Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Unità Didattica N 2 Le Funzioni Univoche Sintesi 1"

Transcript

1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione e dominio di una funzione 04) Restrizione e prolungamento 05) pplicazione suriettiva, iniettiva, biiettiva 06) Estremi di una funzione, funzioni limitate 07) Funzioni monotone 08) Le funzioni pari e dispari e la simmetria rispetto agli assi cartesiani 09) Funzione inversa 10) Funzione composta

2 Unità Didattica N Le Funzioni Univoche Sintesi Definizione di funzione univoca Dati due insiemi non vuoti e B (eventualmente coincidenti ) definiamo funzione univoca di verso B una legge ƒ,di natura qualsivoglia, che ad ogni elemento elemento = f B. In simboli abbiamo : : : f B f = B e leggiamo : associa un solo << ƒ di verso B che associa ad ogni elemento un solo elemento = f ( ) B >>, oppure, più semplicemente, f f ( ) f : ( ƒ che porta in ) : ( ƒ che porta in ƒ() ) è detto insieme di partenza, B è detto insieme di arrivo L ' elemento f ( ) B si chiama valore di in ƒ o immagine di tramite ƒ o corrispondente di in ƒ. Si dice pure che è la controimmagine di f ( ) L ' insieme è detto dominio della funzione ƒ o ( insieme di esistenza ) e può B essere indicato con uno dei seguenti simboli : dom ƒ, D, D f, C e, E, I L'insieme delle immagini prende il nome di codominio della funzione ƒ e può essere indicato con uno dei seguenti simboli : codom ƒ, C f, ƒ(). In generale risulta : ƒ() B L ' insieme G formato dalle coppie ordinate (, ), f ( ) = tale che risulti: {(, ) : B } G = B f f = prende il nome di grafico della funzione ƒ e si indica col seguente simbolo : G( f ) Risulta : G( f ) = B Se riferiamo il piano ad un sistema ortonormale di assi cartesiani, allora il grafico della funzione f() è una linea piana avente equazione cartesiana = f(). Essa è la curva piana descritta dal punto P [, f ( ) ] quando la assume tutti i valori del dominio della funzione f(). = G f.

3 Unità Didattica N Le Funzioni Univoche Sintesi 3 Rappresentazione saggittale della funzione f f f() B =insieme di partenza B=insieme di arrivo =dominio di f f() = codominio di f OSSERVZIONE =f() Se non conosciamo l'insieme di partenza, allora diciamo dominio della funzione ƒ l'insieme di tutti gli elementi che hanno immagine o f ( ) appartenente all'insieme di arrivo B. Sia f : una funzione numerica. Dicesi dominio della funzione numerica ƒ l'insieme dei valori numerici che bisogna attribuire alla perché le corrispondenti immagini siano reali e finite. Rappresentazione sagittale di una funzione univoca f f : B: f = B 1 5 J B B f : 10 9

4 4 Unità Didattica N Le Funzioni Univoche Sintesi Il generico elemento dell'insieme prende il nome di variabile indipendente della funzione ƒ. Il corrispondente valore = f B, che rappresenta l ' immagine di tramite ƒ, è detto anche variabile dipendente. Se e B sono insiemi numerici, ƒ è detta funzione numerica. Se ƒ è data mediante una formula, allora il simbolo ƒ rappresenta il complesso delle operazioni che bisogna eseguire sulla per ottenere la corrispondente immagine f ( ) =. Dicesi dominio della funzione numerica f : f ( ) l ' insieme dei valori numerici che bisogna attribuire alla perché le corrispondenti immagini siano reali e finite f ( ) Le scritture ƒ,, = f rappresentano, rispettivamente,una funzione,l'immagine dell'elemento tramite ƒ, l ' equazione cartesiana del grafico di ƒ. Per questo motivo si parla spesso,anche se impropriamente, di funzione = f al posto di funzione ƒ. f ( ) o di funzione Classificazione delle funzioni numeriche Per le funzioni numeriche abbiamo detto che il simbolo ƒ riassume il complesso delle operazioni da eseguire sulla variabile indipendente per ottenere l'immagine ƒ(). Le operazioni da eseguire sulla possono essere algebriche o trascendenti. Sono operazioni algebriche le operazioni razionali ( addizione, sottrazione, moltiplicazione, divisione ) e le operazioni irrazionali ( estrazione di radice ), sono operazioni trascendenti quelle non algebriche che introducono algoritmi più complessi. Una funzione dicesi algebrica quando la variabile indipendente è assoggettata soltanto ad operazioni algebriche, in caso contrario dicesi trascendente. Le funzioni trascendenti più semplici sono : 1) la funzione esponenziale ( a con a > 0 a 1 ) ) la funzione logaritmo ( log a con > 0 e a > 0 a 1 ) 3) le funzioni goniometriche ( sin, cos, tg, cot g, sec, cosec )

5 Unità Didattica N Le Funzioni Univoche Sintesi 5 Le funzioni 1) razionali intere lgebriche ) razionali fratte 3) irrazionali Funzioni 1) goniometriche Trascendenti ) logaritmiche 3) esponenziali algebriche sono quelle funzioni per le quali le operazioni che agiscono sulla variabile indipendente sono : l'addizione, la sottrazione, la moltiplicazione, la divisione, l ' elevamento a potenza, l ' estrazione di radice. Le funzioni algebriche prendono il nome di funzioni razionali intere se le operazioni da eseguire sulla variabile indipendente sono solo addizioni,sottrazioni, moltiplicazioni ed elevamento a potenza. Quando in aggiunta vi è anche l ' operazione di divisione si hanno le funzioni razionali fratte. Se compaiono le estrazioni di radici abbiamo le funzioni irrazionali. Una funzione ƒ è espressa analiticamente quando le immagini f ( ) si ottengono mediante almeno una delle seguenti operazioni : addizione, sottrazione, moltiplicazione, divisioni, elevamento a potenza, estrazione di radice e di logaritmo, calcolo di funzioni goniometriche o di funzioni goniometriche inverse,.. Una funzione esprimibile analiticamente e che non sia algebrica si dice funzione trascendente. = + 1 ( 1)( ) = + = funzioni razionali intere 1 l funzione razionale fratta = + = funzioni irrazionali = 5 ( 1) = ln + funzioni trascendenti

6 6 Unità Didattica N Le Funzioni Univoche Sintesi Funzioni esponenziali Funzioni algebriche Funzioni trascendenti logaritmiche Razionali irrazionali Sulla si esegue almeno una volta una operazione irrazionale. 3 = 5 + goniometriche intere fratte = + 1 La non è assoggettata alla operazione di divisione. P f ( ) è un polinomio 5 Esempio : = La è assoggettata alla operazione di divisione. f = B = è il rapporto di due polinomi Insieme di definizione e dominio di una funzione Dicesi insieme di definizione ( I.D. ) di una funzione f ( ) l'intervallo o l unione di intervalli in cui essa va studiata. Dicesi dominio o insieme di esistenza della funzione f ( ) f ( ) il sottoinsieme dell'insieme di definizione nel quale la funzione se 50 = + 1 se > 50 I.D. = R dom f = [ 0, + [ f ( ) è reale e finita. lcuni autori non fanno distinzione fra dominio di una funzione ed insieme di definizione. Per questi autori i due concetti coincidono.

7 Unità Didattica N Le Funzioni Univoche Sintesi 7 Restrizione e prolungamento Consideriamo la funzione : : f B f = B con insieme di partenza e B insieme di arrivo. Sia ' un sottoinsieme di ( ' ). La funzione g che porta ' in B dicesi restrizione di ƒ ad ' e si scrive : : : In ' risulta : g f ( ) =. g B f = B Quindi effettuare una restrizione significa considerare una nuova funzione g che, pur essendo rimasta inalterata la legge di corrispondenza che fa passare dalla alla sua immagine f ( ), differisce dalla ƒ perchè ha un dominio diverso.. Consideriamo la funzione : f : R sin Una sua restrizione è la seguente : Se g : [ 0, π ] sin, la funzione p che porta in B dicesi prolungamento di ƒ su e si scrive : p: B: f B In risulta : p = f( ) pplicazione suriettiva, iniettiva, biiettiva f f()= B 1 3 Una funzione ƒ di in B si dice suriettiva quando ogni elemento di B è immagine di almeno un elemento. In questo caso risulta : f ( ) = B

8 8 Unità Didattica N Le Funzioni Univoche Sintesi f B f ( ) B 5 6 Una applicazione ƒ di in B si dice iniettiva quando a due qualsiasi elementi distinti di corrispondono due elementi distinti di B e le immagini degli elementi di non esauriscono gli elementi di B. In questo caso risulta : f ( ) B.Questo significa che :, : f f cioè elementi distinti dell'insieme di partenza hanno immagini distinte. f f()=b Una applicazione ƒ che sia contemporaneamente iniettiva e suriettiva dicesi biiettiva. Essa dicesi anche corrispondenza biunivoca tra gli insiemi e B. In questo caso ogni elemento dell'insieme B è l'immagine di un solo elemento dell'insieme di partenza, ed ogni elemento è la controimmagine di un solo elemento dell'insieme di arrivo B. caso risulta f ( ) = B. In questo Per la funzione biiettiva ( o corrispondenza biunivoca ) si adopera il seguente simbolo : f B oppure : f : B Una funzione biietiva di in B è tale che ad ogni B è immagine di una sola. corrisponde una sola B ed ogni

9 Unità Didattica N Le Funzioni Univoche Sintesi 9 Estremi di una funzione ; funzioni limitate Sia ƒ una funzione numerica definita nell ' insieme. Poichè il codominio di ƒ è un insieme numerico ad esso possono riferirsi tutte le nozioni concernenti gli insiemi numerici introdotte nei paragrafi precedenti. Tuttavia invece di dire che il codominio di ƒ è limitato superiormente, il codominio di ƒ è dotato di massimo, etc.. si preferisce dire, con linguaggio più conciso, che la funzione ƒ è limitata superiormente, la funzione ƒ è dotata di massimo e parlare di maggioranti della funzione ƒ, di estremo superiore della funzione ƒ,... Si dice che la funzione ƒ è limitatata superiormente ( inferiormente ) se il suo codominio codom f = f è limitato superiormente ( inferiormente ). La funzione ƒ si dice limitata in quando il suo codominio è limitato sia inferiormente che superiormente. Se α è un numero maggiorante ( minorante ) dell ' insieme f ( ), si dice che α è maggiorante ( minorante ) della funzione ƒ, e ciò significa che : f ( ) f α ]. [ L ' estremo superiore ( inferiore ) del codominio f ( ) si α chiama l ' estremo superiore ( inferiore ) della funzione ƒ e si indica con uno dei seguenti simboli : sup f, su p, f sup f ( ) [ inf f, inf f, i n f ] f Quando l'estremo superiore ( inferiore ) della funzione ƒ è un valore da essa assunto, cioè quando esiste un punto o ( 1 ) di tale che : f ( o ) = sup f [ f ( ) 1 = inf f ] diciamo che la funzione ƒ è dotata di massimo ( di minimo ), e l'estremo superiore ( inferiore ) si chiama, più precisamente, il massimo ( il minimo ) della funzione ƒ, e si indica con uno dei seguenti simboli :, ma f ma f ( ) [ m, Ogni punto nel quale la funzione assume il suo in f min f ( ) chiama punto di massimo ( di minimo ) della funzione. massimo ( minimo ) valore si Se la funzione ƒ non è limitata superiormente ( inferiormente ) essa è sprovvista di maggioranti ( minoranti ) e pertanto qualunque sia il numero reale α esiste almeno un punto ( e quindi ne esistono infiniti ) tale che : f α > α [ f ( α ) α < α ] e si conviene di attribuire alla funzione ƒ l'estremo superiore + ( l'estremo inferiore ) e si scrive : sup f = + [ inf f = ].

10 10 Unità Didattica N Le Funzioni Univoche Sintesi Se la funzione ƒ è limitata sia superiormente che inferiormente si dice semplicemente che ƒ è limitata. La differenza ( non negativa ) ω f = sup f inf f si chiama l ' oscillazione della funzione ƒ. L ' oscillazione è finita se, e soltanto se, la funzione ƒ è limitata. Se la funzione ƒ non è limitata si dice che ha oscillazione +. La funzione ƒ ammette il massimo assoluto se essa è inferiormente limitata e se in esiste un punto 1 in cui risulta f 1 = inf f. Si dice che ƒ ammette in il massimo assoluto se essa è superiormente limitata e se in esiste almeno un punto o in cui risulta f ( ) massimo assoluto M, a volte, vengono indicati rispettivamente con : m o = sup f. Il minimo assoluto m ed il = min f M = ma f Funzioni monotone Consideriamo la funzione f : B: f ( ) B ed indichiamo con 1 ed due punti qualsiasi dell intervallo [a,b]. Una funzione ƒ() si dice : 1) strettamente crescente nell intervallo [a,b] se :, [ a, b]: > f ( ) > f ( 1 1 1) ) semplicemente crescente in [a,b] se :, [ a, b]: > f ( ) f ( ) ) strettamente decrescente in [a,b] se :, [ a, b]: > f ( ) < f ( ) ) semplicemente decrescente in [a,b] se :, [ a, b]: > f ( ) f ( ) ) strettamente monotona in [a,b] se è ivi strettamente crescente o strettamente decrescente 6) semplicemente monotona in [a,b] se è ivi semplicemente crescente o semplicemente decrescente 7) monotona in [a,b] se è ivi strettamente monotona o semplicemente monotona. f( ) P f( 1 ) P 1 O a 1 b O a b Funzione strettamente crescente Funzione semplicemente crescente

11 1 Unità Didattica N Le Funzioni Univoche Sintesi f( 1 ) P 1 f( ) P O a 1 b Funzione strettamente decrescente O a b Funzione semplicemente decrescente Le funzioni pari e dispari e la simmetria rispetto agli assi cartesiani Una funzione : : f B f = B si dice pari se risulta : f ( ) = f ( ) si dice dispari se risulta : f ( ) = f ( ). Per simmetrie evidenti intendiamo le simmetriche rispetto agli assi cartesiani ed alla loro origine, le simmetrie rispetto alle bisettrici degli angoli formati dagli assi cartesiani e le simmetriche rispetto alle rette orizzontali ed alle rette verticali. volte è utile stabilire se il G( f ) è simmetrico rispetto ad una generica retta del piano o rispetto ad un generico punto del piano. 1) f ( ) = f ( ) G( f ) simmetrico rispetto all'asse delle ordinate. f ( ) è una funzione pari. In questo caso basta studiare la funzione nell'intervallo [ 0, + [ ed estendere per simmetria i risultati ottenuti al resto del dominio. ) f ( ) = f ( ) G( f ) simmetrico rispetto all'origine degli assi cartesiani. f ( ) è una funzione dispari. nche in questo caso basta studiare la funzione nell'intervallo [ 0, + [ ed estendere per simmetria i risultati ottenuti al resto del dominio.

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

1. Funzioni reali di una variabile reale

1. Funzioni reali di una variabile reale Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

INTRODUZIONE ALL ANALISI MATEMATICA

INTRODUZIONE ALL ANALISI MATEMATICA INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2 Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

Richiami sugli insiemi numerici

Richiami sugli insiemi numerici Richiami sugli insiemi numerici denota l insieme vuoto cioè l insieme privo di elementi. N = {1, 2, 3,...} denota l insieme dei numeri naturali. Z = {..., 2, 1, 0, 1, 2,...} denota l insieme dei numeri

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

1.3. Logaritmi ed esponenziali

1.3. Logaritmi ed esponenziali 1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

Matematica 1 per Ottici e Orafi. I Numeri Reali

Matematica 1 per Ottici e Orafi. I Numeri Reali Matematica 1 per Ottici e Orafi I Numeri Reali Indichiamo con N l insieme dei numeri naturali 1, 2, 3,.... Su N sono definite due operazioni : e + che soddisfano le seguenti proprietá formali : a, b, c

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni

Dettagli

3 LA RETTA REALE ESTESA

3 LA RETTA REALE ESTESA 3 LA RETTA REALE ESTESA Abbiamo visto che i concetti di sup e inf sono utili per descrivere proprietà di insiemi superiormente/inferiormente limitati. Per coprire con questi concetti tutti gli insiemi

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

Anno Scolastico:

Anno Scolastico: LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni

Dettagli

Corso di Analisi Matematica I numeri reali

Corso di Analisi Matematica I numeri reali Corso di Analisi Matematica I numeri reali Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 57 1 Insiemi e logica 2 Campi ordinati 3 Estremo

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 03 - I Numeri Reali Anno Accademico 2015/2016 M. Tumminello,

Dettagli

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n 0 ottobre 008 A. MARTINI Castelranco Veneto (TV) Relazioni e Funzioni. Insieme delle parti. Partizione di un insieme 3. Prodotto cartesiano 4. Deinizione di relazione 5. Deinizione di unzione 6. Funzioni

Dettagli

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.

Dettagli

FUNZIONI. }, oppure la

FUNZIONI. }, oppure la FUNZIONI 1. Definizioni e prime proprietà Il concetto di funzione è di uso comune per esprimere la seguente situazione: due grandezze variano l una al variare dell altra secondo una certa legge. Ad esempio,

Dettagli

Funzioni. Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi

Funzioni. Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi Funzioni Definizione Dominio e codominio Rappresentazione grafica Classificazione Esempi di grafici Esercizi Materia: Matematica Autore: Mario De Leo Definizioni Una quantità il cui valore può essere cambiato

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Nozioni introduttive e notazioni

Nozioni introduttive e notazioni Nozioni introduttive e notazioni 1.1 Insiemi La teoria degli insiemi è alla base di tutta la matematica, in quanto ne fornisce il linguaggio base e le notazioni. Definiamo un insieme come una collezione

Dettagli

FUNZIONI E LORO PROPRIETA'

FUNZIONI E LORO PROPRIETA' FUNZIONI E LORO PROPRIETA' Definizione: Dati due insiemi A e B si dice funzione di A in B una qualunque legge che faccia corrispondere ad ogni elemento di A uno ed un solo elemento di B. Si indica con

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Programma di Matematica Anno Scolastico 2012/2013 Classe III G

Programma di Matematica Anno Scolastico 2012/2013 Classe III G Liceo Scientifico Statale G. BATTAGLINI Corso Umberto I 74100 Taranto Programma di Matematica Anno Scolastico 2012/2013 Classe III G Prof. Paolo Pantano Richiami di Algebra Equazioni e disequazioni Definizioni.

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Maria Margherita Obertino mariamargherita.obertino@unito.it Davide Ricauda davide.ricauda@unito.ii Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano

RELAZIONI, FUNZIONI, INSIEMI NUMERICI. 1. Relazioni. Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano RELAZIONI, FUNZIONI, INSIEMI NUMERICI C. FRANCHI 1. Relazioni Siano X e Y due insiemi non vuoti. Si definisce il prodotto cartesiano X Y := {(x, y) x X, y Y } dove con (x, y) si intende la coppia ordinata

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3)

Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Lezioni di ISTITUZIONI di MATEMATICA (gruppo 3) Nicola Durante 2011-12 Abstract 1 Insiemi numerici (Lezione del 5.10.11) 1.1 Cenni di teoria degli insiemi Richiamiamo brevemente alcuni simboli usati in

Dettagli

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Il corso prevede 3 ore settimanali Sono previste 2 verifiche scritte nel trimestre e 3 nel pentamestre PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Testo in adozione:

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE PROF.SSA ROSSELLA PISCOPO 2 di 35 Indice 1 SCHEMA PER LO STUDIO DEL GRAFICO DI FUNZIONE... 4 2 ESEMPI... 11 2.1 2.2 2.3 2.4 2.5 2.6 FUNZIONE ESPONENZIALE... 11 FUNZIONE

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Introduzione Funzioni reali di variabile reale Algebra delle funzioni reali Funzioni composta e inversa Funzioni monotone i definisce funzione reale di variabile reale e s indica con f: A R una funzione

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

PROGRAMMA di MATEMATICA

PROGRAMMA di MATEMATICA Liceo Scientifico F. Lussana - Bergamo PROGRAMMA di MATEMATICA Classe 3^ F a.s. 2013/14 - Docente: Marcella Cotroneo Libro di testo : Leonardo Sasso "Nuova Matematica a colori 3" - Petrini Ore settimanali

Dettagli

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010.

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010. Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI Corso di Analisi Matematica A.A. 009 / 00 Le Funzioni Fabio Memoli indice Il Concetto di Funzione Funzioni Reali Di Variabile

Dettagli

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte Limiti e continuità Richiami sulle unzioni - parte II Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA. PROGRAMMA DI Matematica. Classe IIIB. Anno Scolastico LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Matematica Classe IIIB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 DISEQUAZIONI Disequazioni razionali intere di secondo

Dettagli

FUNZIONI ALGEBRICHE PARTICOLARI

FUNZIONI ALGEBRICHE PARTICOLARI FUNZIONI ALGEBRICHE PARTICOLARI (al massimo di secondo grado in x) Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4 B) September 9, 003 1. FUNZIONI

Dettagli

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo

Dettagli

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA Classe: 1 a C Libro di testo: Bergamini Trifone Barozzi Matematica verde vol. 1 ed. Zanichelli Insiemi Definizione di insieme, rappresentazione grafica, tabulare, caratteristica di un insieme Gli insiemi

Dettagli

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di

Un monomio è in forma normale se è il prodotto di un solo fattore numerico e di fattori letterali con basi diverse. Tutto quanto sarà detto di DEFINIZIONE Espressione algebrica costituita dal prodotto tra una parte numerica (coefficiente) e una o più variabili e/o costanti (parte letterale). Variabili e costanti possono comparire elevate a potenza

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio. Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

x dove fx ( ) assume tali valori si dice punto di massimo o di

x dove fx ( ) assume tali valori si dice punto di massimo o di 7. Funzioni limitate ed illimitate, funzioni inverse Definizione: Una funzione f: A Bsi dice limitata superiormente od inferiormente se il suo condominio è un insieme limitato superiormente od inferiormente.

Dettagli

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite

Concentriamo la nostra attenzione sull insieme dei numeri razionali Q. In Q sono definite Lezioni del 22 e 24 settembre. Numeri razionali. 1. Operazioni, ordinamento. Indichiamo con N, Z, Q gli insiemi dei numeri naturali, interi relativi, e razionali: N = {0, 1, 2,...} Z = {0, ±1, ±2,...}

Dettagli

3. Massimo, minimo, maggioranti e minoranti. Insiemi limitati. Estremi superiori ed inferiori.

3. Massimo, minimo, maggioranti e minoranti. Insiemi limitati. Estremi superiori ed inferiori. 3. assimo, minimo, maggioranti e minoranti. Insiemi limitati. Estremi superiori ed inferiori. Definizione: assimo Sia un insieme di numeri reali. Def. Si dice massimo di, se esiste, quel numero che appartiene

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche

Dettagli

Corso di Analisi Matematica Successioni e loro limiti

Corso di Analisi Matematica Successioni e loro limiti Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 30 1 Definizione di successione

Dettagli

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta.

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta. Anno scolastico 2011/12 Classe I Sezione E Insiemistica. - Concetto di insieme e rappresentazione di un insieme. - Sottoinsiemi - Principali operazioni fra insiemi: unione, intersezione, complementare

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

IL LINGUAGGIO MATEMATICO

IL LINGUAGGIO MATEMATICO 1 Lezioni 1-2 Connettivi logici IL LINGUAGGIO MATEMATICO (non); (e); (oppure); = (se...allora/...implica...); (...se e solo se...) Quantificatori (per ogni);... :... (esiste...tale che...) Proposizioni

Dettagli

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie

- le disequazioni di grado superiore al secondo: disequazioni biquadratiche, binomie e trinomie LICEO ARTISTICO STATALE BRUNO MUNARI, CREMONA Anno scolastico 2011-2012 PROGRAMMA SVOLTO DI MATEMATICA CLASSE IV A Ripasso: le disequazioni e le loro proprietà: (pag. 2, Volume SL 1) - gli intervalli limitati

Dettagli

Equazioni e disequazioni goniometriche

Equazioni e disequazioni goniometriche 1 Equazioni e disequazioni goniometriche Restrizione di una funzione Nel definire la funzione logaritmica come inversa di quella esponenziale, avevamo ricordato che: Una funzione è invertibile se e soltanto

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Ripasso delle matematiche elementari: esercizi proposti

Ripasso delle matematiche elementari: esercizi proposti Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............

Dettagli

Insiemi. Esempio1: i ragazzi del corso di agraria nati nel 1990 formano un insieme.

Insiemi. Esempio1: i ragazzi del corso di agraria nati nel 1990 formano un insieme. Insiemi Definizione: Definizione: Un Un insieme insieme è è una una collezione collezione di di oggetti oggetti individuati individuati da da una una Determinata Determinata specificazione. specificazione.

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli