Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema"

Transcript

1 Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla completezza nella risoluzione, nonché alle Punt. caratteristiche dell esposizione (spiegazioni, precisione dei disegni e dei grafici, ordine) Ma. P Problema Dato il triangolo (ABC) rettangolo in A, di ipotenusa BCa e con l angolo di vertice C di, si prenda sul lato AB un punto P in modo che, indicate con H la proiezione di P su BC, con K il punto in cui la parallela per H ad AB incontra il cateto AC e con L la proiezione di K su BC, risulti PH KL a 6 P Problema Sia AOB un quadrante di cerchio di centro O e raggio AO OB r. Determinare un punto C sul raggio OB in modo che, detto P il punto di intersezione dell arco AB con la perpendicolare condotta per C al raggio OB, la r corda AP misuri. P Problema Determina la base maggiore di un trapezio isoscele circoscritto ad un semicerchio di raggio r, sapendo che l area del trapezio è r. Punt. attr. P Problema 7 In un sistema di assi cartesiani sono dati i punti A ; e B ;. a) conduci la retta a, asse del segmento AB e verifica che tale retta passa per l origine degli assi cartesiani. b) conduci da A la parallela all asse delle, di cui si chiede l equazione, e indica con C il suo punto di intersezione con l asse y. c) conduci da B la parallela ad a e da O la perpendicolare ancora ad a. Trova le equazioni delle due rette e le coordinate del loro punto di intersezione D. d) calcola l area del pentagono (OCABD). Q Risolvi le seguenti equazioni e disequazioni ponendo, dove necessario, le opportune condizioni di esistenza. a. 6 b. c. d totale Trovate di seguito la soluzione della verifica con la spiegazione di tutti i passaggi e le considerazioni che avreste dovuto fare, ovviamente senza scriverle tutte!!! Spero di non avere fatto errori di battitura. Se ce ne fossero o qualcosa non fosse chiaro, chiedete lunedì. Buona domenica

2 Soluzione problema La scelta dell incognita è suggerita dal testo che richiede di individuare un punto su un segmento. Potremmo scegliere indifferentemente PB o AP come, ricordando di porre le limitazioni, ma in questo caso dal disegno si vede che è meglio prendere PB. Siccome BCa, per le formule relative ai triangoli abbiamo ABa e AC a. Quindi PB con a Dobbiamo esprimere i segmenti che compaiono nell equazione che risolve il problema PH KL a, 6 in funzione di. PH, KL sarebbe la metà di KC che possiamo trovare come differenza di AC a e KA. KAHZ HB. L equazione risolvente, di primo grado, diventa: a a 6 Semplificando in entrambi i membri si ottiene che è accettabile in quanto rientra nelle CE. a a da cui a e infine a Soluzione problema Ancora una volta la scelta dell incognita è suggerita dal testo che richiede di individuare un punto su un segmento. Ponendo OC con r si può ottenere PA applicando il teorema di Pitagora al triangolo AHP, in cui si ha PH OC e AH AO HO AO PC r r L equazione che risolve il problema diventa: r r r Il radicando è una somma di quadrati e il secondo membro è sicuramente positivo perché r. Possiamo elevare senza C.A. r r r r Sviluppando il quadrato r r r r r Semplificando r r r. Eseguendo la somma al primo membro e dividendo per r 8r r. Possiamo ancora elevare senza C.A. 6r 7 r da cui r di cui dobbiamo prendere la soluzione 8 8 positiva 7 r che è accettabile in quanto r.

3 Soluzione problema Ancora una volta la scelta dell incognita è suggerita dal testo che richiede di trovare la base maggiore. Per ragioni legate alla simmetria della figura, conviene porre AB, cioè OB con r. Dobbiamo procurarci gli elementi che ci servono per calcolare l area in funzione dell incognita in modo da trovare l equazione risolvente. Essendo la base maggiore e l altezza r, ci serve la base minore che possiamo ricavare applicando Pitagora al triangolo (DHB) dopo aver ricordato la famosa proprietà dei trapezi isosceli circoscritti a semicirconferenze che dice che il lato obliquo è uguale alla metà della base maggiore. HB DB DH ED OH OB HB r r Ricordando che l area deve essere r, cioè ( ) r r r r Dividendo per r e semplificando r r Isolando il radicale: AB CD DH, impostiamo l equazione: r r E osservando che il secondo membro è maggiore o uguale a zero per le C.E., eleviamo r r 8r Da cui 8r r r ± 6r r r ± r r Le cui soluzioni sono r Si ha AB r oppure AB r (in questo caso il trapezio diventa un rettangolo).

4 Soluzione problema Nel grafico trovate tutti le equazioni delle rette e le coordinate dei punti. L area del pentagono è 8 u. Per trovarla potevate scomporre il pentagono in figure più semplici. Ad esempio nel rettangolo ODBMOMACOA che sono triangoli rettangoli 6 Mettiamo a sistema le disequazioni per l esistenza delle radici 6 Dal grafico si deduce che il C.E. dell equazione si riduce al solo valore - Sostituendo il valore - al posto di nell equazione data si vede che è verificata. Pertanto - è l unica soluzione possibile.. CE ± Ovviamente la soluzione negativa non è accettabile, rimane da cui ± che sono entrambe accettabili..

5 ( ) ( ) N 8 ( ) D D -/8 -/ / - - soluzione 8 con. In generale non è possibile eliminare il denominatore da una disequazione. In questo caso però c è un modulo che è sempre positivo, naturalmente dopo aver posto le C.E. Siccome il primo sistema è impossibile, unendo le soluzioni del secondo e del terzo si ha con

= r.(porre AH=x, dove H è la proiezione di P su AB)

= r.(porre AH=x, dove H è la proiezione di P su AB) Liceo Scientifico Statale M. Curie Classe A Scienze Applicate aprile Verifica di Matematica: sommativa durata della prova : ore ome Cognome Leggete attentamente le seguenti istruzioni: Anche i disegni

Dettagli

Risoluzione algebrica dei problemi geometrici

Risoluzione algebrica dei problemi geometrici Risoluzione algebrica dei problemi geometrici La risoluzione algebrica di un problema geometrico avviene in generale secondo i seguenti passi: 1 passo: Leggere attentamente il testo, cercando di capire

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 2 I SISTEMI LINEARI

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 2 I SISTEMI LINEARI PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI I SISTEMI LINEARI Stabilisci se il sistema è determinato, indeterminato o impossibile senza risolverlo [determinato] [impossibile] Determina per

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

Compito di matematica Classe III ASA 23 aprile 2015

Compito di matematica Classe III ASA 23 aprile 2015 Compito di matematica Classe III ASA 3 aprile 015 A. Descrivere mediante un opportuno sistema di disequazioni nelle variabili x e y la parte di piano colorata: A1 A A1: y 1 x + x 1 4 x y 0 A: x 4 + y 9

Dettagli

Formule goniometriche

Formule goniometriche Appunti di Matematica Formule goniometriche Come possiamo calcolare ( + β )? E chiaro che non può risultare ( β ) + β + : se infatti fosse così e per esempio β avremo + + +! Dobbiamo ricavare delle relazioni

Dettagli

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura

c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione

k l equazione diventa 2 x + 1 = 0 e ha unica soluzione a B 3 Compito del Q 8 maggio 009 A) Equazioni con parametro. Data l equazione ( k + k ) + k + 0 determinare il valore di k in ciascuno dei seguenti casi. L equazione si abbassa di grado (risolvere l equazione

Dettagli

246 PROBLEMI GEOMETRICI DI 2 GRADO - ESEMPI SVOLTI In un triangolo isoscele la somma di base e altezza è 10 cm, e l area è di 12 cm

246 PROBLEMI GEOMETRICI DI 2 GRADO - ESEMPI SVOLTI In un triangolo isoscele la somma di base e altezza è 10 cm, e l area è di 12 cm 46 PROBLEMI GEOMETRICI DI GRADO - ESEMPI SVOLTI In un triangolo isoscele la somma di base e altezza è 10 cm, e l area è di 1 cm. Trovare il perimetro. Disegno Dati e richieste del problema CA CB CH AB

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

Problemi sui teoremi di Euclide e Pitagora

Problemi sui teoremi di Euclide e Pitagora Appunti di Matematica GEOMETRIA EUCLIDEA Problemi sui teoremi di Euclide e Pitagora Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo

Dettagli

Soluzione verifica scritta dell 8/10/2013

Soluzione verifica scritta dell 8/10/2013 Soluzione verifica scritta dell 8/10/013 * * * Problema n. 1 a) Determinare l equazione della parabola con asse parallelo all asse y, avente il vertice nel punto V ; ) e passante per l origine degli assi

Dettagli

Liceo Scientifico Statale G. Stampacchia Tricase

Liceo Scientifico Statale G. Stampacchia Tricase Liceo Scientifico Statale G. Stampacchia Tricase Oggetto: Test di ingresso Conoscenze e competenze sul programma previsto nella classe seconda del Liceo Scientifico. Algebra Q) Ordinare in forma crescente

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

x + x + 1 < Compiti vacanze classi 4D

x + x + 1 < Compiti vacanze classi 4D Compiti vacanze classi D Ripassare scomposizioni e prodotti notevoli, metodo di Ruffini, razionalizzazioni, equazioni irrazionali. (Libro di prima e seconda). Recuperare formulario con regole di risoluzione

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto

Dettagli

BO CA x 3 BO : OA PC : CA PC OA 2. 3 x 3 1 MD MO PC Applichiamo il teorema di Pitagora al triangolo MDP. (2) y 7x 22x 19

BO CA x 3 BO : OA PC : CA PC OA 2. 3 x 3 1 MD MO PC Applichiamo il teorema di Pitagora al triangolo MDP. (2) y 7x 22x 19 Settembre 1951, primo problema Il triangolo rettangolo AOB ha i cateti OA, OB di lunghezza e 3 rispettivamente. Determinare sull ipotenusa AB un punto P in modo che sia k la somma della sua distanza dal

Dettagli

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3 PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI DISEQUAZIONI Risolvi le seguenti disequazioni numeriche intere. ) ) 9 ) ) 9 ( ) ) ) non esiste R non esiste R Risolvi le seguenti disequazioni

Dettagli

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H Verifiche anno scolastico 2009/2010 Classi 3 C 3 H 1) Scrivi l equazione della circonferenza γ che ha centro C(- 2; 0) e raggio r = 2 2. Ricava le coordinate dei punti A, B in cui γ interseca l asse delle

Dettagli

Determina il terzo vertice A di un triangolo di cui. l ortocentro

Determina il terzo vertice A di un triangolo di cui. l ortocentro La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: C 8.0.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 7, 1, 65

Dettagli

SOLUZIONI DEI QUESITI PROPOSTI

SOLUZIONI DEI QUESITI PROPOSTI SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def. Circonferenza Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una

Dettagli

2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0

2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2010-2011 Prova di Matematica : T. Pitagora T. Euclide Disequazioni Alunno: Classe: 2 C 14.04.2011 prof. Mimmo Corrado 1. Risolvi le seguenti disequazioni:

Dettagli

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 2A

Don Bosco, A.S. 2013/14 Compiti per le vacanze - 2A Don Bosco, A.S. 0/ Compiti per le vacanze - A. Risolvi le seguenti espressioni: [( ) ( ) ] [( ) 5 ] + : ( ) ( ) ( ( ) 5 ) 9 ( 5 ) ( 5 ) ( 7 5 ). Scomponi i seguenti polinomi: a b ax+bx+ay+6by c) x +x d)

Dettagli

www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1

www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1 www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di grado 1 Verifica di matematica, classe II liceo scientifico Equazioni di secondo grado, equazioni frazionarie,

Dettagli

Verifiche 4 C a. s. 2008/2009 Risolvi le disequazioni

Verifiche 4 C a. s. 2008/2009 Risolvi le disequazioni Verifiche 4 C a. s. 008/009 6 log Risolvi le disequazioni 1) 6 7 ; ) 3 310 3 ; 3) 65 4) 5) log 1log 3 1 5 log 4 7log 5 log 5 3 8 log. 1 log. Rappresentare le seguenti funzioni dopo aver determinato eventuali

Dettagli

Problemi di geometria

Problemi di geometria 1 2 5 6 7 8 9 10 11 12 1 1 In un triangolo rettangolo l ipotenusa misura 60 cm e la proiezione del cateto maggiore sull ipotenusa misura 55,29 cm. Calcola la misura dei due cateti. [57,6 cm; 16,8 cm] In

Dettagli

Esercizi riepilogativi sulle coniche: problemi geometrici con parametri

Esercizi riepilogativi sulle coniche: problemi geometrici con parametri Esercizi riepilogativi sulle coniche: problemi geometrici con parametri n. 10 pag. 543 In un triangolo rettangolo ABC le misure dei cateti sono AC = 1, BC = 5. Sull ipotenusa AB determina un punto P in

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

Esempio 1 In una circonferenza sono date due corde AB e CD, che si incontrano in P.

Esempio 1 In una circonferenza sono date due corde AB e CD, che si incontrano in P. TEOREMI DELLE CORDE, DELLE SECANTI E DELLA TANGENTE Esempio 1 In una circonferenza sono date due corde AB e CD, che si incontrano in P. Sapendo che PA 6 cm, PB cm, PC cm, determina la lunghezza di PD.

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 017 da parte degli studenti

Dettagli

Esercizi sulle rette nello spazio

Esercizi sulle rette nello spazio 1 Esercizi sulle rette nello spazio 1) Sono dati quattro punti non complanari, tre di essi possono essere allineati? 2) Sono dati quattro punti non complanari, quanti piani generano? 3) Quante coppie di

Dettagli

esercizi 107 Problemi sulla retta

esercizi 107 Problemi sulla retta esercizi 107 Problemi sulla retta Es. 1 Detto C il punto in cui l asse del segmento di estremi A( 3, 3) e B(1, 5) incontra l asse x, calcolare le coordinate del punto D equidistante da A, B e C. Determinare

Dettagli

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura).

La prima è la parte positiva (al di sopra dell asse y) della circonferenza di equazione. e raggio r = 2 ; la seconda è una retta (vedi figura). Macerata 3 febbraio 0 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: y y + + = 0 Per la presenza del valore assoluto dobbiamo

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 010-011 Prova di Matematica : Piano cartesiano e retta Alunno: Classe: C 10.03.011 prof. Mimmo Corrado Dato il triangolo di vertici: 6; 3, ; 1, 4;

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 B

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: 2 B Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 011-01 Prova di Matematica : La retta + Pitagora e Euclide Alunno: Classe: B 9.03.01 prof. Mimmo Corrado A. Dato il triangolo di vertici: 3, 1 4,

Dettagli

Test sui teoremi di Euclide e di Pitagora

Test sui teoremi di Euclide e di Pitagora Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Equazioni goniometriche

Equazioni goniometriche Appunti di Matematica Equazioni goniometriche a) Consideriamo un equazione elementare : Equazioni goniometriche elementari sen Le soluzioni saranno: 5 In generale se abbiamo sen con < < avremo: α α Se

Dettagli

soluzione in 7 step Es n 208

soluzione in 7 step Es n 208 soluzione in 7 soluzione in 7 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm 3 : 4,8 5 4,8 : HB 4,8 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04

Dettagli

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer

Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione

Dettagli

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre

4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre www.matematicamente.it Verifica II liceo scientifico: Sistemi, Radicali, Equiestensione 1 Verifica di matematica, classe II liceo scientifico Sistemi, problemi con sistemi, radicali, equiestensione 1.

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse Verifiche anno scolastico 2011 2012 1) Riferendoti alla figura ricava l equazione della retta t. a) A è il punto di t che ha ascissa - 1, ricava la sua ordinata. B è il punto di t che ha ordinata 3 ricava

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(

( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P( ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio

Dettagli

Appunti di Matematica 3 - Ripasso - Ripasso di algebra. Equazioni. Equazioni di primo grado

Appunti di Matematica 3 - Ripasso - Ripasso di algebra. Equazioni. Equazioni di primo grado Ripasso di algebra Equazioni Equazioni di primo grado Un equazione di primo grado può essere sempre ridotta alla forma Se a la soluzione è Se a allora ci sono due casi: a b b e l equazione si dice determinata.

Dettagli

Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza

Liceo Scientifico Michelangelo - Forte dei Marmi. Esercizi sulla circonferenza svolti - Classe Terza Liceo Scientifico Michelangelo - Forte dei Marmi Esercizi sulla circonferenza svolti - Classe Terza Esercizio 0. Stabilire se le equazioni x + y x + 3y + e x + y x + 6y 3 rappresentano una circonferenza

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica

Matema&ca. TRIGONOMETRIA La trigonometria. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica Matema&ca TRIGONOMETRIA La trigonometria DOCENTE: Vincenzo Pappalardo MATERIA: Matematica INTRODUZIONE Finora ci siamo occupati di goniometria, ossia della misura di angoli e delle funzioni goniometriche

Dettagli

Equivalenza, misura di grandezze e aree

Equivalenza, misura di grandezze e aree MATEMATICAperTUTTI Equivalenza, misura di grandezze e aree 1 ESERCIZIO GUIDATO L equivalenza dei poligoni. Sappiamo che per stabilire se due figure sono equivalenti si può vedere se sono equiscomponibili,

Dettagli

D2. Problemi sulla retta - Esercizi

D2. Problemi sulla retta - Esercizi D. Problemi sulla retta - Esercizi Per tutti gli esercizi è OBBLIGATORIO tracciare il grafico. 1) Trovare il perimetro del triangolo ABC, con A(1;0), B(-1;1), C(0;-). [ 5 + 10 ) Trovare il perimetro del

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Le equazioni di primo grado Definiamo prima di tutto cosa è una identità. Definizione : un identità è un uguaglianza, dove compaiono espressioni letterali, verificata per qualunque valore attribuito alle

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Equazioni e problemi di I grado Alunno: Classe: 1 C

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Equazioni e problemi di I grado Alunno: Classe: 1 C Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2010-2011 Prova di Matematica : Equazioni e problemi di I grado Alunno: Classe: 1 C 03.06.2011 prof. Mimmo Corrado 1. Ogni identità è un equazione

Dettagli

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2

e) A10, ( 1;B6,2 ) ( ) f) A3,42;B12,2 7. ESERCIZI SULLA DISTANZA FRA DUE PUNTI ) Calcola le distanze fra le seguenti coppie di punti: a) A;B6 ( ) ( ) A( 8 ); B( 7 5) c) A ( ;B ) ( 7) d) A( ); B e) A ( ;B6 ) ( ) f) A4;B ( ) ( ) g) A ; B 6 h)

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

x 4 4 e il binomio x 2.

x 4 4 e il binomio x 2. ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio P()

Dettagli

Applicazioni dell algebra alla geometria

Applicazioni dell algebra alla geometria Risoluzione guidata Problema. Il triangolo isoscele ABC ha l angolo al vertice Ĉ che misura 120 e la base AB lunga 24 cm. Da un punto P sul lato AC si tracci la parallela al lato CB che incontra AB in

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

1 Il teorema di Pitagora

1 Il teorema di Pitagora 1 Il teorema di Pitagora TEOREMA. In un triangolo rettangolo il quadrato costruito sull ipotenusa è equivalente alla somma dei quadrati costruiti sui cateti. Area 1 - Capitolo - PAG. 94 1 1 Il teorema

Dettagli

1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4).

1. Scrivi l equazione dell ellisse avente per fuochi i punti ( 2 7;3) e (2 7;3) e passante per il punto (2 6;4). . Scrivi l equazione dell ellisse avente per fuochi i punti ( 7;3) e ( 7;3) e passante per il punto ( 6;). Determino il centro di simmetria dell ellisse, O, punto medio dei due fuochi, ovvero (0;3), perciò

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

La circonferenza nel piano cartesiano

La circonferenza nel piano cartesiano 6 La circonferenza nel piano cartesiano onsideriamo la circonferenza in figura in cui il centro è ; e il raggio 5 r : se indichiamo con P ; un punto della circonferenza avremo, per definizione, che la

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI

Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 0-05 Classe: M Docente: Enrica Menaldo Disciplina Matematica Ripassare tutto il programma preparando un formulario per i principali

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

PROBLEMI GEOMETRICI + GRAFICI DI FUNZIONI

PROBLEMI GEOMETRICI + GRAFICI DI FUNZIONI 7 PROBLEMI GEOMETRICI + GRAFICI DI FUNZIONI ESERCITAZIONE 1 (la correzione completa è a pag. 75) In un triangolo ABC, rettangolo in A, con AB = 1 cm e AC = cm, è inscritto un rettangolo ADEF (con D su

Dettagli

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema

Carlo Sintini, Problemi di maturità, 1949 Settembre, matematicamente.it Settembre 1949, primo problema Settembre 199, primo problema In una data circonferenza di centro O, la corda AB è il lato del quadrato inscritto. Condotta nel punto B la semiretta tangente alla circonferenza che giace, rispetto alla

Dettagli

Ripassare 'CIRCONFERENZA E CERCHIO ' e poligono inscritti e circoscritti. Svolgi le dimostrazioni a pag.8 (allegata)

Ripassare 'CIRCONFERENZA E CERCHIO ' e poligono inscritti e circoscritti. Svolgi le dimostrazioni a pag.8 (allegata) P a g i n a 1 MATEMATICA COMPITI PER LE VACANZE IIAsa - IIBsa Gli esercizi sono presi dal vostro libri di testo: Lineamenti.MATH BLU volume 2. N.B.: Molti esercizi che vi ho indicato erano già stati assegnati

Dettagli

Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2

Indirizzo: Tema di Il candidato risolva uno dei due problemi e 4 quesiti del questionario. PROBLEMA 1 PROBLEMA 2 Sessione ordinaria all estero (EUROPA) 8-9 ESAMI DI STATO DI LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO: EUROPA CORSO DI ORDINAMENTO Indirizzo: SCIENTIFICO Tema di: MATEMATICA Il candidato risolva uno

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

LICEO LINGUISTICO STATALE J. M. KEYNES

LICEO LINGUISTICO STATALE J. M. KEYNES LICEO LINGUISTICO STATALE J. M. KEYNES PROGRAMMA SVOLTO ANNO SCOLASTICO 206/207 DOCENTE DISCIPLINA CLASSE MARIA GRAZIA GOZZA MATEMATICA 3^ F LICEO LINGUISTICO Ripasso: Operazioni con le frazioni algebriche,

Dettagli

Le equazioni di primo grado

Le equazioni di primo grado Appunti di Matematica Le equazioni di primo grado Definiamo prima di tutto cosa è una identità. Definizione : un identità è un uguaglianza, dove compaiono espressioni letterali, verificata per qualunque

Dettagli

2 di quello dela circonferenza data. Scrivere le

2 di quello dela circonferenza data. Scrivere le PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A

Dettagli

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x.

Macerata 6 febbraio 2015 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI. 3 3 < x. Macerata 6 febbraio 05 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO a) Rappresenta graficamente la curva descritta dalla seguente equazione: x y x y + + + 4 = 0 Per la presenza del

Dettagli

x M>> == 0>, 8x, y<f

x M>> == 0>, 8x, y<f FIL ) H L + + Solve :: H L + + I ä y + I + ä +, F M>> 0 I ym 0 + 0 y 0, Solve: + M>, : IMPOSSIILE ) : + y + 0 ::, y >, :, y >> 0>, 8, y

Dettagli

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che

Dettagli

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?

Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica? Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza

Dettagli

! Fratte riconducibili a secondo grado (risolvi dopo aver individuato le condizioni di esistenza)

! Fratte riconducibili a secondo grado (risolvi dopo aver individuato le condizioni di esistenza) LICEO CLASSICO STATALE Vittorio Emanuele II di Jesi ANNO SCOLASTICO 2011/2012 LAVORO ESTIVO Materia di insegnamento Indirizzo Classe Matematica Liceo socio psico pedagogico Terza, sez. E / F Equazioni

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Progetto Matematica in Rete - Geometria euclidea - La similitudine. La similitudine. Figure simili

Progetto Matematica in Rete - Geometria euclidea - La similitudine. La similitudine. Figure simili Figure simili Se consideriamo due triangoli equilateri di lato diverso, due quadrati di lato diverso intuitivamente diciamo che hanno la stessa forma. Ma cosa comporta avere la stessa forma? Se osserviamo

Dettagli

1. Risolvi in R le seguenti disequazioni: 1.a) ( x ) ( x ) b) 2x. 1.e) 2x 1. 1.g)

1. Risolvi in R le seguenti disequazioni: 1.a) ( x ) ( x ) b) 2x. 1.e) 2x 1. 1.g) LICEO PEDAGOGICO-ARTISTICO GPascoli di Bolzano PROVA SCRITTA DI MATEMATICA-ALUNNI CON GIUDIZIO SOSPESO CLASSE a B /9/9- Tempo h Ogni risposta ai quesiti va opportunamente motivata (con calcoli, grafici,

Dettagli

2; 3 ; 5 ; p 7 4 = < 2 < 3; 2 3 = < < < < 93

2; 3 ; 5 ; p 7 4 = < 2 < 3; 2 3 = < < < < 93 Università di Siena - Anno accademico 0- - Corso di laurea in farmacia Corso di allineamento (propedeutico) in matematica (prof. a.battinelli) Prova nale del ottobre 0 - Testo e svolgimento Ordina in modo

Dettagli

D3. Parabola - Esercizi

D3. Parabola - Esercizi D3. Parabola - Esercizi Traccia il grafico delle seguenti parabole e trova i punti d incontro con l asse e con l asse graficamente e/o algebricamente. 1) = ++ (0;)] ) = -+1 ( + 3 ;0), ( 3 ;0), (0;1)] 3)

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

% Logica matematica e ragionamento numerico

% Logica matematica e ragionamento numerico % Logica matematica e ragionamento numerico 1 * Geometria euclidea Test n. 3 (Tempo: minuti) 1 Sia ABCD un quadrilatero; quale delle seguenti affermazioni è sempre VERA? A ABCD può essere un rettangolo

Dettagli