Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl"

Transcript

1 Prima verifica F1) Un corpo di massa 200 g si muove lungo l asse x sotto l azione di una forza, parallela all asse x, la cui intensità in funzione di x è data nel grafico B Per quali valori di x l accelerazione è costante? 6 Esiste un intervallo di valori di x in cui la velocità è costante? (spiegare) L accelerazione è costante quando la forza è costante: 2 per 0 < x < 02 e x > 03 m x(m) La velocità è costante quando a = 0, in questo caso mai perchè F 0 Quanto lavoro viene compiuto sul corpo quando esso si muove da a B? Il lavoro compiuto è L = B 2 F d x, che è pari all area tratteggiata: L = 06 J x(m) F2) Con quale tipo di moto i globuli rossi cadono verso il fondo di una provetta durante una misura di VES? (Motivare la risposta facendo riferimento alla legge che regola questo tipo di fenomeni) Un corpo in moto in un fluido risente di una forza di attrito viscoso 6 B F att = f v per una sfera f = 6πr Se si muove sotto l azione di una forza esterna F 0 = cost, raggiunge la velocità limite quando F 0 + F att = 0, da cui : v lim = F 0 6πr Per il globulo rosso, circa sferico, la forza esterna è la somma di forza peso e spinta di rchimede F 0 = 3 πr3 (d globulo d plasma )g vlimite o di sedimentazione : v sed = 2 9 gr2 d gl d pl Una pallina di plastica, di densità d = 12 g/cm 3 e massa M = 12 g, affonda in un lago molto profondo La viscosità dell acqua vale = 10 3 P a s Si elenchino le forze che agiscono sulla pallina e si calcoli la risultante della forza peso e della spinta di rchimede che agiscono su di essa Sulla pallina agiscono forza peso, spinta di rchimede e forza di attrito viscoso F 0 = (m d acqua V )g = N (verso il basso) V = m 3V = 10 cm 3 r = 3 d pall π = 13 cm Se la pallina cadesse verso il fondo del lago con le stesse leggi con cui cade un globulo rosso, con quale velocità cadrebbe? Che commenti potete fare? v lim = F 0 6πr oppure v lim = 2 9 gr2 d pall d acqua v lim = 78 m/s un valore abbastanza elevato, bisognerebbe verificare se si instaurano delle turbolenze Il valore ottenuto è calcolato nell ipotesi che il moto della sfera non provochi turbolenze F3) Si calcoli la massa di una molecola di azoto, N 2 sapendo che il peso atomico dell azoto è 1

2 La molecola N 2 è composta da due atomi di N, quindi la massa di una mole di N 2 è M(mole) = 2 1 g Una mole corrisponde a N = molecole,quindi m(molecola) = M(mole) N = g = kg Si calcoli, usando i risultati dellla teoria cinetica, la velocità di traslazione media delle molecole di azoto a 20 o C 1 2 mv2 = 3 3kT kt dove m = m(molecola) da cui : v = = 510 m/s 2 m Si calcoli la variazione della quantità di moto (mv) di una delle molecole ora considerate quando urta perpendicolarmente una parete del recipiente che contiene l azoto In un urto elastico contro una parete la componente v x della velocità perpendicolare alla parete inverte il segno v x v x In questo caso la velocità ha solo la componente perpendicolare, quindi prima e dopo l urto elastico la molecola ha in modulo la stessa velocità ma la direzione è opposta: = 2mv = kg m/s m = m(molecola) Quanti urti del tipo considerato devono avvenire ogni secondo su un metro quadro di parete per esercitare una pressione pari a 0 mmhg? La forza esercitata da N urti perpendicolari è F = N urti e la pressione P = N urti S per cui per esercitare una pressione di 0 mmhg=0 133 Pa sono necessari in 1 s su 1 m 2 di superficie N urti = P S 2mv = urti F) Un grande tubo di acquedotto (sezione S=0 m 2 ) è attraversato da una portata Q=800 l/s d un certo punto il tubo ha una diramazione verticale, diretta verso l alto, e lunga h=12 m (Si tratta di un tubo che si innestava, provenendo dall alto sulla condotta principale e che è stato h successivamente tagliato e chiuso) La pressione assoluta dell acqua nel tubo principale dell acquedotto vale 12 atm Si dicano quali sono le condizioni di validità del teorema di Bernoulli Il teorema di Bernoulli esprime la conservazione dell energia per unità di volume di un fluido: P dv2 + dgh = cost è applicabile a fluidi incomprimibili, privi di viscosità che scorrono in condotti a pareti rigide con moto stazionario Si supponga valido il teorema di Bernoulli e lo si usi per calcolare la pressione nel punto in cui la diramazione verticale è stata chiusa P acqued dv2 acqued + dgh acqued = P dir dv2 dir + dgh dir Dal disegno h = h dir h acqued, nella diramazione il liquido è fermo, mentre la velocità nel tubo principale dell acquedotto vale v acqued = Q S = 2 m/s P dir P acqued = 1 2 dv2 acqued dgh = 9760 P a P dir = P a

3 F5) Due tubi T 1 e T 2, collegati in parallelo, sono lunghi 10 m e hanno raggi rispettivamente r 1 = 1 mm e r 2 = 15 mm I due tubi hanno pareti rigide, sono posti su un piano orizzontale e sono attraversati da una portata complessiva di acqua pari a 06 cc/s Si dia la definizione di impedenza (o resistenza idraulica) di una canalizzazione Si scriva l espressione per l impedenza di un tubo cilindrico e la si usi per calcolare l impedenza del tubo T 1 (Viscosità dell acqua = 10 3 P a s) La resistenza idraulica è definita R = P, dove P è la caduta di pressione ai capi Q della canalizzazione e Q è la sua portata R si misura nel SI in Pa s/m 3 Per un tubo cilindrico a sezione costante vale R = 8L ; con viscosità, L, r lunghezza πr e raggio del tubo = 8L = P a s/m 3 πr1 Quale è il rapporto fra le resistenze idrauliche dei due tubi? = 8L ( ) πr 2 πr1 8L = r2 = 5 r 1 Quale è il rapporto fra le portate in ciascuno dei tubi collegati in parallelo? Quanto vale la portata nel tubo T 2? Sono in parallelo, hanno la stessa P : Q 1 = Q 2 da cui Q 1 = Q 2 La somma delle portate nei due tubi è la portata totale Q tot = Q 1 + Q 2 Q tot = Q 2 + Q 2 Q 2 = Q tot 1 + = 05 cm 3 /s Si spieghi il significato del numero di Reynolds e si calcoli tale numero per il tubo T 2 Il numero di Reynolds R = vdr, con r=raggio del tubo, v, d, velocità media, densità e viscosità del fluido, serve per stabilire se il moto è laminare (R < 1200 circa) o turbolento R > 1200 circa) R = v 2dr 2 = Q 2 dr 2 πr2 2 = Q 2d πr 2 = 106 F6) Un carrello avente una massa di 300 Kg e soggetto ad una forza di attrito costante di 350 N si muove in discesa e con velocità costante su una strada che ha una lieve pendenza Quanto vale la risultante delle forze sul carrello? Disegnare uno schema delle forze agenti sul carrello, ed utilizzarlo per determinare le componenti delle forze lungo gli assi x ed y y Se v = cost, allora R = 0 x Le forze e le relative componenti nel sistema di riferimento indicato sono: α la reazione vincolare F v = (0, F v ); la forza di attrito F = (350 N, 0); La forza peso: F p = ( mg sin α, mg cos α) Componente x della risultante: 0 = N mg sin α Componente y della risultante 0 = F v + 0 mg cos α Quanto vale l angolo α che la strada forma con il piano orizzontale? sin α = 350 N mg α = 012 rad = 68 o

4 Prima verifica B F1) Una automobile della massa di 1300 kg percorre una curva di raggio pari a 0 m ad una velocità di 72 km/h Quanto vale la velocità angolare ω dell automobile? La velocità angolare vale ω = v = 05 rad/s r Quanto vale e come è diretta la risultante delle forze agenti sull auto? Come è diretta e quanto vale la forza che il terreno applica all automobile per effetto dell attrito e della posizione e inclinazione delle gomme? La risultante delle forze vale R = m a In questo caso la risultante è diretta verso il centro di curvatura e vale R = mω 2 r e il modulo R = N Le componenti orizzontale e verticale delle forze che agiscono sono: forza peso F p = (0, mg) e forza esercitata dal terreno F t = (F t orizz, F t vert Se la risultante delle forze ha compomenti R = ( mω 2 r, 0), allora F t orizz = mω 2 r, F t vert = mg F2) Un grande tubo di acquedotto (sezione S= 05 m 2 ) è attraversato da una portata Q=1200 l/s d un certo punto il tubo ha una diramazione verticale, diretta verso l alto, chiusa e lunga h=09 m (Si tratta di un tubo che si innestava, provenendo dall alto sulla condotta principale e che è h stato successivamente tagliato e chiuso) La pressione assoluta dell acqua nel tubo principale dell acquedotto vale 12 atm Si dicano quali sono le condizioni di validità del teorema di Bernoulli Il teorema di Bernoulli esprime la conservazione dell energia per unità di volume di un fluido: P dv2 + dgh = cost è applicabile a fluidi incomprimibili, privi di viscosità che scorrono in condotti a pareti rigide con moto stazionario Si supponga valido il teorema di Bernoulli e lo si usi per calcolare la pressione nel punto in cui la diramazione verticale è stata chiusa P acqued dv2 acqued + dgh acqued = P dir dv2 dir + dgh dir Dal disegno h = h dir h acqued, nella diramazione il liquido è fermo, mentre la velocità nel tubo principale dell acquedotto vale v acqued = Q S = 2 m/s P dir P acqued = 1 2 dv2 acqued dgh = 590 P a P dir = P a F3) Si calcoli la massa di una molecola di vapore acqueo, H 2 O sapendo che il peso atomico dell ossigeno è 16 e quello dell idrogeno è 1 La molecola H 2 O è composta da due atomi di H e uno di O, quindi la massa di una mole di H 2 O è M(mole) = 2 1 g + 16 g = 18 g Una mole corrisponde a N = molecole,quindi m(molecola) = M(mole) N = g = kg Si calcoli, usando i risultati dellla teoria cinetica, la velocità di traslazione media delle molecole di vapore acqueo a 10 o C 1 2 mv2 = 3 3kT kt dove m = m(molecola) da cui : v = 2 m = 625 m/s

5 Si calcoli la variazione della quantità di moto (mv) di una delle molecole ora considerate quando urta perpendicolarmente una parete del recipiente che contiene il vapore d acqua In un urto elastico contro una parete la componente v x della velocità perpendicolare alla parete inverte il segno v x v x In questo caso la velocità ha solo la componente perpendicolare, quindi prima e dopo l urto elastico la molecola ha in modulo la stessa velocità ma la direzione è opposta: = 2mv = kg m/s m = m(molecola) Quanti urti del tipo considerato devono avvenire ogni secondo su un metro quadro di parete per esercitare una pressione uguale ad 1 mmhg La forza esercitata da N urti perpendicolari è F = N urti e la pressione P = N urti S per cui per esercitare una pressione di 1 mmhg=133 Pa sono necessari in 1 s su 1 m 2 di superficie N urti = P S 2mv = urti F) Con quale tipo di moto i globuli rossi cadono verso il fondo di una provetta durante una misura di VES? (Motivare la risposta facendo riferimento alla legge che regola questo tipo di fenomeni) Un corpo in moto in un fluido risente di una forza di attrito viscoso F att = f v per una sfera f = 6πr Se si muove sotto l azione di una forza esterna F 0 = cost, raggiunge la velocità limite quando F 0 + F att = 0, da cui : v lim = F 0 6πr Per il globulo rosso, circa sferico, la forza esterna è la somma di forza peso e spinta di rchimede F 0 = 3 πr3 (d globulo d plasma )g vlimite o di sedimentazione : v sed = 2 d 9 gr2 gl d pl Una pallina di plastica, di densità d = 095 g/cm 3 e massa M = 95 g, risale verso l alto dal fondo di un lago molto profondo La viscosità dell acqua vale = 10 3 P a s Si elenchino le forze che agiscono sulla pallina e si calcoli la risultante della forza peso e della spinta di rchimede che agiscono su di essa Sulla pallina agiscono forza peso, spinta di rchimede e forza di attrito viscoso F 0 = (m d acqua V )g = N (il segno dice che è verso l alto) V = m 3V = 10 cm 3 r = 3 d pall π = 13 cm Se la pallina risalisse dal fondo del lago con le stesse leggi con cui cade un globulo rosso, con quale velocità risalirebbe? Che commenti potete fare? v lim = F 0 6πr oppure v lim = 2 9 gr2 d pall d acqua v lim = 19 m/s un valore abbastanza elevato, bisognerebbe verificare se si instaurano delle turbolenze Il valore ottenuto è calcolato nell ipotesi che il moto della sfera non provochi turbolenze

6 F5) Un corpo di massa 500 g si muove lungo l asse x sotto l azione di una forza, parallela all asse x, la cui intensità in funzione di x è data nel grafico Per quali valori di x l accelerazione è costante? 15 Esiste un intervallo di valori di x in cui la velocità è 10 costante? (spiegare) B L accelerazione è costante quando la forza è costante: 5 per 0 < x < 3 m e x > 5 m 2 6 La velocità è costante quando a = 0, in questo caso mai perchè F 0 Quanto lavoro viene compiuto sul corpo quando esso si muove da a B? Il lavoro compiuto è L = B F d x, che è pari all area tratteggiata: L = 50 J x(m) F6) Due tubi T 1 e T 2, collegati in parallelo sono lunghi 10 m e hanno raggi rispettivamente r 1 = 07 mm e r 2 = 1 mm I due tubi hanno pareti rigide, sono posti su un piano orizzontale e sono attraversati da una portata complessiva di acqua pari a 05 cc/s Si dia la definizione di impedenza (o resistenza idraulica) di una canalizzazione Si scriva l espressione per l impedenza di un tubo cilindrico e la si usi per calcolare l impedenza del tubo T 1 (Viscosità dell acqua = 10 3 P a s) La resistenza idraulica è definita R = P, dove P è la caduta di pressione ai capi Q della canalizzazione e Q è la sua portata R si misura nel SI in Pa s/m 3 Per un tubo cilindrico a sezione costante vale R = 8L ; con viscosità, L, r lunghezza πr e raggio del tubo = 8L = P a s/m 3 πr1 Quale è il rapporto fra le resistenze idrauliche dei due tubi? = 8L ( ) πr 2 πr1 8L = r2 = 16 r 1 Quale è il rapporto fra le portate in ciascuno dei tubi collegati in parallelo? Quanto vale la portata nel tubo T 2? Sono in parallelo, hanno la stessa P : Q 1 = Q 2 da cui Q 1 = Q 2 La somma delle portate nei due tubi è la portata totale Q tot = Q 1 + Q 2 Q tot = Q 2 + Q 2 Q 2 = Q tot 1 + = 0 cm 3 /s Si spieghi il significato del numero di Reynolds e si calcoli tale numero per il tubo T 2 Il numero di Reynolds R = vdr, con r=raggio del tubo, v, d, velocità media, densità e viscosità del fluido, serve per stabilire se il moto è laminare (R < 1200 circa) o turbolento R > 1200 circa) B 2 6 x(m) R = v 2dr 2 = Q 2 dr 2 πr2 2 = Q 2d πr 2 = 127

V(l) Cognome e Nome...

V(l) Cognome e Nome... Cognome e Nome........................................... F.1) Un gas contenuto in un recipiente viene manipolato in modo che la sua pressione vari con legge lineare al variare del volume del gas, da una

Dettagli

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi.

Esercizi aprile Sommario Conservazione dell energia e urti a due corpi. Esercizi 2.04.8 3 aprile 208 Sommario Conservazione dell energia e urti a due corpi. Conservazione dell energia. Esercizio Il motore di un ascensore solleva con velocità costante la cabina contenente quattro

Dettagli

STATICA E DINAMICA DEI FLUIDI

STATICA E DINAMICA DEI FLUIDI STATICA E DINAMICA DEI FLUIDI Pressione Principio di Pascal Legge di Stevino Spinta di Archimede Conservazione della portata Teorema di Bernoulli Legge di Hagen-Poiseuille Moto laminare e turbolento Stati

Dettagli

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica 1 La lezione di oggi I fluidi reali La viscosità Flussi laminare e turbolento La resistenza idrodinamica 2 La lezione di oggi Forze di trascinamento nei fluidi La legge di Stokes La centrifuga 3 ! Viscosità!

Dettagli

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio:

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio: Meccanica 24 Aprile 2018 Problema 1 (1 punto) Un blocco di mass M=90 kg è attaccato tramite una molla di costante elastiìca K= 2 10 3 N/m, massa trascurabile e lunghezza a riposo nulla, a una fune inestensibile

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i

Prova Parziale 2 Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che i Su un piano inclinato con un angolo θ = 60 rispetto all orizzontale è posto un blocco di peso P = 1.0 N. La forza di contatto F che il piano esercita sul blocco vale in modulo: F = 9.8 N F = 0.5 N F =

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

PORTATA DI UN CONDOTTO. Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. V v t. = t

PORTATA DI UN CONDOTTO. Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. V v t. = t PORTATA DI UN CONDOTTO Portata Q: volume di fluido che attraversa la sezione di un condotto nell unità di tempo. A vt V A v t Q = = = A v t t 1 MOTO STAZIONARIO Un moto si dice stazionario quando le principali

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 12/02/2018

PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 12/02/2018 PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 12/02/2018 Esercizio n. 1 Un hard disk di vecchia generazione ha un diametro D=5.25 pollici e una massa m=500gr. Una volta acceso

Dettagli

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico

Soluzioni Esonero di Fisica I - Meccanica Anno Accademico Soluzioni Esonero di Fisica I - Meccanica Anno Accademico 006-007 Esercizio n.: Un punto materiale di massa m e vincolato a muoversi lungo un binario orizzontale scabro. Siano µ s e µ d i coefficienti

Dettagli

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I):

Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni Parte I: 06-07-06 Problema. Un punto si muove nel piano xy con equazioni xt = t 4t, yt = t 3t +. si calcolino le leggi orarie per le

Dettagli

Prova parziale di recupero di Fisica Data: 7 Febbraio Fisica. 7 Febbraio Test a risposta singola

Prova parziale di recupero di Fisica Data: 7 Febbraio Fisica. 7 Febbraio Test a risposta singola Fisica 7 Febbraio 2012 Test a risposta singola ˆ Una grandezza fisica vale.2 ara tonn giorno 1. Sapendo che un ara è un quadrato di 10 m di lato, la stessa grandezza in unità del SI vale: 276.5 10 6 m

Dettagli

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Idraulica e Fluidi

Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1. Idraulica e Fluidi Esercizi di fisica per Medicina C.Patrignani, Univ. Genova (rev: 9 Ottobre 2003) 1 Idraulica e Fluidi 1) L acqua di un ruscello cade da una cascata alta 10 m con velocità iniziale praticamente nulla. Quanto

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido.

1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. UNITÀ 8 LA MECCANICA DEI FLUIDI 1. I fluidi e le loro caratteristiche. 2. La pressione in un fluido. 3. La pressione atmosferica. 4. La legge di Stevino. 5. La legge di Pascal. 6. La forza di Archimede.

Dettagli

Nome Cognome Numero di matricola Coordinata posizione

Nome Cognome Numero di matricola Coordinata posizione Nome Cognome Numero di matricola Coordinata posizione Terzo compito di Fisica Generale + Esercitazioni, a.a. 07-08 4 Settembre 08 ===================================================================== Premesse

Dettagli

1 Fisica 1 ( )

1 Fisica 1 ( ) 1 Fisica 1 (08 01-2002) Lo studente risponda alle seguenti domande (2 punti per ogni domanda) 1) Scrivere il legame tra la velocità lineare e quella angolare nel moto circolare uniforme 2) Un punto materiale

Dettagli

[a= 1.54 m/s 2 ; T 12 =17.5 N, T 23 = 10.5 N]

[a= 1.54 m/s 2 ; T 12 =17.5 N, T 23 = 10.5 N] Esercizio 1 Tre blocchi di massa rispettivamente m1=5 kg, m2= 2 kg ed m3=3 kg sono uniti da funi e poggiano su un piano orizzontale. Il coefficiente di attrito dinamico fra il piano e i blocchi è µ=0.2.

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

MECCANICA DEI FLUIDI

MECCANICA DEI FLUIDI MECCANICA DEI FLUIDI Un fluido è un corpo che non ha una forma propria. La sua forma dipende da altri corpi che lo contengono (per esempio un recipiente, una condotta, ). Un fluido è composto da molte

Dettagli

In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue

In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue Esercizio In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue 1 MOTO DI FLUIDI REALI 2 MOTO DI UN FLUIDO

Dettagli

69.8/3 = 23.2 = 23 automobili

69.8/3 = 23.2 = 23 automobili Meccanica 19 Aprile 2017 Problema 1 (1 punto) Una moto salta una fila di automobili di altezza h= 1.5 m e lunghezza l=3m ciascuna. La moto percorre una rampa che forma con l orizzontale un angolo = 30

Dettagli

I Prova scritta di Fisica ( Scienze Biologiche ) Marzo 26, 2003

I Prova scritta di Fisica ( Scienze Biologiche ) Marzo 26, 2003 I Prova scritta di Fisica ( Scienze Biologiche ) Marzo 26, 2003 Nome e Cognome: Gruppo: Problema 1 ( 1 Punto ) Un oggetto di massa m=10kg, partendo da fermo, si muove in linea retta sotto l azione di una

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv Problemi sul lavoro Problema Un corpo di massa 50 kg viene trascinato a velocità costante per 0 m lungo un piano orizzontale da una forza inclinata di 45 rispetto all orizzontale, come in figura. Sapendo

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

Esperienza del viscosimetro a caduta

Esperienza del viscosimetro a caduta Esperienza del viscosimetro a caduta Parte del corso di fisica per CTF dr. Gabriele Sirri sirri@bo.infn.it http://ishtar.df.unibo.it/uni/bo/farmacia/all/navarria/stuff/homepage.htm Esperienza del viscosimetro

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 21 luglio 2011

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 21 luglio 2011 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 1 luglio 011 1) Una particella P di massa m = 0 g viene tenuta ferma in un punto O di un piano orizzontale liscio e comprime di un tratto d

Dettagli

Fisica Medica Esercizi

Fisica Medica Esercizi Fisica Medica Esercizi Roberto Guerra roberto.guerra@unimi.it Dipartimento di Fisica Università degli studi di Milano (1) Data la seguente equazione: L = 2P V /x t a) ricavare x in funzione delle altre

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014 OSO DI LAUEA IN SIENZE BIOLOGIHE Prova scritta di FISIA 5 Settembre 4 ) Un corpo puntiforme di massa m5 g appoggia nel punto A su un piano inclinato di 3 ed è trattenuto mediante una fune di tensione T,

Dettagli

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1

Problemi di Fisica per l ammissione alla Scuola Galileana Problema 1 Problemi di Fisica per l ammissione alla Scuola Galileana 014-015 Problema 1 Nella regione di spazio interna alla sfera S 1, centrata in O 1 e di raggio R 1, è presente una densità di carica di volume

Dettagli

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo.

1) Per quale valore minimo della velocità angolare iniziale il cilindro riesce a compiere un giro completo. Esame di Fisica per Ingegneria Elettronica e delle Telecomunicazioni (Parte I): 04-02-2016 Problema 1. Un punto materiale si muove nel piano su una guida descritta dall equazione y = sin kx [ = 12m, k

Dettagli

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi

La lezione di oggi. La densità La pressione L equazione di continuità Il teorema di Bernoulli. Stenosi e aneurismi La lezione di oggi La densità La pressione L equazione di continuità Il teorema di Bernoulli Stenosi e aneurismi ! Densità, pressione! La portata di un condotto! Il teorema di Bernoulli! Applicazioni dell

Dettagli

p i = 0 = m v + m A v A = p f da cui v A = m m A

p i = 0 = m v + m A v A = p f da cui v A = m m A Esercizio 1 Un carrello di massa m A di dimensioni trascurabili è inizialmente fermo nell origine O di un sistema di coordinate cartesiane xyz disposto come in figura. Il carrello può muoversi con attrito

Dettagli

Esercizio 1 Tre blocchi di massa rispettivamente m1=5 kg, m2= 2 kg ed m3=3 kg sono uniti da funi e poggiano su un piano orizzontale.

Esercizio 1 Tre blocchi di massa rispettivamente m1=5 kg, m2= 2 kg ed m3=3 kg sono uniti da funi e poggiano su un piano orizzontale. Esercizio 1 Tre blocchi di massa rispettivamente m1=5 kg, m2= 2 kg ed m3=3 kg sono uniti da funi e poggiano su un piano orizzontale. Il coefficiente di attrito dinamico fra il piano e i blocchi è µ=0.2.

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi

Dinamica del punto ESERCIZI. Dott.ssa Elisabetta Bissaldi Dinamica del punto ESERCIZI Dott.ssa Elisabetta Bissaldi Elisabetta Bissaldi (Politecnico di Bari) A.A. 2018-2019 2 Esercizio 3.1 Si consideri un punto materiale di massa m = 50 g che si muove con velocità

Dettagli

FORZE E PRINCIPI DELLA DINAMICA (1/29)

FORZE E PRINCIPI DELLA DINAMICA (1/29) FORZE E PRINCIPI DELLA DINAMICA (1/29) una forza applicata ad un corpo, libero di muoversi, lo mette in movimento o lo arresta (effetto dinamico della forza); una forza, applicata ad un corpo vincolato,

Dettagli

Facoltà di Farmacia - Anno Accademico Giugno 2016 A

Facoltà di Farmacia - Anno Accademico Giugno 2016 A Facoltà di Farmacia - Anno Accademico 2015-2016 20 Giugno 2016 A Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio i risultati trovati per ciascun

Dettagli

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta:

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta: Esercizi su analisi dimensionale: 1. La legge oraria del moto di una particella e` x(t)=a t 2 +b t 4, dove x e` la posizione della particella e t il tempo. Si determini le dimensioni delle costanti a e

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 21/07/2015

PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 21/07/2015 PROVA SCRITTA DI FISICA I - LT INGEGNERIA ELETTRONICA E INFORMATICA DEL 21/07/2015 Esercizio n. 1 In un parco giochi, un papa trascina a velocita costante v1=2 m/s, lungo una salita per un tratto L=10

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Programma Parte I Meccanica dei Fluidi Proprietà generali dei Fluidi; Il Principio di Pascal; La legge di Stevino per i liquidi pesanti; Il Principio di Archimede; Il moto dei fluidi; Legge di Bernoulli;

Dettagli

La corrente di un fluido

La corrente di un fluido Dinamica dei Fluidi Dinamica dei fluidi La corrente di un fluido La corrente di un fluido è il movimento ordinato di un liquido o di un gas. La portata q è il rapporto tra il volume di fluido ΔV che attraversa

Dettagli

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI Università degli Studi di Udine Corso di Laurea in Ingegneria Gestionale A.A. 05/06 Sessione di Giugno/Luglio 06 Esame di FISICA GENERALE CFU) Primo Appello PROVA SCRITTA 3 Giugno 06 TESTI E SOLUZIONI

Dettagli

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4D 8 dicembre 008 EIFICA DI FISICA: lavoro ed energia Domande ) Forze conservative ed energia potenziale: (punti:.5) a) Dai la definizione di forza conservativa ed indicane le proprietà.

Dettagli

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a [1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

PRESSIONE ATMOSFERICA

PRESSIONE ATMOSFERICA PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 197 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 208/209 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (6 ore): Matteo Avolio Lezione del 04/04/209 2 h (3:30-5:30, Aula G0, Golgi) - SOLUZIONI ESERCITAZIONI LAVORO

Dettagli

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N.

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N. Un oggetto con massa pari a 2500 g è appoggiato su un pavimento orizzontale. Il coefficiente d attrito statico è s = 0.80 e il coefficiente d attrito dinamico è k = 0.60. Determinare la forza d attrito

Dettagli

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006

ESAMI DEL PRECORSO DI FISICA CORSO A 13 OTTOBRE 2006 CORSO A 13 OTTOBRE 2006 Esercizio 1 - Ad una valigia di massa 6 Kg appoggiata su un piano xy privo di attrito vengono applicate contemporaneamente due forze costanti parallele al piano. La prima ha modulo

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

V in A? V in B? V in C?

V in A? V in B? V in C? V in A? V in B? V in C? K + U 0 K + U K + U i i f f 1 e se c è attrito? (forze dissipative) L NC K + U F d att K + U F att d N Riassunto Grandezze vettoriali e scalari Le grandezze del moto Le cause del

Dettagli

Inoltre si consiglia di svolgere i seguenti esercizi:

Inoltre si consiglia di svolgere i seguenti esercizi: I.I.S.S. MARIE CURIE Savignano sul Rubicone Esercizi di FISICA per la classe 1 DT A.S. 2017-2018 Prof. Alberto Pasini Si consiglia di riguardare tutti gli esercizi svolti in classe e assegnati come compito

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 2016 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 16 Febbraio 016 1) Un corpo di massa M= kg si muove lungo una guida AB, liscia ed irregolare, partendo dal punto A a quota H = 9m, fino al

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

Problematiche. 1 ) Esercizi. «Fissiamo poco le formule e facciamo tutto in maniera sperimentale»

Problematiche. 1 ) Esercizi. «Fissiamo poco le formule e facciamo tutto in maniera sperimentale» Problematiche ) Esercizi «issiamo poco le formule e facciamo tutto in maniera sperimentale» «Gli esercizi, non riuscire ad applicare la teoria e la conoscenza degli argomenti a una situazione di esercizi»

Dettagli

La corrente di un fluido

La corrente di un fluido La corrente di un fluido 0 La corrente di un fluido è il movimento ordinato di un liquido o di un gas. 0 La portata q è il rapporto tra il volume di fluido V che attraversa una sezione in un tempo t ed

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Meccanica 17 Aprile 2019 Problema 1 (1 punto) Soluzione , F r Problema 2 (2 punti) Soluzione

Meccanica 17 Aprile 2019 Problema 1 (1 punto) Soluzione , F r Problema 2 (2 punti) Soluzione Meccanica 17 Aprile 019 Problema 1 (1 punto) Una massa puntiforme di valore m= 1.5 kg, posta nell origine, viene sottoposta all azione di una forza F= 3i + j N, dove i e j sono i versori degli assi del

Dettagli

PRESSIONE IN UN FLUIDO IN QUIETE

PRESSIONE IN UN FLUIDO IN QUIETE PRESSIONE IN UN FLUIDO IN QUIETE P p 0 Quali e quante pressioni in P? 1) pressione esterna (tipicamente pressione atmosferica) 2) pressione idrostatica Pressione totale = p 0 + dgh LEGGE di STEVINO 156

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009 1) Meccanica: CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 13 gennaio 2009 Una slitta di massa m=12 Kg si muove lungo un piano inclinato di 30, lungo s =10 metri. Sapendo che il coefficiente

Dettagli

Esercizi Grandezze, Vettori e Meccanica

Esercizi Grandezze, Vettori e Meccanica Esercizi Grandezze, Vettori e Meccanica 1. Trasformare le seguenti misure nelle unità del S.I.: l = 73.8 km l = 10 6 cm l = 0.34 mm v = 43 km/h v = 20 cm/s v = 3 10 2 mm/s a = 10 km/h 2 a = 10 cm/s 2 ν

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 11/01/2016 ME 1 Un ragno di massa m R = 5.0 g usa il proprio filo come una liana (lunghezza L =10 cm). Partendo da fermo con il filo inclinato di un angolo

Dettagli

Lezione 09: Sistemi di corpi

Lezione 09: Sistemi di corpi Esercizio 1 [Urti elastici] Lezione 09: Sistemi di corpi Una biglia P 1 di massa m 1 = 100 g e velocità v 0,1 di modulo 2 m/s urta elasticamente contro una biglia P 2 inizialmente ferma di massa m 1 =

Dettagli

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d.

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d. Esercizio 1 Due blocchi di ugual massa m 1 = m sono collegati ad un filo ideale lungo l. Inizialmente, i due corpi sono mantenuti fermi e in contatto tra loro su un piano inclinato di θ con il quale i

Dettagli

Esempi di esercizi per la preparazione al primo compito di esonero

Esempi di esercizi per la preparazione al primo compito di esonero Esempi di esercizi per la preparazione al primo compito di esonero 1. Quanto sangue è approssimativamente presente in un essere umano? Esprimere il risultato in ml. 2. La densità dell etanolo e pare a

Dettagli

La lezione di oggi. Urti. Quantità di moto. Cinematica rotazionale

La lezione di oggi. Urti. Quantità di moto. Cinematica rotazionale La lezione di oggi Quantità di moto Urti Cinematica rotazionale ! Quantità di moto e impulso! Urti elastici e anelastici! Cinematica rotazionale 3 La quantità di moto p mv " E una grandezza vettoriale

Dettagli

Esercitazione N.3 Dinamica del corpo rigido

Esercitazione N.3 Dinamica del corpo rigido Esercitazione N.3 Dinamica del corpo rigido Questi esercizi sono sulle lezioni dalla 12 alla 18 Relativo alla lezione: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso

Dettagli

I fluidi Approfondimento I

I fluidi Approfondimento I I fluidi Approfondimento I statica dei fluidi Legge di Stevino, Principio di Pascal, Principio di Archimede e applicazioni dinamica dei fluidi ideali Flusso di un fluido e continuità Equazione di Bernoulli

Dettagli

CORSO DI RECUPERO di Fisica Classi 3B e 3E

CORSO DI RECUPERO di Fisica Classi 3B e 3E CORSO DI RECUPERO di Fisica Classi 3B e 3E 1) Moto Parabolico Es. 1 Un proiettile viene sparato dal suolo con velocità iniziale di componenti v0x = 35m/s e v0y = 42m/s; determinare a) la gittata; b) l

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it) Esercizio 001 Si consideri un piano inclinato di un angolo = 30 rispetto all orizzontale e di lunghezza L = 1 m. Sul piano è posta una massa m = 5, 0 kg collegata alla cima del piano tramite una molla

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia 1 Principi di idraulica Definizioni MECCANICA DEI FLUIDI È il ramo della fisica che studia le proprietà dei fluidi, cioè liquidi, vapori e gas. Idrostatica Studia i fluidi in quiete Idrodinamica Studia

Dettagli

Dinamica. Studio delle CAUSE del moto Cosa fa muovere un corpo? FORZA = ciò che modifica l atto di moto di un corpo. Atto di moto

Dinamica. Studio delle CAUSE del moto Cosa fa muovere un corpo? FORZA = ciò che modifica l atto di moto di un corpo. Atto di moto Dinamica Studio delle CAUSE del moto Cosa fa muovere un corpo? Atto di moto Traslatorio Rotatorio Rototraslatorio FORZA = ciò che modifica l atto di moto di un corpo 1 Un po di storia Storicamente (Aristotele)

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

è completamente immerso in acqua. La sua

è completamente immerso in acqua. La sua In un tubo scorre in regime stazionario un liquido ideale con densità 1.00 10 3 kg/m 3 ; in un punto A il tubo ha raggio R A = 2.00 cm, la velocità di scorrimento è v A = 5.00 m/se la pressione è P A =

Dettagli

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE

ESERCIZI DI DINAMICA DEL PUNTO MATERIALE ESERCIZI DI DINAMICA DEL PUNTO MATERIALE Per un pendolo semplice di lunghezza l=5 m, determinare a quale altezza può essere sollevata la massa m= g sapendo che il carico di rottura è T max =5 N. SOL.-

Dettagli

Fisica per Farmacia A.A. 2018/2019

Fisica per Farmacia A.A. 2018/2019 Fisica per Farmacia A.A. 2018/2019 Responsabile del corso: Prof. Alessandro Lascialfari Tutor (16 ore): Matteo Avolio Lezione del 15 /04/2019 2 h (13:30-15:30, Aula G10, Golgi) - SOLUZIONI ESERCITAZIONI

Dettagli

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 1 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

Esercizi leggi di conservazione 2

Esercizi leggi di conservazione 2 Esercizio 1 Esercizi leggi di conservazione 2 Esercitazioni di Fisica LA per ingegneri - A.A. 2002-2003 Esercizi Un uomo di massa m = 70 kg si trova al centro di un carrello rettangolare omogeneo di massa

Dettagli

F (t)dt = I. Urti tra corpi estesi. Statica

F (t)dt = I. Urti tra corpi estesi. Statica Analogamente a quanto visto nel caso di urto tra corpi puntiformi la dinamica degli urti tra può essere studiata attraverso i principi di conservazione. Distinguiamo tra situazione iniziale, prima dell

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali

Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali Esercizi e problemi supplementari sulla dinamica dei sistemi di punti materiali A) Applicazione del teorema dell impulso + conservazione quantità di moto Problema n. 1: Un blocco A di massa m = 4 kg è

Dettagli

Forze conservative. Conservazione dell energia. Sistemi a molti corpi 1 / 37

Forze conservative. Conservazione dell energia. Sistemi a molti corpi 1 / 37 Forze conservative Il nome forze conservative deriva dal fatto che le forze che appartengono a questa categoria sono tali da conservare l energia. Una forza è conservativa se il lavoro da essa compiuto

Dettagli

Compito 19 Luglio 2016

Compito 19 Luglio 2016 Compito 19 Luglio 016 Roberto onciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 015-016 Compito di Fisica Generale I per matematici 19 Luglio 016

Dettagli

Studente... Matricola...

Studente... Matricola... Studente... Matricola... Data... 1) Un corpo di massa m=2kg si muove come in figura. Determinare l intervallo di tempo in cui è stato sottoposto ad una forza costante, il modulo della forza e il lavoro

Dettagli

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune

FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 1) FLUIDI V= 5 dm3 a= 2 m/s2 aria = g / cm 3 Spinta Archimedea Tensione della fune FISICA per SCIENZE BIOLOGICHE A.A. 2013/2014 II Compitino 26 Giugno 2014 1) FLUIDI Un bambino trattiene un palloncino, tramite una sottile fune. Il palloncino ha volume V= 5 dm 3. La sua massa, senza il

Dettagli