLUIDI del 12 gennaio 2005 ESERCIZIO 1. Il serbatoio di figura contiene acqua con sovrastante uno strato di olio di densità ρ=800kg/m 3. Sapendo che l indicazione del piezometro

Dettagli

COMPITO DI IDRAULICA (IAT) Nome

COMPITO DI IDRAULICA (IAT) Nome COMPITO DI IDRULIC (IT) del 16 giugno 2010 Matricola TEM 1 P 1 N 2 S 1 3 S 2 Ω Δ a Δ ORLE DI IDRULIC (IT) del 16 giugno 2010 Matricola TEM 1 In un liquido, al crescere della temperatura la viscosità 1.

Dettagli

COMPITO DI IDRAULICA DEL 16 febbraio 2004

COMPITO DI IDRAULICA DEL 16 febbraio 2004 COMPITO DI IDRULIC DEL 6 febbraio 004 9.0 m M 8.0 m P 50.0 m L M =5000m L M =0000m R La condotta che collega i serbatoi a livello costante e ha diametro d=900mm e una lunghezza complessiva di 5 km. Nelle

Dettagli

Nome del 26 febbraio 2013

Nome del 26 febbraio 2013 Cognome COMPITO DI IDRULIC (IT) Nome del 6 febbraio 03 Matricola TEM.5 m P F S 3.5 m ESERCIZIO. Nel sistema di figura i serbatoi e sono collegato mediante due condotte in parallelo. Entrambe le condotte

Dettagli

L 2 L 1 L 3. Esercizio 1. Con riferimento alla Figura 1, i dati del problema in esame sono:

L 2 L 1 L 3. Esercizio 1. Con riferimento alla Figura 1, i dati del problema in esame sono: Esercizio 1 Con riferimento alla Figura 1, i dati del problema in esame sono: - L 1 = 6 m; - L 2 = 3 m; - L 3 = 14 m; - d = 5 m; - a = 45 ; - D = 2 mm; - K= 1 m 1/3 /s. Si verifichi il funzionamento del

Dettagli

Idrodinamica prova scritta 12/03/ Compito A

Idrodinamica prova scritta 12/03/ Compito A Idrodinamica prova scritta 1/03/007 - Compito Calcolare la spinta S esercitata dal liquido in movimento sulla superficie laterale del gomito illustrato in figura, avente sezione circolare, posto su un

Dettagli

ESERCIZIO 1 Si valuti la spinta sulla superficie piana BD del serbatoio chiuso in figura.

ESERCIZIO 1 Si valuti la spinta sulla superficie piana BD del serbatoio chiuso in figura. ESERCIZIO 1 Si valuti la spinta sulla superficie piana BD del serbatoio chiuso in figura. ESERCIZIO 2 Determinare la forza orizzontale F che è necessario applicare in D, estremo inferiore della parete

Dettagli

Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot

Bilanci macroscopici. Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot Bilanci macroscopici Esercizi dal libro Fenomeni di Trsporto, Bird, Stewart, Lightfoot 7A 7B 7C 7D 7E 7F Esercizio 1 Due recipienti, le cui basi si trovano su uno stesso piano, sono messi in comunicazione

Dettagli

Esercizio 1 Pompa Parte 1 Pompa con valvola parzialmente chiusa (z = 0 m in corrispondenza del baricentro della sezione (Q = 8.

Esercizio 1 Pompa Parte 1 Pompa con valvola parzialmente chiusa (z = 0 m in corrispondenza del baricentro della sezione (Q = 8. Esercizio 1 Pompa Parte 1 Pompa con valvola parzialmente chiusa Dati: - le misure riportate sullo schema in Figura 1 espresse in metri - densità e viscosità dinamica dell acqua trasportata dalla condotta

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

Programma di IDRODINAMICA

Programma di IDRODINAMICA Programma di IDRODINAMICA LEZIONE DEL 10 marzo 2014 Distinzione tra liquidi e gas. Grandezze e sistemi di misura: dimensione delle grandezze; sistema internazionale di misura e sistema pratico; grandezze

Dettagli

è completamente immerso in acqua. La sua

è completamente immerso in acqua. La sua In un tubo scorre in regime stazionario un liquido ideale con densità 1.00 10 3 kg/m 3 ; in un punto A il tubo ha raggio R A = 2.00 cm, la velocità di scorrimento è v A = 5.00 m/se la pressione è P A =

Dettagli

Figura 1. Figura 2. B 170 m s.l.m.

Figura 1. Figura 2. B 170 m s.l.m. ESERIZIO 1 In un canale a sezione rettangolare, largo 4m, è inserito uno stramazzo azin. La portata massima nel canale è di 4.8 m 3 /s e a monte dello stramazzo l altezza complessiva della corrente non

Dettagli

Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Prova in Itinere Tema A 23 Novembre 2012

Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Prova in Itinere Tema A 23 Novembre 2012 Meccanica dei Fluidi con Fondamenti di Ingegneria Chimica Proa in Itinere Tema A 3 Noembre 01 Esercizio 1 Tubazione scabra in ghisa Si consideri la tubazione in ghisa (indice di scabrezza ε=0.10 mm) disegnata

Dettagli

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da:

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: Statica Distribuzione delle pressioni La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: z+p/γ= cost LEE DI STEVIN Il valore della costante è

Dettagli

SCHEDA 1 PORTATA DI UNA CONDOTTA

SCHEDA 1 PORTATA DI UNA CONDOTTA SCHEDA 1 PORTATA DI UNA CONDOTTA Q = V / t [m 3 /s] oppure [litri/s] 1 litro = 1 dm 3 = 1 / 1000 m 3 1 m 3 = 1000 dm 3 = 1000 litri Definizione: La portata è la quantità di liquido che attraversa una sezione

Dettagli

Perdite di carico in tubi cilindrici (i.e. correnti in pressione)

Perdite di carico in tubi cilindrici (i.e. correnti in pressione) Perdite di carico in tubi cilindrici (i.e. correnti in pressione) Le perdite di carico in tubi cilindrici sono classificabili in due grosse categorie: - Perdite di carico distribuite: traggono origine

Dettagli

I D R O S T A T I C A

I D R O S T A T I C A I D R O S T A T I C A Caratteristiche stato liquido (descr.) FLUIDI Massa volumica (def. + formula) Volume massico (def. + formula) Peso volumico (def. + formula) Legame massa volumica - peso volumico

Dettagli

PERDITE DI CARICO CONTINUE

PERDITE DI CARICO CONTINUE PERDITE DI CARICO CONTINUE La dissipazione di energia dovuta all'attrito interno ed esterno dipende da: velocità del liquido [m/s] dal tipo di liquido e dalle pareti della vena fluida, secondo un coefficiente

Dettagli

ESAME DI AERODINAMICA 26/3/2008

ESAME DI AERODINAMICA 26/3/2008 ESAME DI AERODINAMICA 26/3/2008 Un ala finita viene investita da una corrente d aria con velocità 60 m/s. In una sezione dell ala la circolazione vale -0 m 2 /s e l incidenza indotta vale 0.5. La resistenza

Dettagli

Esercizio 1. Figura 1

Esercizio 1. Figura 1 Esercizio 1 Il serbatoio prismatico indicato in Figura 1 è chiuso da una paratoia rettangolare AC che può ruotare attorno alla cerniera C. Alla paratoia è vincolata in P una massa di contrappeso. Sapendo

Dettagli

ESAME DI AERODINAMICA 11/02/2015

ESAME DI AERODINAMICA 11/02/2015 ESAME DI AERODINAMICA 11/02/2015 In un profilo alare non simmetrico, al diminuire dell angolo di incidenza, la coordinata del centro di pressione: (a) tende verso il bordo di attacco (b) tende verso il

Dettagli

MOTO PERMANENTE NELLE CONDOTTE IN PRESSIONE: PERDITE DI CARICO ESERCIZIO N. 7.A

MOTO PERMANENTE NELLE CONDOTTE IN PRESSIONE: PERDITE DI CARICO ESERCIZIO N. 7.A MOTO PERMANENTE NELLE CONDOTTE IN PRESSIONE: PERDITE DI CARICO ESERCIZIO N. 7.A PRIMA PARTE CONDOTTA A DIAMETRO COSTANTE Dati (cfr. esercizio n. 6.a prima parte): - z = 1.5 m, D = 50 mm, L = 60 m (si assuma

Dettagli

ESAME DI AERODINAMICA 10/9/2012

ESAME DI AERODINAMICA 10/9/2012 ESAME DI AERODINAMICA 10/9/2012 Se un aereo Boeing 727 sviluppa un C L pari a 16 volte il suo C D, quale distanza (in Km) può percorrere in volo planato partendo da un altezza di 7500 m se all improvviso

Dettagli

ESAME DI AERODINAMICA 26/3/2008

ESAME DI AERODINAMICA 26/3/2008 ESAME DI AERODINAMICA 26/3/2008 Un ala finita viene investita da una corrente d aria con velocità 60 m/s. In una sezione dell ala la circolazione vale -0 m 2 /s e l incidenza indotta vale 0.5. La resistenza

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

Le pompe sono macchine operanti su fluidi incomprimibili; esse assorbono lavoro da un motore per trasferire energia ad un fluido.

Le pompe sono macchine operanti su fluidi incomprimibili; esse assorbono lavoro da un motore per trasferire energia ad un fluido. Introduzione Le pompe sono macchine operanti su fluidi incomprimibili; esse assorbono lavoro da un motore per trasferire energia ad un fluido. Si distinguono 2 tipologie di pompe: 1. pompe a flusso permanente:

Dettagli

Fluidodinamica applicata Esercizi Proposti (Da Risolvere)

Fluidodinamica applicata Esercizi Proposti (Da Risolvere) MARTEDÌ 1..000 ESERCIZI PROPOSTI 1) una parete verticale separa due invasi pieni d acqua. Noti i livelli dell acqua nei due invasi 1 ed, con 1 < e la densità ρ dell acqua, calcolare la forza per unità

Dettagli

CAPITOLO 5 IDRAULICA

CAPITOLO 5 IDRAULICA CAPITOLO 5 IDRAULICA Cap. 5 1 FLUIDODINAMICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO'

Dettagli

Appunti di Meccanica dei Fluidi M. Tregnaghi

Appunti di Meccanica dei Fluidi M. Tregnaghi ESERCIZIO (): eterminare la portata, noti il diametro e il carico totale (moto turbolento) (cm) 0 L (m) 00 ρ (kg/m 3 ) 000 ν (m /s),0 0 Δ (m),0 ε (mm) 0,0 eterminare Q nell'ipotesi di moto turbolento pienamente

Dettagli

Esercitazioni di fisica I fluidi

Esercitazioni di fisica I fluidi Corso di Laurea in Scienze e Tecnologie Biologiche Esercitazioni di fisica I fluidi (pt. 1: fluidostatica e fluidi ideali) Luca Brombal luca.brombal@phd.units.it 16/11/2017 #1 Legno e granito Un blocco

Dettagli

Eq. bilancio quantità di moto

Eq. bilancio quantità di moto Eq. bilancio quantità di moto Contributo relativo alle superfici permeabili, ovvero interessate da flussi di massa (nullo, dato che il fluido è macroscopicamente in quiete) Integrale degli sforzi superficiali

Dettagli

- Corso di Costruzioni idrauliche E.A.

- Corso di Costruzioni idrauliche E.A. Università Politecnica delle Marche Facoltà di Ingegneria - Dipartimento di Ingegneria, Civile, Edile e Architettura Corso di Costruzioni idrauliche (E.A.) - A.A. 0/0 ESERCITAZIONE N. ALLIEVO MATR Problemi

Dettagli

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Perdite di carico nelle condotte in pressione Materia: Idraulica agraria (6 CFU)

Dettagli

ESAME DI AERODINAMICA 14/06/2013

ESAME DI AERODINAMICA 14/06/2013 ESAME DI AERODINAMICA 14/06/2013 La derivata della retta C L in fuzione di α, per un ala finita di allungamento 8 composta da profili sottili simmetrici e lungo la quale si realizza una distribuzione di

Dettagli

La portata in uscita viene calcolata moltiplicando la velocità per l area della luce e per il coefficiente di contrazione, nel modo seguente:

La portata in uscita viene calcolata moltiplicando la velocità per l area della luce e per il coefficiente di contrazione, nel modo seguente: Problema Calcolare la portata d acqua effluente dal serbatoio nel caso indicato in figura. Si supponga ce il livello nel serbatoio rimanga costante. Si ripeta l esercizio in due situazioni: -. si supponga

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

ESAME DI AERODINAMICA 14/06/2013

ESAME DI AERODINAMICA 14/06/2013 ESAME DI AERODINAMICA 14/06/2013 La derivata della retta C L in fuzione di α, per un ala finita di allungamento 8 composta da profili sottili simmetrici e lungo la quale si realizza una distribuzione di

Dettagli

IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE. RACCOLTA di ESERCIZI con SOLUZIONI

IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE. RACCOLTA di ESERCIZI con SOLUZIONI IMPIANTI ENERGETICI PER L INDUSTRIA TESSILE RACCOLTA di ESERCIZI con SOLUZIONI ESERCIZIO n.1 Del circuito idraulico rappresentato in Figura 1 in sono noti: Diametro delle tubazioni D 1 = D 2 = 0.5 m Lunghezza

Dettagli

a) Calcolare il modulo di F.

a) Calcolare il modulo di F. 1. (1-2-2011, 3-10-2011, 23-7-2013) Un getto d acqua che cade da un rubinetto si restringe verso il basso. Se l area di una sezione del flusso di acqua è A 1 =1.2 cm 2 e diventa A 2 = 0.35 cm 2 45 mm più

Dettagli

DINAMICA DEI FLUIDI D I LU I G I B O S C A I N O B I B L I O GRAFIA:

DINAMICA DEI FLUIDI D I LU I G I B O S C A I N O B I B L I O GRAFIA: DINAMICA DEI FLUIDI D I LU I G I B O S C A I N O B I B L I O GRAFIA: I P ro b l e m i D e l l a F i s i c a - C u t n e l l, J o h n s o n, Yo u n g, S t a d l e r P ro b l e m i di f i s i c a t ra t

Dettagli

ESAME DI AERODINAMICA 11/6/2012

ESAME DI AERODINAMICA 11/6/2012 ESAME DI AERODINAMICA /6/202 La velocità in un campo fluidodinamico bidimensionale è espressa, in m/s, da u = x y t,v = 2 y 2. La vorticità nel punto (x= -2 m, y= m) al tempo t=2 s è, in s : (a) -4 (b)

Dettagli

STATICA E DINAMICA DEI FLUIDI

STATICA E DINAMICA DEI FLUIDI STATICA E DINAMICA DEI FLUIDI Pressione Principio di Pascal Legge di Stevino Spinta di Archimede Conservazione della portata Teorema di Bernoulli Legge di Hagen-Poiseuille Moto laminare e turbolento Stati

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 L'idraulica è la scienza che studia l'utilizzazione dei

Dettagli

Figura 1 Schema del problema, le misure riportate sono espresse in metri

Figura 1 Schema del problema, le misure riportate sono espresse in metri Esercizio 1 Condotte in pressione Abaco di Moody 15/01/2008 Parte 1 Condotta con diametro costante ad altimetria variabile e portata incognita Dati: - le misure riportate sulla schema in figura espresse

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

[a= 1.54 m/s 2 ; T 12 =17.5 N, T 23 = 10.5 N]

[a= 1.54 m/s 2 ; T 12 =17.5 N, T 23 = 10.5 N] Esercizio 1 Tre blocchi di massa rispettivamente m1=5 kg, m2= 2 kg ed m3=3 kg sono uniti da funi e poggiano su un piano orizzontale. Il coefficiente di attrito dinamico fra il piano e i blocchi è µ=0.2.

Dettagli

Appunti di Meccanica dei Fluidi M. Tregnaghi

Appunti di Meccanica dei Fluidi M. Tregnaghi PERITA I BORA ) Equazione di continuità A A A A ) Bilancio Energia p p z z H g g p p H g ) Bilancio Quantità di moto p p A Q p p g ombinando () e () si ottiene: PERITA I IMBOO PERITA I SBOO 4 H g Inserendo

Dettagli

Capitolo 3 Cinematica e Dinamica dei fluidi

Capitolo 3 Cinematica e Dinamica dei fluidi Capitolo 3 Cinematica e Dinamica dei fluidi Cinematica: velocità e accelerazione Campo di velocità: V = V(x,y,z,t) u = u(x,y,z,t) v = v(x,y,z,t) w = w(x,y,z,t) Joseph-Louis Lagrange (Torino, 25 gennaio

Dettagli

Corso di Idraulica Agraria ed Impianti Irrigui

Corso di Idraulica Agraria ed Impianti Irrigui Corso di Idraulica Agraria ed Impianti Irrigui Docente: Ing. Demetrio Antonio Zema Lezione n. 6: Idrodinamica (parte seconda) Anno Accademico 0-0 0 Perdite di carico concentrate (o localizzate) Perdite

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Meccanica dei fluidi, dove e cosa studiare

Meccanica dei fluidi, dove e cosa studiare Meccanica dei fluidi, dove e cosa studiare Meccanica dei Fluidi AA 2015 2016 Il libro di testo adottato è Meccanica dei Fluidi di Cengel & Cimbala, McGraw Hill. Alcuni argomenti sono stati trattati con

Dettagli

I fluidi. 2 La densità di un olio è 0,08 g/cm 3. L altezza h della colonna di olio nella figura è: A 2 cm. B 4,6 cm. C 8 cm. D 10 cm. E 11,8.

I fluidi. 2 La densità di un olio è 0,08 g/cm 3. L altezza h della colonna di olio nella figura è: A 2 cm. B 4,6 cm. C 8 cm. D 10 cm. E 11,8. I fluidi 1 Per misurare pressioni relativamente basse, in un barometro anziché mercurio è utilizzato olio di densità 8,5 10 2 kg/m 3. Un cambiamento di pressione di 1,0 Pa produce una variazione nell altezza

Dettagli

Appunti sull analisi dimensionale per la modellazione del moto uniforme dei fluidi nei condotti circolari. 15 ottobre 2012

Appunti sull analisi dimensionale per la modellazione del moto uniforme dei fluidi nei condotti circolari. 15 ottobre 2012 Appunti sull analisi dimensionale per la modellazione del moto uniforme dei fluidi nei condotti circolari 5 ottobre 202 Analisi dimensionale e teorema Π Si consideri la relazione g 0 = f (g, g 2, g 3,...,

Dettagli

Esercizi di Elettricità

Esercizi di Elettricità Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Elettricità 1. Quattro cariche puntiformi uguali Q = 160 nc sono poste sui vertici di un quadrato di lato a. Quale carica

Dettagli

Meccanica delle Terre Geotecnica Prova scritta di esame 11/06/2014

Meccanica delle Terre Geotecnica Prova scritta di esame 11/06/2014 Prova scritta di esame 11/6/214 # 1. Con riferimento alla situazione stratigrafica mostrata nella figura seguente, deve essere realizzato un serbatoio cilindrico di acqua di grandi dimensioni (D = 14 m),

Dettagli

Esercizio 1 Tre blocchi di massa rispettivamente m1=5 kg, m2= 2 kg ed m3=3 kg sono uniti da funi e poggiano su un piano orizzontale.

Esercizio 1 Tre blocchi di massa rispettivamente m1=5 kg, m2= 2 kg ed m3=3 kg sono uniti da funi e poggiano su un piano orizzontale. Esercizio 1 Tre blocchi di massa rispettivamente m1=5 kg, m2= 2 kg ed m3=3 kg sono uniti da funi e poggiano su un piano orizzontale. Il coefficiente di attrito dinamico fra il piano e i blocchi è µ=0.2.

Dettagli

V C 2gh. Q AV C C A 2gh A 2gh. Applicazione Bernoulli: FORONOMIA. Efflusso da una luce. - Luce a BATTENTE

V C 2gh. Q AV C C A 2gh A 2gh. Applicazione Bernoulli: FORONOMIA. Efflusso da una luce. - Luce a BATTENTE Efflusso da una luce - Luce a BATTENTE Ipotesi: liquido perfetto, incomprimibile, moto permanente Applicazione Bernoulli: FORONOMIA Applico Bernoulli ai punti A (vicino al pelo libero) e B (sulla sezione

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 12 m. Quando si muove in aria alla velocità di 150 km/h e sviluppa un

Dettagli

Esercizio 1 (prova in itinere 22/11/02)

Esercizio 1 (prova in itinere 22/11/02) Eserciio 1 (prova in itinere 22/11/02) Un treno (Figura 1) di seione frontale massima S t =13 m 2 corre con velocità uniforme in una galleria di seione S g =90 m 2. Sul locomotore è posiionato un tubo

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 9: Le lunghe condotte pompe ed impianti di sollevamento

Dettagli

Obiettivi: fornire le conoscenze di base delle applicazioni dell ingegneria Idraulica Ambientale. Programma: Nozioni introduttive

Obiettivi: fornire le conoscenze di base delle applicazioni dell ingegneria Idraulica Ambientale. Programma: Nozioni introduttive A.A. Nome Settore CFU Corso di Studi Periodo Ore Moduli Mutuato 2013/14 Idraulica ICAR/01 9 Ingegneria Civile e Ambientale Primo semestre 72 1 No N Moduli Nome Modulo Tipologia Ore Docente SSD Ruolo Interno

Dettagli

CENNI DI FLUIDODINAMICA

CENNI DI FLUIDODINAMICA CENNI DI FLUIDODINAMICA DOWNLOAD Il pdf di questa lezione (0509a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 09/05/2012 MOTO DEI FLUIDI PERFETTI Il comportamento dei fluidi reali

Dettagli

ESAME DI AERODINAMICA 13/7/2009

ESAME DI AERODINAMICA 13/7/2009 ESAME DI AERODINAMICA 3/7/2009 Una presa d aria supersonica è progettata per funzionare a M = 2.6. se la sezione d ingresso ha un area A i = 0.58m 2, la sezione di gola in m 2 è: (b).32 (c).2 (d).4 (e).078

Dettagli

MACCHINE OPERATRICI IDRAULICHE pompe cinetiche e volumetriche

MACCHINE OPERATRICI IDRAULICHE pompe cinetiche e volumetriche MACCHINE OPERATRICI IDRAULICHE pompe cinetiche e volumetriche Prof.ssa Silvia Recchia GENERALITÀ, CLASSIFICAZIONE E CONCETTI FONDAMENTALI 1 UNA POMPA È UNA MACCHINA IN GRADO DI CEDERE ENERGIA MECCANICA

Dettagli

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale TEOREMA DI BERNOULLI FLUIDI NON PERFETTI Materia: Idraulica agraria (6 CFU) docente:

Dettagli

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica 1 La lezione di oggi I fluidi reali La viscosità Flussi laminare e turbolento La resistenza idrodinamica 2 La lezione di oggi Forze di trascinamento nei fluidi La legge di Stokes La centrifuga 3 ! Viscosità!

Dettagli

MOTO VARIO ELASTICO NELLE CONDOTTE IN PRESSIONE ESERCIZIO N. 6.A CONDOTTA SEMPLICE CON CONDIZIONI SULLA VELOCITÀ A VALLE

MOTO VARIO ELASTICO NELLE CONDOTTE IN PRESSIONE ESERCIZIO N. 6.A CONDOTTA SEMPLICE CON CONDIZIONI SULLA VELOCITÀ A VALLE MOTO VARIO ELASTICO NELLE CONDOTTE IN PRESSIONE ESERCIZIO N. 6.A CONDOTTA SEMPLICE CON CONDIZIONI SULLA VELOCITÀ A VALLE Una condotta a sezione circolare di diametro D e lunghezza L (fig. 1) trasporta

Dettagli

CORSO DI TERMODINAMICA E MACCHINE

CORSO DI TERMODINAMICA E MACCHINE CORSO DI TERMODINAMICA E MACCHINE Parte A (Termodinamica Applicata) - Tempo a disposizione 1 ora Problema N. 1A (punti 10/30) Una tubazione con diametro di 70 mm e lunga 2 km trasporta 20 kg/s di gasolio

Dettagli

Corso di Idraulica ed Idrologia Forestale

Corso di Idraulica ed Idrologia Forestale Corso di Idraulica ed Idrologia Forestale Docente: Prof. Santo Marcello Zimbone Collaboratori: Dott. Giuseppe Bombino - Ing. Demetrio Zema Lezione n. 7: Il moto dei fluidi reali Anno Accademico 008-009

Dettagli

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl Prima verifica F1) Un corpo di massa 200 g si muove lungo l asse x sotto l azione di una forza, parallela all asse x, la cui intensità in funzione di x è data nel grafico B Per quali valori di x l accelerazione

Dettagli

Esercizio 1. Esercizio 2 (prova in itinere del 18/11/03)

Esercizio 1. Esercizio 2 (prova in itinere del 18/11/03) Eserciio 1 Si consideri la galleria del vento rappresentata nella Figura 1. In essa, quando la ventola è in funione, fluisce da sinistra verso destra una portata d aria (ρ =1.225 kg/m 3 ). All interno

Dettagli

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Legge di Stevino La pressione in un liquido a densità costante cresce linearmente con la profondità Il principio di

Dettagli

Martedì 02 maggio 2017 Corso di Fisica Generale ing. Civile - prof. P. Lenisa

Martedì 02 maggio 2017 Corso di Fisica Generale ing. Civile - prof. P. Lenisa Martedì 02 maggio 2017 Corso di Fisica Generale ing. Civile - prof. P. Lenisa Si calcoli il momento di inerzia di un asta sottile e omogenea rispetto all asse passante per il suo centro di massa e perpendicolare

Dettagli

Calcolo delle perdite di carico

Calcolo delle perdite di carico 9 Calcolo delle perdite di carico 9.1 Canali Il seguente paragrafo sarà dedicato alla descrizione delle perdite di carico nei canali anche se tutto il manuale è dedicato alle tubazioni per il trasporto

Dettagli

Esercizi di Esame.mcd (1/8)

Esercizi di Esame.mcd (1/8) Esercizi di Esame.mcd (/8) Un ugello convergente è collegato ad un condotto circolare (D : 3.99mm) nel quale è imposto un flusso di energia nel modo calore Q 2. All'uscita del condotto vi è un ugello divergente

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

Esercizio 2 Determinare la portata di filtrazione attraverso lo strato di terreno più permeabile indicato in figura. Dati: h H 1 =

Esercizio 2 Determinare la portata di filtrazione attraverso lo strato di terreno più permeabile indicato in figura. Dati: h H 1 = ESERCIZI DA ESAMI (1996-2003) L'acqua nel terreno: misura della permeabilità dei terreni Esercizio 1 Per una prova di permeabilità a carico costante sono dati i seguenti valori: lunghezza del campione

Dettagli

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II)

Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria Chimica. Scambio di materia (II) Esercitazione di Meccanica dei fluidi con Fondamenti di Ingegneria himica Esercitazione 6 (FI) - 1 Gennaio 016 Scambio di materia (II) Esercizio 1 Evaporazione di acqua da una piscina Stimare la perdita

Dettagli

Idraulica e Idrologia: Lezione 19 Agenda del giorno

Idraulica e Idrologia: Lezione 19 Agenda del giorno Idraulica e Idrologia: Lezione 19 Agenda del giorno Il regime turbolento Distribuzione di velocità e leggi di resistenza: diagramma di Moody Equazione di Gauckler Strickler per il moto uniforme in canali

Dettagli

Idraulica e Idrologia: Lezione 16 Agenda del giorno

Idraulica e Idrologia: Lezione 16 Agenda del giorno Idraulica e Idrologia: Lezione 16 Agenda del giorno Conservazione dell energia Applicazioni del teorema di Bernoulli alle correnti rettilinee Tubo di Pitot Efflusso libero da luci: luce di fondo, luce

Dettagli

ESAME DI AERODINAMICA 16/4/2007

ESAME DI AERODINAMICA 16/4/2007 ESAME DI AERODINAMICA 6/4/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Materia: Idraulica agraria (6 CFU) docente: prof. Antonina Capra a.a. 2009-10

Dettagli

Facoltà di Farmacia - Anno Accademico Giugno 2016 A

Facoltà di Farmacia - Anno Accademico Giugno 2016 A Facoltà di Farmacia - Anno Accademico 2015-2016 20 Giugno 2016 A Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio i risultati trovati per ciascun

Dettagli

Esercizi. =μ S. [ v 2 > gr h > 7.5m ]

Esercizi. =μ S. [ v 2 > gr h > 7.5m ] Una molla ideale di costante k=400 N/m è inizialmente compressa di 10 cm. Al suo estremo libero è appoggiato un corpo di 1 kg e il tutto su un piano orizzontale scabro, con coefficiente di attrito μ D

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 018/019 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (16 ore): Matteo Avolio Lezione del 08/05/019 h (13:30-15:30, Aula G10, Golgi) ESERCITAZIONI FLUIDI Esercizio

Dettagli

COMPITINO MECCANICA DEI FLUIDI, (FILA A)

COMPITINO MECCANICA DEI FLUIDI, (FILA A) COMPITINO MECCANICA DEI FLUIDI, 2652010 (FILA A) ESERCIZIO 1) L analisi dimensionale suggerisce che per riprodurre in laboratorio le caratteristiche del moto in un canale è fondamentale che si mantenga

Dettagli

Meccanica delle Terre Geotecnica Prova scritta di esame 20/10/2017

Meccanica delle Terre Geotecnica Prova scritta di esame 20/10/2017 Prova scritta di esame 20/10/2017 #1 Con riferimento allo schema mostrato di seguito: calcolare la tensione verticale totale, la pressione interstiziale e la tensione verticale efficace alle profondità

Dettagli

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T].

IDRODINAMICA. Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. IDRODINAMICA Portata e velocità media Si chiama portata, il volume di fluido che defluisce attraverso una sezione nell unità di tempo; si indica con il simbolo Q [L 3 /T]. In una corrente d acqua la velocità

Dettagli

Fluidodinamica. Q=V/Δt=costante

Fluidodinamica. Q=V/Δt=costante Liquido perfetto o ideale: Fluidodinamica Incomprimibile (densità costante sia nel tempo che nello spazio) Assenza di attrito interno (in un liquido reale si conserva la caratteristica dell incompressibilità

Dettagli

Fisica Medica Esercizi

Fisica Medica Esercizi Fisica Medica Esercizi Roberto Guerra roberto.guerra@unimi.it Dipartimento di Fisica Università degli studi di Milano (1) Data la seguente equazione: L = 2P V /x t a) ricavare x in funzione delle altre

Dettagli

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale

Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Corsi di laurea di I livello: Scienze e tecnologie agrarie Gestione tecnica del territorio agroforestale e sviluppo rurale Materia: Idraulica agraria (6 CFU) docente: prof. Antonina Capra a.a. 2008-09

Dettagli

Densita. FLUIDI : liquidi o gas. macroscop.:

Densita. FLUIDI : liquidi o gas. macroscop.: 6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)

Dettagli