1 PROPRIETA' GENERALI DELLE FUNZIONI. FUNZIONE: Relazione tra due insiemi A e B che associa ad ogni elemento di A uno ed un solo elemento di B.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 PROPRIETA' GENERALI DELLE FUNZIONI. FUNZIONE: Relazione tra due insiemi A e B che associa ad ogni elemento di A uno ed un solo elemento di B."

Transcript

1 PROPRIETA' GENERALI DELLE FUNZIONI FUNZIONE: Relazione tra due insiemi A e B che associa ad oni elemento di A uno ed un solo elemento di B.

2 6 C ; Funzione iniettiva. Una unzione - elemento di B. 6 si dice iniettiva ad oni elemento di A corrisponde uno ed un solo La deinizione equivale ad aermare che, dati due elementi distinti loro immaini condo la unzione sono tra loro distinte:, A A e A, le Funzione suriettiva. Una unzione si dice suriettiva oni elemento di B è immaine di almeno un elemento di A. La deinizione equivale ad aermare che il codominio coincide con l'insieme B. Funzione biunivoca. Una unzione si dice biunivoca è sia iniettiva che suriettiva. La equivale ad aermare che ad oni elemento di A corrisponde uno ed un solo elemnto di B e viceversa, oni elemento di B è immaine di uno ed un solo elemento di A per cui, si dice che la corrispondenza è uno a uno.

3 Funzione numerica. Una unzione : A B è numerica li insiemi A e B sono insiemi numerici. Si intende, non speciicato diversamente, che li insiemi numerici della deinizione data siano sottoinsiemi dei numeri reali e, in questo caso, si dice unzione reale di variabile reale. Quindi, ad oni valore numerico appartente ad A corrisponde un dato valore numerico appartenente a B. Variabile indipendente () : è l'insieme dei valori numerici dell'insieme di partenza A e coincide pertanto con il dominio. Variabile dipendente (y): è l'insieme dei valori corrispondenti ai valori dati alla variabile e coincide pertanto con il codominio. Notiamo qui che nella terminoloia corrente le lettere rirvate alle due variabili indicano anche i sinoli valori di volta in volta attribuiti condo una data unzione. Le unzioni comunemente e principalmente considerate in matematica sono quelle deinite da ormule esplicite, ovvero da delle equazioni al cui primo membro compare la variabile dipendente y e al condo membro la variabile indipendente che compare in espressioni analitiche che comportano vari tipi di operazioni che denominano le unzioni; queste possono esre alebriche sono prenti in numero inito operazioni di somme, prodotti, divisioni, elevamenti a potenza ed estrazioni di radice, oppure possono esre trascendenti, come potenze, esponenziali e loaritmi, comportano un numero ininito di operazioni alebriche tra quelle elencate. Inoltre, le unzioni alebriche si calssiicano al loro volta in razionali la variabile non si trova entro delle radici e irrazionali invece compaiono le radici. Inine, si distinuono le unzioni intere, come i polinomi, dalle unzioni ratte, nelle quali la è prente in almeno un denominatore.

4 Funzioni deinite per casi, sono unzioni rapprentate da più ormule, una per ciascuno dei sottointervalli la cui unione costituisce il loro dominio di deinizione. I raici delle unzioni deinite per casi sono, in enere, costituiti dall'unione di tratti di che rapprentano ciascuno deli intervalli che ormano il loro dominio e, nei punti estremi di ciacsuno deli intervalli, i tratti possono esre raccordati in modo continuo (nza salti) oppure discontinuo quando i valori numerici destro e sinisto sono diversi tra loro. La costruzione dei raici delle unzioni deinite per casi richiede la stesura di tabelle con un suiciente numero di valori attribuiti alle due variabili per onuna delle diver espressioni nei rispettivi intervalli di deinizione. Empio : Empio : y y Si noti come i due tratti, la parabola per e la retta per >, si raccordino nel punto (,) per cui la unzione si deinisce come continua per tale valore In questo empio i due tratti della unzione, quello sinistro per <0 e quello destro per 0, non si raccordano nel valore =0, dove hanno invece un salto di 8 unità per cui la unzione è detta discontinua in tale punto.

5 Funzione inversa. La unzione inversa di una unzione biunivoca : A B è la unzione biunivoca : B A che associa ad oni y B il valore A tale che y (). La simboloia delle unzioni e loro inver è la uente: : A B, : A B, : y, : y, y y Data R una unzione biunivoca nell'insieme dei numeri reali, la unzione inversa si ottiene isolando la variabile al primo membro della ormula mentre al suo condo membro deve comparire la y; per potere rapprentare la unzione come raico nel sistema cartesiano insieme alla unzione di partenza, occorre scambiare le lettere delle variabili nell'equazione e, a uito di tale trasormazione, i due raici hanno la proprietà di esre simmetrici rispetto alla retta bittrice di equazione y=. Le unzioni biunivoche nel dominio intero dei numeri reali sono mpre invertibili mentre nel caso di unzioni non biunivoche, è mpre possibile considerare una restrizione del dominio ad un insieme più piccolo nel quale es siano biunivoche. Empio : y y y y Empio: la unzione uente è invertibile solo per 0: y y y y : - y : y : - y : y - y -

6 Funzione composta di due unzioni : A B e : B C è la unzione : A C che associa l'elemento A all'elemento C ue y. y, tali che, da z e y z In altri termini la unzione composta di due unzioni è una terza unzione che associa direttamente li elementi (i valori per le unzioni numeriche) del dominio della prima unzione al codominio della terza unzione. Nei casi pratici l'uso delle lettere intermedie, come la z, scompare poichè per ottenere la unzione composta di due date unzioni, espres entrambe in termini della lettera, è suiciente sostituire al posto della stessa l'intera espressione della conda unzione. Empio : si considerino le due uenti unzioni deinite nel campo dei numeri reali: e unzione vale 8. L'immaine di un dato valore, ad empio, per la prima mentre il corrispondente valore di 8 per la conda unzione vale 8 8. La unzione composta delle due unzioni è quella che associa direttamente i due valori 8 e viene così determinata: 6,

7 7 Date due unzioni qualsiasi, B A : e C B :, è mpre possibile scambiare i loro ruoli per ottenere anche a unzione composta A C : ; tuttavia, l'operazione di composizione di due unzioni non è commutativa:. Inatti, dall'empio precedente, costruiamo la unzione composta : Conermiamo quindi, che le due unzioni composte sono diver tra loro:. In alcuni casi particolari, limitatamente a dominii che rispettano le condizioni di esistenza delle unzioni, può accadere che le due unzioni composte siano uuali come nell'empio che ue. Empio. Determinare le unzioni composte delle unzioni:,. Si suppone che vala la condizione di esistenza del radicale: 0.,. Il risultato della ultima radice sono due espressioni opposte, a conda del no di :,,. Ne conue:,, Pertanto, limitatamente al caso, si ha. Empio. Determinare le unzioni composte delle unzioni:,. Si suppone che sia rispettata la condizione di esistenza della razione:.. ;

8 8

9 Funzioni potenze, esponenziali e loaritmiche La unzione elementare potenza, descritta dall'equazione a y, con a numero irrazionale e 0 è deinita nell' insieme dei numeri reali positivi: a :. Il numero irrazionale all'esponente, avendo un numero ininito di cire decimali non periodiche, può esre approssimato da due rie di numeri, per dietto e per eccesso. Ad empio:,,,,......,,,, Quindi, anche l'operazione di elevamento di un dato numero positivo ad esponente irrazionale può esre deinito da un processo di approssimazione ininito per mezzo di due rie di numeri, quelli per dietto e quelli per eccesso. Considerando ad empio =, si ha:,,,,,, Gli esponenti delle rie dei numeri approssimati sono decimali ovvero razioni e, pertanto, si, possono considerare delle radici per la proprietà dei radicali: m n n m, m, nn Ad empio:, Notiamo anche che per ottenere il valore esatto dell'operazione occorre euire un...,... numero ininto di operazioni alebriche: Le unzioni trascendenti, quali sono le potenze in campo reale, venono così classiicate in ba al numero ininito di operazioni alebriche necessarie per ottenere un risultato esatto. I due raici che uono si associano alle tabelle delle rispettive unzioni potenza con esponente e i risultati dei calcoli in es contenuti sono approssimati ad un solo decimale anche li strumenti inormatici ed i sotware per il calcolo automatico permettono numeri di cire molto alti. y 0 0 y y 0 0 y

10 Le unzioni potenza con ba variabile, del tipo y a con a, hanno come comune condizione di esistenza la non neatività della ba: 0. Empio : y. CE: Empio : y. CE: 0 D,,. 0 0 D, y y y y y Le unzioni potenza con ba variabile ed esponente variabile, del tipo y hanno, come condizione di esistenza, il sistema ormato dalla positività della ba e dalle eventuali condizioni di esistenza dell'esponente quando sono prenti. Empio : y. CE: / Empio : y. CE: 0 0 D,. 0 D 0, 0 0,. y y y y 0

11 La unzione esponenziale elementare con ba positiva ed esponente reale è così deinita: a, y a, a 0 a Le unzioni esponenziali con ba a mostrano un andamento crescente: y ; le unzioni esponenziali con ba 0 a hanno un, : y andamento decrecente:, : y y. Le unzioni esponenziali, i cui raici passano tutti per il punto A(0;), per valori via via più randi della variabile tendono a valori illimitati sono crescenti con a ad conondersi con l'as orizzontale delle (asintoto orizzontale ) sono decrescenti con 0 a. Inoltre, per valori della variabile neativi e mpre pù lontani dall'oriine, le unzioni con a tendono a conondersi con l'as (asintoto orizzontale) mentre quelle con 0 a assumono valori mpre più randi. y a, a y ESPONENZIALI E POTENZE: GRAFICI A CONFRONTO y y a, 0 a y y A y A y Le unzioni esponenziali elentari esistono er oni valore reale e sono nza condizioni di esistenza. Dei due empi che uono si noti la reciproca simmetria delle rispettove unzioni rispetto all'as verticale. Empio: y D,. y y A y Empio : y D, y y A y

12 La unzione loaritmica elementare è la unzione inversa dell unzione esponenziale: Lo a y, y Loa a, a 0 a Il loaritmo Lo a al condo membro dell'equazione di deinizione è deinito solo per 0, e il suo raico mostra come la unzione assuma valori tendenzialmente illimitati (verso l'alto per a o verso il basso per 0 a ) all'avvicinarsi del valore 0 mentre mostra un andamento crescente nel primo caso e un andamento decrescente nel condo. Inoltre, entrambi i raici passano per il punto A(; 0) 0 esndo: 0 a Lo a. Inoltre, in ba all'esponente, i valori assunti dalla unzione li estremi del suo dominio sono: a y 0 a y 0 Loa 0 a 0 ; y Lo a a 0 Lo 0 a 0 ; y Lo 0 a 0 a a a Ad empio, mostriamo di uito i raici delle unzioni loaritmo in ba e in ba a /: y /8-8 Lo y y /8 8 y Lo / - / / - / A(; 0) 0 0 A(; 0) Le unzioni esponenziali composte del tipo loro esponente a y hanno come condizione di esistenza quelle relative al, mentre per le unzioni loaritmiche composte del tipo y deve esre risolta la condizione di esistenza dei loarimi: 0. Lo a 0 y CE : 0 D, Empio :. Empio : y Lo CE : D, 0,.

13 Funzione strettamente crescente : Crescenza e decrescenza è così deinita una unzione () di dominio D R in un intervallo I D, per oni, I da ue: I=[, ]. Funzione strettamente decrescente : è così deinita una unzione () di dominio D R in un I=[, ] intervallo I D, per oni., I da ue: Empio di unzione crescente in un intervallo: Empio di unzione decrescente in un intervallo: y I, y I, 0 Funzione monotona in nso stretto un intervallo I D si dice una unzione che è mpre strettamente crecente oppure strettamente decrescente in tale intervallo.

14 Esistono unzioni che hanno valori costanti della variabile dipendente y in uno o più intervalli del loro dominio e, di es si ornisono di uio le deinizioni e li empi relativi al loro andamento: Funzione non decrescente (o crescente in nso lato): Funzione non decrescente (o decrescente in nso lato): È tale una unzione () di dominio D ℝ è tale una unzione () di dominio D ℝ in un in un intervallo I D, per oni, I, da intervallo I D, per oni, I, da ue:. ue:. 0 0 Empio: y 8 Empio: 8 y 8 Non decrescente in, Non crescente in,

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n

ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI A. MARTINI Castelfranco Veneto (TV) Relazioni e Funzioni n n n n 0 ottobre 008 A. MARTINI Castelranco Veneto (TV) Relazioni e Funzioni. Insieme delle parti. Partizione di un insieme 3. Prodotto cartesiano 4. Deinizione di relazione 5. Deinizione di unzione 6. Funzioni

Dettagli

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B

Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1

Unità Didattica N 2 Le Funzioni Univoche Sintesi 1 Unità Didattica N Le Funzioni Univoche Sintesi 1 Unità Didattica N Le funzioni univoche 01) Definizione di applicazione o funzione o mappa 0) Classificazione delle funzioni numeriche 03) Insieme di definizione

Dettagli

Unità Didattica N 2 Le funzioni

Unità Didattica N 2 Le funzioni Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. A x 1. x. x 3..y 1.y.y 3 B C.y 5 x 4..y

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo

Dettagli

2. I numeri reali e le funzioni di variabile reale

2. I numeri reali e le funzioni di variabile reale . I numeri reali e le funzioni di variabile reale Introduzione Il metodo comunemente usato in Matematica consiste nel precisare senza ambiguità i presupposti, da non cambiare durante l elaborazione dei

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso.

Funzione Composta. Il campo di esistenza della funzione composta è costituito dai soli valori di x per i quali la composizione funzionale ha senso. Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f(g()) notazione funzionale (f g)() = f(g()) La composizione ha senso se il valore g() appartiene

Dettagli

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica

Scheda elaborata dalla prof.ssa Biondina Galdi Docente di Matematica Tutorial - Studio di una funzione reale di variabile reale f : x R y = f (x) R Una funzione può essere: - 1 - algebrica ( razionale o irrazionale, intera o fratta) Classificare la trascendentale ( esponenziale,

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

INTRODUZIONE ALL ANALISI MATEMATICA

INTRODUZIONE ALL ANALISI MATEMATICA INTRODUZIONE ALL ANALISI MATEMATICA Intervalli e intorni Funzioni in R e classificazione Proprietà delle funzioni: pari e dispari monotone periodiche Intervallo Un intervallo di estremi a e b è un insieme

Dettagli

Funzioni numeriche elementari. y B è l'immagine dell'elemento x A

Funzioni numeriche elementari. y B è l'immagine dell'elemento x A Le funzioni numeriche (in simboli f() ), sono delle leggi, in molti casi espresse da equazioni y=f(), che associano dei numeri appartenenti a un certo insieme di partenza (A), ad altri numeri appartenenti

Dettagli

Matematica Capitolo 1. Funzioni. Ivan Zivko

Matematica Capitolo 1. Funzioni. Ivan Zivko Matematica Capitolo 1 Funzioni Ivan Zivko Introduzione Una unzione è un qualcosa che mette in relazione un valore in entrata ( input ) con un altro in uscita ( output ). Input FUNZIONE Output Matematica

Dettagli

1. Funzioni reali di una variabile reale

1. Funzioni reali di una variabile reale Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie

Dettagli

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio

Liceo Classico D. Alighieri A.S Studio di Funzione. Prof. A. Pisani. Esempio Liceo Classico D. Alighieri A.S. 0-3 y Data la funzione: Studio di Funzione tracciatene il grafico nel piano cartesiano. Prof. A. Pisani Esempio ) Tipo e grado della funzione La funzione è analitica, data

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli

Composizione di funzioni analitiche e loro dominio Es_1) In relazione alle funzioni reali di variabile reale 1 2

Composizione di funzioni analitiche e loro dominio Es_1) In relazione alle funzioni reali di variabile reale 1 2 Composizione di unzioni analitiche e loro dominio Es_) In relazione alle unzioni reali di variabile reale ( ), ( ) 3, h( ) 4 risolvere i seuenti quesiti Classiicare le unzioni e determinare i rispettivi

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Maria Margherita Obertino mariamargherita.obertino@unito.it Davide Ricauda davide.ricauda@unito.ii Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

5. Concetto di funzione. Dominio e codominio.

5. Concetto di funzione. Dominio e codominio. 5. Concetto di unzione. Dominio e codominio. Intro (concetto intuitivo) Che cosa e una unzione? Esempi di unzioni? Concetto di unzione Il concetto di unzione è legato all esistenza di una relazione tra

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}.

Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: C = {2, 4, 6, 8, 10,...}. Teoria degli insiemi Che cos è un insieme? Come si individua un insieme? 1. Scrivendone esplicitamente gli elementi: A = {a, b, c} B = {1, 2} C = {2, 4, 6, 8, 10,...}. 2. Enunciando una proprietà che è

Dettagli

FUNZIONI E LORO PROPRIETA'

FUNZIONI E LORO PROPRIETA' FUNZIONI E LORO PROPRIETA' Definizione: Dati due insiemi A e B si dice funzione di A in B una qualunque legge che faccia corrispondere ad ogni elemento di A uno ed un solo elemento di B. Si indica con

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Matematica I, Funzione inversa. Funzioni elementari (II).

Matematica I, Funzione inversa. Funzioni elementari (II). Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA Classe: 1 a C Libro di testo: Bergamini Trifone Barozzi Matematica verde vol. 1 ed. Zanichelli Insiemi Definizione di insieme, rappresentazione grafica, tabulare, caratteristica di un insieme Gli insiemi

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

IL CALCOLO DEI LIMITI. Le operazioni sui limiti Le forme indeterminate le funzioni continue Gli asintoti Il grafico probabile di una funzione

IL CALCOLO DEI LIMITI. Le operazioni sui limiti Le forme indeterminate le funzioni continue Gli asintoti Il grafico probabile di una funzione IL CALCOLO DEI LIMITI Le operazioni sui imiti Le orme indeterminate e unzioni continue Gi asintoti I graico probabie di una unzione Pro. Giovanni Ianne Pro Giovanni Ianne 1/19 LE OPERAZIONI SUI LIMITI

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

Studio di funzione appunti

Studio di funzione appunti Studio di unzioni algebriche ratte Studio di unzione appunti 1. Ricerca del dominio (C.E.);. Intersezioni con gli assi cartesiani; 3. Ricerca degli intervalli di positività (Studio del segno S.D.S.); 4.

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE

Funzione esponenziale Equazioni esponenziali RIPASSO SULLE POTENZE RIPASSO SULLE POTENZE Proprietà delle potenze La formula a n indica l operazione chiamata potenza, ( a è la base ed n l esponente) che consiste nel moltiplicare la base a per se stessa n volte. Per le

Dettagli

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.

ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio. Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) Simulazione compito d esame COGNOME NOME Matr. A Analisi Matematica (Corso di Laurea in Informatica e Bioinformatica) Firma dello studente Tempo: 3 ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni

Dettagli

COMPITI DEL PERIODO ESTIVO CLASSE 4AL. PARTE A] Esercizi delle tipologie di verifiche svolte.

COMPITI DEL PERIODO ESTIVO CLASSE 4AL. PARTE A] Esercizi delle tipologie di verifiche svolte. COMPITI DEL PERIODO ESTIVO CLASSE 4AL PARTE A] Esercizi delle tipologie di verifiche svolte. Svolgere ciascuna parte, basandosi sulle schede e sugli appunti prese a lezione. Sotto modulo.a : ] Classifica

Dettagli

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta.

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta. Anno scolastico 2011/12 Classe I Sezione E Insiemistica. - Concetto di insieme e rappresentazione di un insieme. - Sottoinsiemi - Principali operazioni fra insiemi: unione, intersezione, complementare

Dettagli

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione

Dettagli

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010.

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010. Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI Corso di Analisi Matematica A.A. 009 / 00 Le Funzioni Fabio Memoli indice Il Concetto di Funzione Funzioni Reali Di Variabile

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2014/2015

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2014/2015 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2014/2015 CLASSE 4^ B SETTORE TECNOLOGICO: Costruzioni, Ambiente e Territorio Disciplina: Matematica Testi in uso: Nuova Matematica a Colori-3

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

RIPASSO. IPSSAR "P. Artusi" - Forlimpopoli. classe TERZA. modulo: -omogeneizzare le condizioni di partenza. -Il piano cartesiano - Sistemi lineari

RIPASSO. IPSSAR P. Artusi - Forlimpopoli. classe TERZA. modulo: -omogeneizzare le condizioni di partenza. -Il piano cartesiano - Sistemi lineari classe TERZA -Calcolo numerico e letterale -Equazioni di primo grado -Il piano cartesiano - Sistemi lineari RIPASSO -omogeneizzare le condizioni di partenza -potenziare le abilità di calcolo -formare i

Dettagli

Matematica. dott. francesco giannino. a. a chiusura del corso. 1

Matematica. dott. francesco giannino. a. a chiusura del corso. 1 Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2

Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2 Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione

Dettagli

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S. 2014-15 PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2014-15 L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado.. IL PIANO CARTESIANO Il piano cartesiano.

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni

Dettagli

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO

PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Il corso prevede 3 ore settimanali Sono previste 2 verifiche scritte nel trimestre e 3 nel pentamestre PROGRAMMAZIONE DIDATTICA di MATEMATICA CLASSI TERZE TECNICO settore TECNOLOGICO Testo in adozione:

Dettagli

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI

LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI LICEO SCIENTIFICO STATALE ALESSANDRO ANTONELLI Via Toscana, 20 28100 NOVARA 0321 465480/458381 0321 465143 lsantone@liceoantonelli.novara.it http://www.liceoantonelli.novara.it C.F.80014880035 Cod.Mecc.

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime

Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime Istituto Kandinsky Anno Scolastico 2011-2012 Programma di MATEMATICA - Classi Prime Insieme dei numeri naturali. Le operazioni in N: addizione, sottrazione, moltiplicazione e divisione. Legge di composizione

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Introduzione Funzioni reali di variabile reale Algebra delle funzioni reali Funzioni composta e inversa Funzioni monotone i definisce funzione reale di variabile reale e s indica con f: A R una funzione

Dettagli

Programma di Matematica Anno Scolastico 2012/2013 Classe III G

Programma di Matematica Anno Scolastico 2012/2013 Classe III G Liceo Scientifico Statale G. BATTAGLINI Corso Umberto I 74100 Taranto Programma di Matematica Anno Scolastico 2012/2013 Classe III G Prof. Paolo Pantano Richiami di Algebra Equazioni e disequazioni Definizioni.

Dettagli

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne

LA DERIVATA DI UNA FUNZIONE. Prof Giovanni Ianne LA ERIVATA I UNA FUNZIONE Pro. Giovanni Ianne /22 Come si determina la retta tangente a una curva in un punto P? Per una circonerenza, la tangente è la retta che interseca la curva solo in P. IL PROBLEMA

Dettagli

x dove fx ( ) assume tali valori si dice punto di massimo o di

x dove fx ( ) assume tali valori si dice punto di massimo o di 7. Funzioni limitate ed illimitate, funzioni inverse Definizione: Una funzione f: A Bsi dice limitata superiormente od inferiormente se il suo condominio è un insieme limitato superiormente od inferiormente.

Dettagli

Calcolo differenziale per funzioni di una variabile

Calcolo differenziale per funzioni di una variabile 5//5 Calcolo dierenziale per unzioni di una variabile Derivata di una unzione De. Sia : a,br, si deinisce derivata di nel punto a,b il numero, se inito,: d dy, y,,, D, Dy d d 5//5 Derivata di una unzione

Dettagli

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo

Funzioni. Capitolo Concetti preliminari. Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo Capitolo Funzioni. Concetti preliminari Definizione. Dati due insiemi A e B, si chiama funzione f da A a B, e la si indica col simbolo f : A B, una corrispondenza che associa ad ogni elemento A un unico

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA

Progettazione modulare Percorso di istruzione di 3 livello, Servizi Socio Sanitari Modulo n.1: Insiemi numerici e funzioni MATEMATICA Progettazione modulare Modulo n.1: Insiemi numerici e funzioni DURATA PREVISTA Ore in presenza 12 Ore a distanza 5 Totale ore 17 individuare le caratteristiche di un insieme numerico; classificare le funzioni,

Dettagli

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari

Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni

Dettagli

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.

Dettagli

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica

Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2008/2009 Docente Ing. Andrea Ghedi Docente: Dott. Ing. Andrea Ghedi Ingegnere Biomedico, specialista

Dettagli

Potenze, esponenziali e logaritmi 1 / 34

Potenze, esponenziali e logaritmi 1 / 34 Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Funzioni funzione univocità relazione univoca variabile dipendente variabile indipendente primo insieme secondo insieme

Funzioni funzione univocità relazione univoca variabile dipendente variabile indipendente primo insieme secondo insieme Funzioni Chiamiamo unzione un insieme di coppie ordinate che goda della seguente proprietà: non possono appartenere alla stessa unzione due coppie ordinate che abbiano lo stesso primo elemento e diversi

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

CLASSE 5^ C LICEO SCIENTIFICO 12 Gennaio 2015 Studio di funzioni e continuità (Recupero per assenti) lim ++ =

CLASSE 5^ C LICEO SCIENTIFICO 12 Gennaio 2015 Studio di funzioni e continuità (Recupero per assenti) lim ++ = CLASSE 5^ C LICEO SCIENTIFICO 2 Gennaio 25 Studio di funzioni e continuità (Recupero per assenti). Determina i valori dei parametri reali a e b in modo che la funzione = passi per il punto 2;, abbia come

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI

Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Programma di Matematica A.S. 2013/14 Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Insiemi e sottoinsiemi - Le operazioni fondamentali con gli insiemi - Prodotto cartesiano I NUMERI NATURALI

Dettagli