Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile"

Transcript

1 Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41

2 1 Derivata di una funzione 2 Punti di non derivabilità 3 Regole di calcolo delle derivate 4 Il teorema del valor medio e le sue conseguenze 5 Teorema di de l Hôpital 6 Limite della derivata e derivabilità 7 Derivata seconda, concavità e convessità ICD (Bari) Analisi Matematica 2 / 41

3 Calcolo differenziale Definire la tangente in un punto ad una curva. Definire la velocità di un oggetto in moto. ICD (Bari) Analisi Matematica 3 / 41

4 Definizione di derivata Definizione Sia f : (a, b) R e sia x 0 (a, b). Il rapporto incrementale di f relativo all intervallo di estremi x 0 e x 0 + h è definito da f(x 0 + h) f(x 0 ). h La funzione f si dice derivabile in x 0 se esiste finito lim h 0 f(x 0 + h) f(x 0 ). h Tale limite si chiama derivata prima o derivata di f in x 0 e si indica con f df (x 0 ) dx (x 0) Df(x 0 ). ICD (Bari) Analisi Matematica 4 / 41

5 Definizione di derivata La retta di equazione y = f(x 0 ) + f (x 0 )(x x 0 ) si chiama retta tangente al grafico di f nel punto (x 0, f(x 0 )). Se f è derivabile in ogni punto di (a, b) è ben definita la funzione f : (a, b) R (funzione derivata di f) data da x f (x). Se f è a sua volta derivabile, la derivata di f si chiama derivata seconda di f e si indica con f (x 0 ) d 2 f dx 2 (x 0) D 2 f(x 0 ). In modo analogo si definiscono le derivate di ordine n o derivate n-esime indicate con f n d n f (x 0 ) dx n (x 0) D n f(x 0 ). ICD (Bari) Analisi Matematica 5 / 41

6 Derivate delle funzioni elementari f(x) = c, c R x R, f (x) = 0 per ogni x R; f(x) = x n, n N x R f (x) = nx n 1 per ogni x R; f(x) = x{ α, α R \ {0}, f (x) = αx α 1 per ogni x (0, + ); f 0 se α > 1 (0) = + se 0 < α < 1 f(x) = a x, x R, f (x) = a x log a per ogni x R; f(x) = e x, x R, f (x) = e x per ogni x R; f(x) = log a x, x > 0, f (x) = 1 x log a per ogni x > 0; f(x) = log x, x > 0, f (x) = 1 x per ogni x > 0; ICD (Bari) Analisi Matematica 6 / 41

7 Derivate delle funzioni elementari f(x) = sen x, x R, f (x) = cos x per ogni x R; f(x) = cos x, x R, f (x) = sen x per ogni x R; f(x) = tg x, x dom tg, f (x) = 1 + tg 2 x = 1 cos 2 x x dom tg; per ogni f(x) = arcsen x, x [ 1, 1], f (x) = 1 1 x 2 per ogni x ( 1, 1); f(x) = arccos x, x [ 1, 1], f (x) = 1 1 x 2 per ogni x ( 1, 1); f(x) = arctg x, x R, f (x) = 1 1+x 2 per ogni x R. ICD (Bari) Analisi Matematica 7 / 41

8 Punti di non derivabilità Definizione Sia f : (a, b) R e x 0 (a, b). Se f è continua in x 0 e f(x 0 + h) f(x 0 ) f(x 0 + h) f(x 0 ) lim = + oppure lim = h 0 h h 0 h si dice che f ha in x 0 è un flesso a tangente verticale. ICD (Bari) Analisi Matematica 8 / 41

9 Derivata destra e sinistra Definizione Sia f : (a, b) R e x 0 (a, b). Se esiste finito il limite f(x 0 + h) f(x 0 ) lim h 0 + h allora f si dice derivabile a destra in x 0, tale limite si chiama derivata destra di f in x 0 e si denota con f +(x 0 ). Se esiste finito il limite f(x 0 + h) f(x 0 ) lim h 0 h allora f si dice derivabile a sinistra in x 0, tale limite si chiama derivata sinistra di f in x 0 e si denota con f (x 0 ). ICD (Bari) Analisi Matematica 9 / 41

10 Punti angolosi e cuspidi Casi in cui f +(x 0 ) e f (x 0 ) non sono uguali tra loro. Definizione Sia f : (a, b) R e x 0 (a, b). Se f è continua in x 0, esistono f (x 0 ), f +(x 0 ) e allora f (x 0 ) f +(x 0 ), Se almeno uno tra f (x 0 ) ed f +(x 0 ) appartiene ad R, si dice che f ha in x 0 un punto angoloso. Se f (x 0 ) =, f +(x 0 ) = + (oppure, viceversa, f (x 0 ) = +, f +(x 0 ) = ), si dice che f ha in x 0 una cuspide. ICD (Bari) Analisi Matematica 10 / 41

11 ICD (Bari) Analisi Matematica 11 / 41

12 Continuità e derivabilità Teorema Se f è derivabile in un punto x 0 allora è continua in x 0. In modo equivalente: se f non è continua in x 0 allora f non è derivabile in x 0. Il viceversa del teorema non vale (f(x) = x è continua in 0 ma non derivabile in 0). ICD (Bari) Analisi Matematica 12 / 41

13 Regole di derivazione Proposizione Siano f, g : (a, b) R e x 0 (a, b) tale che f e g siano derivabili in x 0. Sia c R. Allora le funzioni f + g, f g, cf, f g sono derivabili in x 0 e (f + g) (x 0 ) = f (x 0 ) + g (x 0 ); (f g) (x 0 ) = f (x 0 ) g (x 0 ); (cf) (x 0 ) = cf (x 0 ); (f g) (x 0 ) = f (x 0 ) g(x 0 ) + f(x 0 ) g (x 0 ). Se g(x 0 ) 0, f/g è derivabile in x 0 e ( ) f (x 0 ) = f (x 0 )g(x 0 ) f(x 0 )g (x 0 ) g (g(x 0 )) 2. ICD (Bari) Analisi Matematica 13 / 41

14 Derivazione di una funzione composta Teorema Sia g f la funzione composta di due funzioni f e g tali che f è derivabile in x; g è derivabile in y = f(x), allora g f è derivabile in x e si ha (g f) (x) = g (f(x))f (x). ICD (Bari) Analisi Matematica 14 / 41

15 Derivata di funzione inversa Teorema Sia f : (a, b) R una funzione continua e invertibile e g = f 1 la sua inversa. Se per x 0 (a, b) f è derivabile in x 0 ; f (x 0 ) 0, allora g = f 1 è derivabile in y 0 = f(x 0 ) e si ha g (y 0 ) = 1 f (x 0 ). ICD (Bari) Analisi Matematica 15 / 41

16 Applicazione del calcolo differenziale alla ricerca dei massimi e minimi di una funzione Sia f : [a, b] R. Abbiamo già definito il massimo e il minimo assoluti di f. Definizione Si dice M è massimo di f e x 0 [a, b] è punto di massimo se f(x 0 ) = M f(x) x [a, b]. Si dice m è minimo di f e x 0 [a, b] è punto di minimo se f(x 0 ) = m f(x) x [a, b]. ICD (Bari) Analisi Matematica 16 / 41

17 Estremi locali di una funzione Definizione Sia f : [a, b] R. Si dice M è massimo locale (o relativo) di f e x 0 [a, b] è punto di massimo locale se esiste un intervallo (x 0 δ, x 0 + δ) tale che f(x 0 ) = M f(x) x (x 0 δ, x 0 + δ) [a, b]. Si dice m è minimo locale (o relativo) di f e x 0 [a, b] è punto di minimo locale se esiste un intervallo (x 0 δ, x 0 + δ) tale che f(x 0 ) = m f(x) x (x 0 δ, x 0 + δ) [a, b]. ICD (Bari) Analisi Matematica 17 / 41

18 Estremi locali di una funzione Si noti che Il massimo e il minimo globale di f se esistono sono unici (ma i punti di massimo e minimo globale possono essere più di uno). I massimi e minimi locali possono essere più di uno. Ogni estremo globale è anche estremo locale (ma non viceversa). ICD (Bari) Analisi Matematica 18 / 41

19 Teorema di Fermat Teorema (di Fermat) Sia f : [a, b] R una funzione derivabile in x (a, b). Se x è un punto di estremo locale per f allora f (x) = 0. Definizione Un punto x si dice punto critico o punto stazionario per una funzione f se f è derivabile in x e f (x) = 0. Quindi, se f : (a, b) R e x (a, b) Non vale il viceversa. x di estremo locale x stazionario ICD (Bari) Analisi Matematica 19 / 41

20 Interpretazione geometrica Se f è derivabile in (a, b), nei punti di estremo relativo in (a, b) la retta tangente al grafico di f è orizzontale. ICD (Bari) Analisi Matematica 20 / 41

21 Un modo diverso di scrivere la derivata Sia f : (a, b) R e x 0 (a, b). Si è visto che se f è derivabile in x 0 esiste ed è finito f f(x 0 + h) f(x 0 ) (x 0 ) = lim. h 0 h Dal teo. del cambio di variabile nei limiti, se si pone x 0 + h = x, si ottiene f (x 0 ) = lim x x 0 f(x) f(x 0 ) x x 0. In modo analogo: f (x 0 ) = lim x x 0 f(x) f(x 0 ) x x 0 f +(x 0 ) = lim x x + 0 f(x) f(x 0 ) x x 0. ICD (Bari) Analisi Matematica 21 / 41

22 Teorema del valor medio o di Lagrange Teorema (del valor medio o di Lagrange) Sia f : [a, b] R una funzione. Se f è continua in [a, b]; f è derivabile in (a, b); allora esiste c (a, b) tale che f (c) = f(b) f(a). b a ICD (Bari) Analisi Matematica 22 / 41

23 Interpretazione geometrica Se valgono le ipotesi del teorema di Lagrange, esiste un punto in (a, b) in cui la retta tangente al grafico di f è parallela alla retta passante per (a, f(a)) e (b, f(b)). a x 0 b ICD (Bari) Analisi Matematica 23 / 41

24 Conseguenze del teorema di Lagrange Proposizione Sia f : (a, b) R una funzione derivabile. Se f ha n zeri distinti in (a, b) allora f : (a, b) R ha n 1 zeri distinti in (a, b). Quindi, se esistono x 1,..., x n (a, b) tali che x i x j se i j e f(x i ) = 0 per ogni i = 1,..., n allora esistono c 1,..., c n 1 (a, b) tali che c i c j se i j e f(c i ) = 0 per ogni i = 1,..., n 1. Per ogni i = 1,..., n 1, è possibile applicare il teorema di Lagrange a f in [x i, x i+1 ]. Si ottiene che esiste c i (x i, x i+1 ) tale che 0 = f(x i+1 ) f(x i ) = f (c i ) (x i+1 x i ), da cui f (c i ) = 0. ICD (Bari) Analisi Matematica 24 / 41

25 Conseguenze del teorema di Lagrange Proposizione (Test di monotonia) Sia f : (a, b) R una funzione derivabile. Allora f è crescente f (x) 0 x (a, b); f è decrescente f (x) 0 x (a, b). ICD (Bari) Analisi Matematica 25 / 41

26 Conseguenze del teorema di Lagrange Proposizione (Caratterizzazione delle funzioni a derivata nulla) Sia f : (a, b) R una funzione derivabile. Allora f è costante in (a, b) f (x) = 0 x (a, b). ICD (Bari) Analisi Matematica 26 / 41

27 Ricerca di massimi e minimi Sia f : [a, b] R. Se f è derivabile, per determinarne i massimi e minimi si procede nel seguente modo: Si calcolano f(a) e f(b). Si calcola f (x) e si risolve f (x) = 0. Se non vi sono punti stazionari, f(a) o f(b) sono estremi locali. Se x = x 0 (a, b) è un punto stazionario, si studia il segno di f in un intorno di x 0 per stabilirne la natura. Trovati eventuali punti di estremo locale, si calcola il valore di f in questi punti e lo si confronta con f(a) e f(b). ICD (Bari) Analisi Matematica 27 / 41

28 Teorema di De l Hôpital Teorema Siano f, g : (a, b) R due funzioni derivabili in (a, b) con g, g 0 in (a, b). Se lim x a x a f(x) = lim g(x) = 0 (o +, o ); + + esiste il limite (finito o infinito) f (x) lim x a + g (x) = L. Allora f(x) lim x a + g(x) = L. ICD (Bari) Analisi Matematica 28 / 41

29 Teorema di De l Hôpital Risultati analoghi valgono per x b e per x x 0 (a, b). Non si può applicare il teorema a forme non indeterminate. Per esempio x lim x 1 + log x = + ma 1 lim x 1 + 1/x = 1. ICD (Bari) Analisi Matematica 29 / 41

30 Limite della derivata e derivabilità Teorema Sia f : [a, b) R, continua in a, derivabile in (a, b) ed esista (finito o infinito) lim x a + f (x) = m R. Allora esiste f +(a) = m. Un enunciato analogo vale per la derivata sinistra e quindi per la derivata. Se f è continua in a ed esiste il limite destro in a della derivata allora esiste la derivata destra in a e coincide con quel limite. ICD (Bari) Analisi Matematica 30 / 41

31 Significato geometrico della derivata seconda La derivata seconda rappresenta la velocità di variazione della pendenza di un grafico, pertanto misura il grado di scostamento del grafico dall andamento rettilineo. Sia f una funzione tale che f(0) = f (0) = 0, f (0) 0. Si prova che la semicirconferenza che meglio approssima f in 0 ha raggio R tale che 1 R f (0) = 1 R. prende il nome di curvatura di f in 0 e R è il raggio di curvatura. ICD (Bari) Analisi Matematica 31 / 41

32 Convessità e corde Una figura geometrica F si dice convessa se per ogni coppia di punti P 1, P 2 F il segmento che congiunge P 1 e P 2 è interamente contenuto in F. Definizione Sia f : I R, I R intervallo. La funzione f si dice convessa in I se l epigrafico di f, cioè l insieme epi f = {(x, y) R 2 x I, y f(x)} è un insieme convesso. Si dice che f è concava in I se f è convessa in I. ICD (Bari) Analisi Matematica 32 / 41

33 Una definizione equivalente Definizione Sia f : I R, I R intervallo. La funzione f si dice convessa in I se, per ogni x 1, x 2 I il segmento di estremi (x 1, f(x 1 )) e (x 2, f(x 2 )) non ha punti sotto il grafico di f. Quindi, per ogni x 1, x 2 I e t [0, 1] f((1 t)x 1 + tx 2 ) (1 t)f(x 1 ) + tf(x 2 ). ICD (Bari) Analisi Matematica 33 / 41

34 Una definizione equivalente Definizione Sia f : I R, I R intervallo. La funzione f si dice concava in I se, per ogni x 1, x 2 I il segmento di estremi (x 1, f(x 1 )) e (x 2, f(x 2 )) non ha punti sopra al grafico di f. Quindi, per ogni x 1, x 2 I e t [0, 1] f((1 t)x 1 + tx 2 ) (1 t)f(x 1 ) + tf(x 2 ). ICD (Bari) Analisi Matematica 34 / 41

35 Se le disuguaglianze precedenti valgono con < (>) per t (0, 1), f si dice strettamente convessa (strettamente concava). Regolarità delle funzioni convesse o concave: Teorema Una funzione convessa (o concava) su un intervallo I è continua in I, salvo al più negli estremi di I. Inoltre f possiede derivata destra e sinistra in ogni punto interno ad I. ICD (Bari) Analisi Matematica 35 / 41

36 Convessità e derivate Se f è derivabile, la nozione di convessità risulta essere in relazione con la derivata prima e seconda. Teorema Sia f : (a, b) R. Se f è derivabile in (a, b) allora f è convessa (concava) in (a, b) se e solo se f è crescente (decrescente) in (a, b); Se f è derivabile due volte in (a, b) allora f è convessa (concava) in (a, b) se e solo se f (x) 0 (f (x) 0) per ogni x (a, b). I teoremi si modificano in maniera ovvia per funzioni strettamente convesse o strettamente concave. ICD (Bari) Analisi Matematica 36 / 41

37 Convessità e rette tangenti Teorema Sia f : (a, b) R derivabile in (a, b). Allora f è convessa in (a, b) se e solo se f(x) f(x 0 ) + f (x 0 )(x x 0 ) x, x 0 (a, b); f è concava in (a, b) se e solo se f(x) f(x 0 ) + f (x 0 )(x x 0 ) x, x 0 (a, b). Una funzione derivabile è convessa (concava) se il suo grafico si mantiene tutto sopra (sotto) ogni retta tangente al grafico. ICD (Bari) Analisi Matematica 37 / 41

38 Convessità e rette tangenti ICD (Bari) Analisi Matematica 38 / 41

39 Punti di flesso Definizione Sia f : (a, b) R una funzione e x 0 (a, b) un punto di derivabilità per f oppure in cui f (x 0 ) = ±. Il punto x 0 si dice di flesso per f se esiste un intorno destro di x 0 in cui f è convessa (concava) e un intorno sinistro di x 0 in cui f è concava (convessa). x 0 ICD (Bari) Analisi Matematica 39 / 41

40 Punti di flesso Attraversando un punto di flesso la derivata seconda di f cambia segno. Ci si aspetta dunque che in tale punto essa si annulli. Teorema Sia f : (a, b) R e sia x 0 (a, b) un punto di flesso per f. Se esiste f (x 0 ) allora f (x 0 ) = 0. Non vale il viceversa: f(x) = x 4 ha un punto di minimo in x 0 = 0 e f (0) = 0. ICD (Bari) Analisi Matematica 40 / 41

41 Significato geometrico dei punti di flesso Teorema Se f : (a, b) R è derivabile in (a, b) e x 0 (a, b) è un punto di flesso per f allora il grafico di f attraversa la propria retta tangente in (x 0, f(x 0 )). x 0 ICD (Bari) Analisi Matematica 41 / 41

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

Istituzioni di Matematiche quarta parte

Istituzioni di Matematiche quarta parte Istituzioni di Matematiche quarta parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 22 index Derivate 1 Derivate 2 Teoremi

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

1. Calcolo Differenziale per funzioni di una variabile

1. Calcolo Differenziale per funzioni di una variabile 1. Calcolo Differenziale per funzioni di una variabile 1.1 Definizione di Derivata e prime proprietà Definizione 1.1 Sia f :]a, b[ R, x 0 ]a, b[. Allora esiste δ > 0 : x 0 + ]a, b[, 0 < < δ. Se esiste

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di CONVESSITÀ Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Derivata seconda Se la derivata (prima) di una funzione è definita

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

Corso di Analisi Matematica. Calcolo differenziale

Corso di Analisi Matematica. Calcolo differenziale a.a. 2013/14 Laurea triennale in Informatica Corso di Analisi Matematica Calcolo differenziale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

DERIVATE. Equazione della retta tangente al grafico di f nel suo punto P(x 0 ;y 0 ):

DERIVATE. Equazione della retta tangente al grafico di f nel suo punto P(x 0 ;y 0 ): DERIVATE La derivata di una funzione in un punto c, quando esiste, rappresenta il coefficiente angolare della retta tangente al grafico della funzione nel suo punto di ascissa c: f ( c) = Df ( c) = m tg

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

Calcolo differenziale

Calcolo differenziale Calcolo differenziale L operazione di derivata Sia f: AR. Si vuole conoscere l equazione della retta tangente al grafico della funzione in un punto. Retta secante y f(+h) Q Rapporto incrementale y=f()

Dettagli

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR.

DERIVATA DI UNA FUNZIONE REALE. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DERIVATA DI UNA FUNZIONE REALE 1. Definizioni. In quanto segue denoteremo con I un intervallo di IR e con f una funzione di I in IR. DEFINIZIONE 1. Sia x 0 un elemento di I. Per ogni x (I \ {x 0 }) consideriamo

Dettagli

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p.

Calcolo Differenziale. Corsi di Laurea in Tecniche di Radiologia ecc... A.A Analisi Matematica - Calcolo Differenziale - p. Calcolo Differenziale Corsi di Laurea in Tecniche di Radiologia ecc... A.A. 2010-2011 - Analisi Matematica - Calcolo Differenziale - p. 1/33 Velocità istantanea Percorriamo il tratto di strada tra Udine

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: May 17, 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali.

1. Mercoledì 07/03/2018, ore: 2(2) Introduzione e presentazione del corso. Richiami: i numeri naturali, interi, razionali e reali. Registro delle lezioni di MATEMATICA 2 Corso di Laurea in Chimica 6 CFU - A.A. 2017/2018 docente: Francesco Demontis ultimo aggiornamento: 28 maggio 2018 1. Mercoledì 07/03/2018, 9 11. ore: 2(2) Introduzione

Dettagli

y retta tangente retta secante y = f(x)

y retta tangente retta secante y = f(x) Retta tangente f(x ) 1 y P 1 retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x 1 x quando P tende a P 0 1 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0,

Dettagli

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x Domanda Si consideri la funzione SOLUZIONI f x = x 2 2/ e x. Determinare il campo di esistenza, il segno, i iti alla frontiera e gli eventuali asintoti. Classificare gli eventuali punti di discontinuità

Dettagli

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale

Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto incrementale Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come ite del rapporto incrementale) Se esiste finito (cioè, non + o ) il ite del rapporto incrementale

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

CAP. VII FUNZIONI DERIVABILI

CAP. VII FUNZIONI DERIVABILI C Boccaccio Appunti di Analisi Matematica CAP VII CAP VII FUNZIONI DERIVABILI In molti problemi di varia natura (isica, economica, matematica, ecc ) si ha a che are con unzioni, delle quali importa determinare

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Calcolo differenziale I

Calcolo differenziale I Calcolo differenziale I Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Derivate Analisi Matematica 1 1 / 25 Definizione: rapporto incrementale Sia f : A

Dettagli

Derivate e studio di funzioni di una variabile

Derivate e studio di funzioni di una variabile Derivate e studio di funzioni di una variabile Paolo Montanari Appunti di Matematica Derivate e studio di funzioni 1 Rapporto incrementale e derivata Sia f(x) una funzione definita in un intervallo X R

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 2018/19 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi.

12/10/05 (2 ore): Esercizi vari sull ellisse, iperbole, parabola. Disequazioni in due variabili. Equazione dell iperbole equilatera. Esempi. Università degli Studi di Trento Facolta di Scienze Cognitive Corso di Laurea in Scienze e Tecniche di Psicologia Cognitiva Applicata Corso di Analisi Matematica - a.a. 2005/06 Docente: Prof. Anneliese

Dettagli

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1

STUDIO di FUNZIONE. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 STUDIO di FUNZIONE c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Studio di funzione cap6b.pdf 1 Punti di estremo: punto di massimo assoluto Def. Sia 0 dom(f) = D. Si dice che 0 è un punto di massimo

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

Lo studio di funzione. 18 febbraio 2013

Lo studio di funzione. 18 febbraio 2013 Lo studio di funzione 18 febbraio 2013 1 Indice 1 Lo studio di funzione 3 1.1 Dominio di funzioni......................... 3 1.1.1 Domini di funzioni elementari............... 3 1.1.2 Funzioni composte,

Dettagli

Lezione 11 (30 novembre)

Lezione 11 (30 novembre) Lezione 11 (30 novembre) Teorema di De l Hopital Massimi e minimi assoluti e relativi Funzioni limitate superiormente e inferiormente Legame tra derivata prima e crescita e decrescita della funzione Derivata

Dettagli

DERIVATA di una funzione

DERIVATA di una funzione DERIVATA di una unzione Sia e * A punto di accumulazione di A : A R * è il RAPPORTO INCREMENTALE * Il rapporto incrementale di calcolato in * rappresenta il coeiciente angolare della secante passante per

Dettagli

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

4.3 Teoremi sulle funzioni derivabili

4.3 Teoremi sulle funzioni derivabili 4.3 Teoremi sulle funzioni derivabili Teorema (di Fermat) Sia : [, ] ℝ una funzione derivabile in (, ) e si un punto di massimo o minimo (relativo o assoluto) per. Allora 0 si dice anche che è un punto

Dettagli

MATEMATICA. a.a. 2014/15

MATEMATICA. a.a. 2014/15 MATEMATICA a.a. 2014/15 3. DERIVATE E STUDIO DI FUNZIONE (II parte): Massimi, minimi e derivata prima. Flessi e derivata seconda. Schema per lo studio qualitativo completo di una funzione y=f(x) Crescenza

Dettagli

Metodi Matematici per l Economia anno 2017/2018 Gruppo B

Metodi Matematici per l Economia anno 2017/2018 Gruppo B Metodi Matematici per l Economia anno 2017/2018 Gruppo B Docente: Giacomo Dimarco Dipartimento di Matematica e Informatica Università di Ferrara https://sites.google.com/a/unife.it/giacomo-dimarco-home-page/

Dettagli

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m =

y x y x A (x 1,y 1 ) = (c, f(c)) B(x 2,y 2 ) = (c+h, f(c+h)) m = DERIVATA DI UNA FUNZIONE IN UN PUNTO SIGNIFICATO GEOMETRICO. EQUAZIONE DELLA RETTA TANGENTE AL GRAFICO NEL PUNTO DI TANGENZA. REGOLE DI DERIVAZIONE. CONTINUITA E DERIVABILITA PUNTI DI NON DERIVABILITA

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

ANALISI 1 1 QUATTORDICESIMA LEZIONE Significato geometrico della derivata seconda Convessità

ANALISI 1 1 QUATTORDICESIMA LEZIONE Significato geometrico della derivata seconda Convessità ANALISI 1 1 QUATTORDICESIMA LEZIONE Significato geometrico della derivata seconda Convessità 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Punti di massimo e di minimo

Punti di massimo e di minimo Punti di massimo e di minimo Massimo assoluto o minimo assoluto DEFINIZIONE Si dice massimo (minimo) assoluto di una funzione f il più grande (piccolo) dei valori che essa assume. mag 12 15.39 1 Si dice

Dettagli

( ) ( ) DERIVATE. $ ed è finito lim

( ) ( ) DERIVATE. $ ed è finito lim DERIVATE La derivata di una unzione in un punto c, quando esiste, rappresenta il coeiciente angolare della retta tangente al graico della unzione nel suo punto di ascissa c: ( c) = D ( c) = m tg = tanα,

Dettagli

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE

NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE NOTE SULLE FUNZIONI CONVESSE DI UNA VARIABILE REALE ROBERTO GIAMBÒ 1. DEFINIZIONI E PRIME PROPRIETÀ In queste note saranno presentate alcune proprietà principali delle funzioni convesse di una variabile

Dettagli

Corso di Analisi Matematica

Corso di Analisi Matematica Corso di Laurea in Ingegneria Edile Corso di DERIVATE Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Secanti e tangenti Sia f : D R, sia I = [a, b] oppure I = (a, b),

Dettagli

Criterio di Monotonia

Criterio di Monotonia Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 14 novembre 2008 L. Battaia - http://www.batmath.it Matematica 1 - I mod. Lezione del 14/11/2008 1 / 22 Cr-decr-max-min Esempio 1 Esempio 2 Esempio 3

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI Analisi Matematica T1 - A.A.2011-2012 - prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI (Grazie agli studenti del corso che comunicheranno omissioni o errori) 27 SETTEMBRE

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Studio del segno delle derivate. Lezione 11 del 6/12/2018

Studio del segno delle derivate. Lezione 11 del 6/12/2018 Studio del segno delle derivate Lezione 11 del 6/12/2018 Segno della derivata prima Data una funzione f(x) derivabile in un intervallo I, allora se f x > 0 x I allora la funzione f(x) è strettamente crescente

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Università degli Studi di Verona Dipartimento di Informatica Ca' Vignal Strada le Grazie 15 37134 Verona - Italia Tel. +39 045 80 7069 Fax +39 045 80 7068 Corso di Laurea in Matematica Applicata PROVA

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Matematica. Tutorato Attivo: Derivate. Alessio Bianchi. Matematica 20 maggio 2017

Matematica. Tutorato Attivo: Derivate. Alessio Bianchi. Matematica 20 maggio 2017 Matematica Tutorato Attivo: Derivate Alessio Bianchi email: alessio.bianchi02@universitadipavia.it Home page: https://bianchiunipv.wordpress.com/ Matematica 20 maggio 2017 Alessio Bianchi Tutorato Attivo:

Dettagli

Matematica Lezione 19

Matematica Lezione 19 Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 19 Sonia Cannas 6/12/2018 Derivata di una funzione composta Derivata di una funzione composta La derivata di una funzione composta

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

Le derivate: introduzione storica

Le derivate: introduzione storica Le derivate: introduzione storica I due fondamentali capitoli dell analisi matematica sono il calcolo differenziale e il calcolo integrale. Mentre il calcolo integrale trova le sue origini nella matematica

Dettagli

21 IL RAPPORTO INCREMENTALE - DERIVATE

21 IL RAPPORTO INCREMENTALE - DERIVATE 21 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso rappresenta l evoluzione di un fenomeno al passare del tempo. Se siamo interessati a sapere con che rapidità il fenomeno si evolve

Dettagli

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente.

La derivata. variabile indipendente x. Definiamo f := f(x) f(x 0 ) l incremento (positivo o negativo) della variabile dipendente. La derivata Sia f : domf R R; sia x 0 domf, f sia definita in I r (x 0 ) e sia x I r (x 0 ). ments Definiamo x := x x 0 l incremento (positivo o negativo) della f(x 0 ) + x + x) variabile indipendente

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

e 2x2 1 (x 2 + 2x 2) ln x

e 2x2 1 (x 2 + 2x 2) ln x Corso di laurea in Ingegneria delle Costruzioni A.A. 2016-17 Analisi Matematica - Esercitazione del 04-01-2017 Ripasso di alcuni argomenti in programma Gli esercizi sono divisi in più pagine, per separare

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital

Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Teoremi di Fermat, Rolle, Lagrange, Cauchy, de l Hôpital Copyright c 2007 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Teoremi

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Limiti di derivate. Punti angolosi e di cuspide. Ottobre 2012 Indice 1 Limiti della derivata e punti di non

Dettagli

Derivate di funzioni 1 / 40

Derivate di funzioni 1 / 40 Derivate di funzioni 1 / 40 Variazione assoluta Sia data una funzione f (x) e due suoi valori in corrispondenza dei punti x 0 e x 0 + h, con h > 0. Supponiamo di voler determinare di quanto varia il valore

Dettagli

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z (1) Calcolare il seguente integrale definito 3/π 1/π 1 3 sen ( 1 ) d integrando dapprima per sostituzione

Dettagli

Massimi, minimi, monotonia, e derivate

Massimi, minimi, monotonia, e derivate Massimi, minimi, monotonia, e derivate Punti di massimo, minimo per una funzione Definizione 1 Si dice che un punto c di un sottinsieme A di R e un punto interno ad A se e solo se c possiede qualche intorno

Dettagli

CONTINUITA E DERIVABILITA

CONTINUITA E DERIVABILITA CONTINUITA E DERIVABILITA La continuità e la derivabilità di una unzione sono proprietà dierenti. TEOREMA: CONTINUITA DELLE FUNZIONI DERIVABILI Se è una unzione derivabile in un punto, allora è continua

Dettagli

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33

Derivate. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Derivate Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Derivate Analisi A 1 / 33 Definizione: rapporto incrementale Sia f : domf R R. Dati x 1, x 2 domf con x 1 x

Dettagli

Derivate. Rette per uno e per due punti. Rette per uno e per due punti

Derivate. Rette per uno e per due punti. Rette per uno e per due punti Introduzione Rette per uno e per due punti Rette per uno e per due punti Rette secanti e tangenti Derivata d una funzione in un punto successive Derivabilità a destra e a sinistra Rette per uno e per due

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

(1;1) y=2x-1. Fig. G5.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G5.1 Retta tangente a y=x 2 nel suo punto (1;1). G5. Derivate G5. Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente. Esempio G5.: La funzione = e la sua retta tangente per

Dettagli

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P.

Derivate. Derivata di una funzione in un punto. = velocita media di P nell intervallo [x. = pendenza del segmento P 0 P. Derivate Derivata di una funzione in un punto Definizione Interpretazioni Definizione 1 Sia f : I x0 R una funzione definita in un intorno I x0 di un punto x 0 Per ciascun x I x0 con x = x 0 consideriamo

Dettagli

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26

1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, () December 30, / 26 ANALISI 1 1 UNDICESIMA LEZIONE DODICESIMA LEZIONE TREDICESIMA LEZIONE Derivata - definizione e teoremi di calcolo delle derivate Massimi e minimi relativi e teorema di Fermat Teorema di Lagrange Monotonia

Dettagli

Teoremi fondamentali dell'analisi Matematica versione 1

Teoremi fondamentali dell'analisi Matematica versione 1 Teoremi fondamentali dell'analisi Matematica versione 1 Roberto Boggiani 7 novembre 2012 1 Richiami di geometria analitica Dalla geometria analitica sulla retta sappiamo che dati due punti del piano A(x

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2013/14

Diario del Corso di Analisi Matematica - a.a. 2013/14 Diario del Corso di Analisi Matematica - a.a. 2013/14 16/09/13 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione (compitini

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto

1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto Lezione del 22 ottobre. 1. Teorema del valor medio D ora in poi ciascun intervallo considerato verra tacitamente assunto non ridotto ad un punto. Data una funzione f definita su un intervallo [a, b], derivabile

Dettagli

Matematica Esercizi di ricapitolazione n. 1

Matematica Esercizi di ricapitolazione n. 1 Matematica Esercizi di ricapitolazione n. 1 Numeri reali - Geometria affine - Funzioni di una variabile reale - Limiti - Derivazione - Studio di funzione Università di Verona - Laurea in Biotecnologie

Dettagli

10 - Applicazioni del calcolo differenziale

10 - Applicazioni del calcolo differenziale Università degli Studi di Palermo Facoltà di Economia CdS Sviuppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 10 - Applicazioni del calcolo differenziale Anno Accademico 2015/2016

Dettagli

Retta Tangente. y retta tangente. retta secante y = f(x) f(x )

Retta Tangente. y retta tangente. retta secante y = f(x) f(x ) Retta Tangente f(x ) y P retta secante y = f(x) y retta tangente y = f(x) f(x ) 0 P 0 f(x ) 0 P 0 O x 0 x x quando P tende a P 0 O x 0 x Consideriamo una funzione continua f. Siano P 0 = (x 0, f(x 0 ))

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

Derivate. Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come

Derivate. Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come Lezioni 21-22 72 Derivate Def. Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y) = f(x) f(y). x y OSSERVAZIONI:

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE INTERVALLI Per definire il campo di esistenza (o dominio) di una funzione reale di variabile reale y=f()si devono indicare talvolta insiemi di numeri reali che su

Dettagli

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1).

(1;1) y=2x-1. Fig. G4.1 Retta tangente a y=x 2 nel suo punto (1;1). G4 Derivate G4 Significato geometrico di derivata La derivata di una funzione in un suo punto è il coefficiente angolare della sua retta tangente Esempio G4: La funzione = e la sua retta tangente per il

Dettagli

10 - Massimi, minimi e flessi

10 - Massimi, minimi e flessi Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 10 - Massimi, minimi e flessi Anno Accademico 2015/2016

Dettagli

Si tratta di una funzione definita a tratti, il cui intervallo di definizione è suddiviso in 4 intervalli, AO-OB-BC- CD.

Si tratta di una funzione definita a tratti, il cui intervallo di definizione è suddiviso in 4 intervalli, AO-OB-BC- CD. PROBLEMA 1 Sia una funzione continua sull intervallo chiuso [-4, 6]. Il suo grafico, riportato in figura, passa per i punti A(-4;0), O(0,0),B(2;2), C(4;2), D(6;0) e consiste della semicirconferenza di

Dettagli

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le

Dettagli

29 IL TEOREMA DEL VALOR MEDIO

29 IL TEOREMA DEL VALOR MEDIO 29 IL TEOREMA DEL VALOR MEDIO Abbiamo visto che molte proprietà importanti delle funzioni (crescenza, decrescenza, iniettività, ecc.) si esprimono tramite proprietà del rapporto incrementale (positività,

Dettagli

Matematica per Economia Finanza e Management

Matematica per Economia Finanza e Management School of Economics and Management Matematica per Economia Finanza e Management A.A. 2015/2016 Annuale Prof. Paolo Crespi E-mail Office pcrespi@liuc.it Piano Terra Antistante Torre Phone +39-0331.572418

Dettagli

Matematica generale CTF

Matematica generale CTF Il calcolo differenziale 17 novembre 2015 Derivata della funzione inversa Primitiva Regole di derivazione Calcolo di limiti Derivate di ordine superiore Massimi e minimi locali Intervalli di concavità

Dettagli

PENDENZA (ripasso classe II)

PENDENZA (ripasso classe II) PENDENZA (ripasso classe II) Vediamo di definire quantitativamente il concetto di pendenza. Già ritroviamo la pendenza indicata in percentuale nei cartelli di pericolo nelle strade di montagna. La definizione

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli