Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia"

Transcript

1

2

3 Corso di Tecnologia dei Materiali ed Elementi di Chimica Docente: Dr. Giorgio Pia

4 La Scienza dei Materiali

5 Struttura e proprietà Metalli Leganti Ceramici e vetri Polimeri e compositi Materiali naturali Degrado dei materiali Sostenibilità

6 Solidificazione I metalli vengono fusi per produrre prodotti finiti e semilavorati Due stadi di solidificazione Nucleazione: formazione di nuclei stabili Crescita dei grani: formazione della struttura a grani Gradienti termici definiscono la forma dei grani La nucleazione Due principali eterogenea meccanismi: avviene omogeneo in un liquido ed eterogeneo sulla superficie del materiale strutturale. Es.: impurezze insolubili Nucleazione omogenea: Queste strutture, Caso principale dette agenti e più nucleanti, semplice abbassano l energia libera richiesta per Il metallo formare stesso nuclei fornirà stabiliatomi per formare nuclei Il metallo, quando sottoraffreddato in modo significativo, ha Gli agenti molti nucleanti atomi abbassano che si muovono anche la lentamente dimensione che critica si legano tra loro per formare i nuclei Per la solidificazione è richiesta una quantità minore di sottoraffreddamento Gruppo di atomi al di sotto della dimensione critica è detto embrione Usata ampiamente Se i gruppi nelle di atomi industrie raggiungono la dimensione critica, crescono nei cristalli. Gli altri si dissolvono I gruppi di atomi di dimensione maggiore della dimensione critica sono chiamati nuclei

7 Solidificazione Soluzioni Solide Sostituzionali Atomi di ferro, r = 0.129nm Atomi di carbonio, r = 0.075nm Piano (111) cella CFC Differenza del raggio atomico: 42% Gli In atomi una di struttura soluto si CFC inseriscono del ferro γ nelle il raggio dell interstizio vuoto è di nm, posizioni Si capisce libere perché del reticolo la solubilità normalmente del carbonio sia solo del 2.08% occupate dagli atomi di solvente Interstiziali In una struttura CCC del ferro γ il raggio dell interstizio vuoto è di nm, Si capisce perché appena sotto 723 C la solubilità Gli atomi del carbonio di soluto sia inseriscono solo del 0.025% tra i vuoti (interstizi) degli atomi di solvente Gli atomi di solvente in questo caso dovrebbero essere più grandi degli atomi di soluto Esempio: tra 912 e 1394 C, si forma la soluzione solida interstiziale di carbonio nel ferro γ (CFC) Un massimo di 2.08% di carbonio può dissolversi negli interstizi del ferro

8 Solidificazione Difetti Di punto Superficie Influenza le proprietà meccaniche del materiale Minore è la dimensione di grano, maggiori sono i bordi di grano Maggiori bordi di grano significa maggiore resistenza allo scorrimento (la deformazione plastica è dovuta allo scorrimento) Più grani significa proprietà meccaniche più uniformi I bordi di grano separano i grani Formati dalla crescita simultanea di cristalli che si incontrano Larghezza = 2-5 diametri atomici Alcuni atomi si trovano in posizioni deformate nei bordi di grano e alzano l energia di quest area.

9 Corso di Tecnologia dei Materiali e Chimica Applicata Diffusione Atomica nei solidi

10 Velocità dei processi nei solidi Le reazioni avvengono allo stato solido portando a una disposizione atomica più stabile Gli atomi che reagiscono devono avere energia sufficiente per superare la barriera di energia di attivazione A una data temperatura, non tutti gli atomi hanno energia di attivazione E*. Deve essere fornita E* ΔE* Energia attivazione E r = Energia dei reagenti E* = Livello energia di attivazione ΔE* = Energia di attivazione E p = Energia di prodotto E r Reagenti Energia rilasciata nella reazione E P Coordinata di reazione Prodotti

11 Diffusione atomica nei solidi Diffusione

12

13

14

15 Diffusione atomica nei solidi Diffusione

16 Diffusione atomica nei solidi Diffusione per vacanza o sostituzionale Esempio: se l atomo A ha sufficiente energia di attivazione, si muove nella vacanza diffusione Energia di attivazione di diffusione Energia di = attivazione per formare + una vacanza Energia di attivazione per muovere una vacanza Se aumenta il punto di fusione, aumenta anche l energia di attivazione

17 Diffusione atomica nei solidi Autodiffusione

18 Diffusione atomica nei solidi Diffusione per meccanismo interstiziale Gli atomi si muovono da un sito interstiziale ad un altro Gli atomi che si muovono devono essere più piccoli degli atomi della matrice Esempio: il carbonio diffonde interstizialmente nel ferro α CCC o nel ferro γ CFC Atomi matrice Atomi interstiziali

19 Diffusione atomica nei solidi Diffusione allo stato stazionario Non c è variazione nella concentrazione di atomi di soluto a differenti piani in un sistema, in un periodo di tempo Non avviene nessuna reazione chimica. Solo flusso netto di atomi C 1 Concentrazione di atomi diffusi C 2 Flusso di atomi di soluto Atomi diffusi Distanza x Unità di superficie Flusso netto di atomi per unità di superficie per unità di tempo = J

20 Diffusione atomica nei solidi Legge di Fick Il flusso di atomi è dato da J D dc dx J = flusso netto di atomi D = coefficiente di diffusione dc = gradiente di concentrazione dx I.e. per la condizione di diffusione allo stato stazionario, il flusso netto di atomi per diffusione atomica è uguale alla diffusione D per il gradiente di diffusione dc/dx Esempio: diffusività del ferro CFC a 500 o C è 5 x m 2 /S ed a 1000 o C è 3 x m 2 /S

21 Diffusione atomica nei solidi Diffusività La diffusività dipende da tipo di diffusione: se la diffusione è interstiziale o sostituzionale temperatura: quando la temperatura aumenta, la diffusività aumenta tipo di struttura cristallina: il cristallo CCC ha APF = 0.68 rispetto al cristallo CFC (APF = 0.74 ) e quindi ha maggiore diffusività. Inoltre in CCC gli spazi interatomici sono maggiori che in CFC. tipo di difetti del cristallo: strutture più aperte (bordi di grano) aumenta la diffusione concentrazione delle specie diffuse: maggiori concentrazioni degli atomi di soluto diffusi influenzeranno la diffusività

22 Diffusione atomica nei solidi Diffusività

23 Diffusione atomica nei solidi Diffusione allo stato non stazionario La concentrazione di atomi di soluto in ogni punto del metallo varia con il tempo Seconda legge di Fick: la velocità di variazione composizionale è uguale alla diffusività per la velocità di variazione del gradiente di concentrazione dc dt x d dc D dx dx x Piano 1 Piano 2 Variazione di concentrazione di soluto Atomi con variazioni nel tempo su piani differenti

24 Diffusione atomica nei solidi Seconda legge di Fick C C s s C s = concentrazione di superficie di un elemento nel gas che diffonde nella superficie C 0 = concentrazione iniziale uniforme di un elemento nel solido C x = concentrazione di un elemento a distanza x dalla superficie al tempo t 1 x = distanza dalla superficie D = diffusività del soluto t = tempo C C x 0 erf 2 x D t C s Tempo = t 2 C x C 0 Tempo= t 1 Tempo = t 0 x Distanza x

25 Diffusione atomica nei solidi Applicazioni industriali Elementi striscianti e rotanti necessitano di superfici dure Questi elementi sono di solito lavorati con acciaio a basso carbonio perché facilitano la lavorazione La loro superficie è temprato per carburazione Elementi in acciaio sono posti ad elevata temperatura (927 C) in un atmosfera di gas idrocarburo (CH 4 ) Il carbonio diffonde nella superficie di ferro e riempie lo spazio interstiziale rendendolo più duro

26 Diffusione atomica nei solidi Applicazioni industriali C % Parti in acciaio a basso tenore di carbonio Atomi di carbonio diffusi Gradienti di carbonio nei metalli carburati

27 Corso di Tecnologia dei Materiali e Chimica Applicata Proprietà meccaniche dei metalli

28 La fusione La maggior parte dei metalli sono fusi in una fornace La lega viene fatta, se richiesta Vengono poi colati grandi lingotti Lastre e piatti sono prodotti dai lingotti per laminazione si ottengono semilavorati Profilati e altre forme sono prodotte per estrusione Alcuni piccoli componenti possono essere colati come prodotti finiti Esempio: pistone di automobile

29 La fusione Stampo per fonderia Processo di fonderia

30 Laminazione a caldo di acciai Laminazione a caldo Ampie riduzioni di spessore in un passaggio La laminazione viene svolta sopra la temperatura di ricristallizzazione Lingotti preriscaldati a circa 1200 C Lingotti riscaldati tra i passaggi, se richiesto Di solito, sono usate 4 serie di laminatoi

31 Laminazione a freddo di lastre di metallo La laminazione a freddo è una laminazione eseguita al di sotto della temperatura di ricristallizzazione Questo causa incrudimento Lastre laminate a caldo devono essere ricotte prima della laminazione a caldo Vengono usate serie di 4 laminatoi Minore riduzione di spessore Occorre maggiore potenza

32 Laminazione a freddo % lavorazione a freddo = Spessore iniziale Spessore finale Spessore iniziale x 100

33 Estrusione Il metallo ad alta pressione è forzato attraverso una apertura nella matrice Prodotti comuni sono barre cilindriche, tubi cavi di rame, alluminio, etc. Normalmente eseguito ad alta temperatura L estrusione indiretta necessita di potenza inferiore, ma ha un limite di carico applicato Matrice estrusione diretta estrusione indiretta Contenitore Metallo Contenitore Metallo

34 Forgiatura Il metallo, normalmente caldo, è martellato o pressato nella forma desiderata Tipologie: Matrice aperta: Matrici piane e di forma semplice * Esempi: assi o semiassi in acciaio Matrice chiusa: Matrici con impronta sopra e sotto * Esempi: Barre di connessione del motore di auto La forgiatura aumenta le proprietà strutturali, rimuove la porosità e aumenta l omogeneità Forgiatura diretta Metallo Forgiatura indiretta Matrici

35 Trafilatura Trafilatura: La barra o il filo di partenza è trafilata attraverso una serie di matrici di trafilatura per ridurre il diametro % lavorazione = a freddo Variazione area resistente Area iniziale X 100 Imbutitura: usata per ottenere coppe, come articoli da lastre di metallo Filo o barra Punta in carburo

36 Sforzo e deformazione dei metalli I metalli vanno incontro a deformazione sotto l azione di una forza assiale a trazione Deformazione elastica: il metallo ritorna alla sua dimensione iniziale quando la forza a trazione è rimossa Deformazione plastica: il metallo è deformato a un valore tale che non è possibile recuperare la sua dimensione iniziale

37 Deformazione plastica dei metalli

38

39 Sforzo e deformazione nominale Sforzo nominale σ = F (forza a trazione assiale media) A 0 (superficie resistente iniziale) Unità dello sforzo: PSI or N/m 2 (Pascal) A 0 0 A Δl 0 Deformazione nominale = ε = Variazione lunghezza Lunghezza iniziale 0 0 Unità della deformazione: in/in o m/m

40 Modulo di Poisson Rapporto di Poisson = ( laterale ) ( longitudin ale) y. z 0 w 0 w w w 0 0 Solitamente il rapporto di Poisson varia tra 0.25 e 0.4. Esempi: Acciaio inossidabile 0.28 Rame 0.33

41 Costanti elastiche

42 Sforzo e deformazione di Taglio S (forza di taglio) τ = sforzo di taglio = A (superficie applicazione forza di taglio) Deformazione di taglio γ = Modulo elastico G = τ / γ spostamento a taglio distanza h sulla quale agisce lo sforzo

43 Prova a trazione La resistenza meccanica dei materiali può essere testata tirando il metallo fino a rottura Cella di carico Provino Estensimetro I dati di forza sono ottenuti dalla cella di carico I dati di deformazione sono ottenuti dall estensimetro

44 Prova a trazione Provini utilizzati Tipica curva sforzo/deformazione Al ad alta resistenza

45 Proprietà meccaniche ottenute dalla prova a trazione Il modulo di elasticità Il carico di snervamento ad una deformazione dello 0.2% Il carico di rottura L allungamento percentuale a rottura La strizione percentuale a rottura

46 Proprietà meccaniche Modulo di Elasticità (E): lo sforzo e la deformazione hanno una relazione lineare nel campo elastico (Legge di Hook) E = σ (sforzo) ε (deformazione) s Δσ E = Δσ Δε Maggiore la resistenza di legame, maggiore il modulo di elasticità Δε Porzione lineare della curva sforzo/deformazione Esempi: Modulo di elasticità dell acciaio: 207 GPa Modulo di elasticità dell alluminio: 76 GPa

47 Proprietà meccaniche

48 Sforzo di snervamento Lo sforzo di snervamento è lo sforzo al quale il metallo o la lega mostrano una significativa deformazione plastica offset sforzo di snervamento a 0.2% è quello sforzo al quale avviene una deformazione plastica pari allo 0.2% La linea di costruzione, che parte allo 0.2% di deformazione, parallela al campo elastico, è disegnata per trovare l offset dello sforzo di snervamento a 0.2% di deformazione

49 Sforzo di snervamento

50 Sforzo a rottura Lo sforzo a rottura a trazione (s r ) è il massimo sforzo raggiunto in una curva sforzo/deformazione La strizione inizia quando è raggiunto s r Al 2024-Temprato Più duttile è il metallo, maggiore è la strizione prima della rottura Lo sforzo aumenta fino a rottura. La diminuzione nella curva s/ è dovuta al calcolo dello sforzo basato sull area iniziale. S f o r z o MPa Punto di strizione Al 2024-Ricotto deformazione Curve s/ di Al 2024 con due diversi trattamenti termici. il provino duttile ricotto si striziona di più

51 Sforzo a rottura

52 Allungamento percentuale L allungamento percentuale è una misura della duttilità di un materiale È l allungamento del metallo prima della rottura, espresso come percentuale della lunghezza iniziale % allungamento = Lunghezza finale Lunghezza iniziale Lunghezza iniziale X 100 Misurata usando un calibro unendo le due parti fratturate Esempio: allungamento percentuale di Al puro 35% per la lega di alluminio 7076-T6 11%

53 Riduzione percentuale d area La riduzione percentuale di area è un altra misura della duttilità Il diametro della zona fratturata si misura con un calibro % riduzione area = Area iniziale Area finale X 100 Area finale La riduzione percentuale di area nei metalli diminuisce in presenza di porosità Curve s/ per diversi metalli

54 Sforzo e deformazione reale Lo sforzo e la deformazione reali si basano sulla superficie resistente e la lunghezza istantanea Sforzo reale = σ t = F A i (superficie istantanea) Deformazione reale = ε t = d Ln Lo sforzo reale è sempre maggiore dello sforzo nominale i 0 li Ln l 0 A A 0 i

55 Durezza e prova di durezza La durezza è una misura della resistenza di un metallo alla deformazione (plastica) permanente Procedura generale: Premere il penetratore, che è più duro del metallo, sulla superficie del metallo Sollevare il penetratore Misurare la durezza misurando la profondità e la larghezza dell impronta Strumento per la durezza Rockwell

56 Prove di durezza La prova di durezza è molto più semplice da realizzare rispetto ad una prova a trazione e può essere di tipo non distruttivo. Per questo motivo è diffusa nel mondo dell industria.

57 Corso di Tecnologia dei Materiali e Chimica Applicata Proprietà meccaniche dei metalli

58 Sforzo e deformazione nominale Sforzo nominale σ = F (forza a trazione assiale media) A 0 (superficie resistente iniziale) Unità dello sforzo: PSI or N/m 2 (Pascal) A 0 0 A Δl 0 Deformazione nominale = ε = Variazione lunghezza Lunghezza iniziale 0 0 Unità della deformazione: in/in o m/m

59 Modulo di Poisson Rapporto di Poisson = ( laterale ) ( longitudin ale) y. z 0 w 0 w w w 0 0 Solitamente il rapporto di Poisson varia tra 0.25 e 0.4. Esempi: Acciaio inossidabile 0.28 Rame 0.33

60 Costanti elastiche

61 Sforzo e deformazione di Taglio S (forza di taglio) τ = sforzo di taglio = A (superficie applicazione forza di taglio) Deformazione di taglio γ = Modulo elastico G = τ / γ spostamento a taglio distanza h sulla quale agisce lo sforzo

62 Prova a trazione La resistenza meccanica dei materiali può essere testata tirando il metallo fino a rottura Cella di carico Provino Estensimetro I dati di forza sono ottenuti dalla cella di carico I dati di deformazione sono ottenuti dall estensimetro

63 Prova a trazione Provini utilizzati Tipica curva sforzo/deformazione Al ad alta resistenza

64 Proprietà meccaniche ottenute dalla prova a trazione Il modulo di elasticità Il carico di snervamento ad una deformazione dello 0.2% Il carico di rottura L allungamento percentuale a rottura La strizione percentuale a rottura

65 Proprietà meccaniche Modulo di Elasticità (E): lo sforzo e la deformazione hanno una relazione lineare nel campo elastico (Legge di Hook) E = σ (sforzo) ε (deformazione) s Δσ E = Δσ Δε Maggiore la resistenza di legame, maggiore il modulo di elasticità Δε Porzione lineare della curva sforzo/deformazione Esempi: Modulo di elasticità dell acciaio: 207 GPa Modulo di elasticità dell alluminio: 76 GPa

66 Proprietà meccaniche

67 Sforzo di snervamento Lo sforzo di snervamento è lo sforzo al quale il metallo o la lega mostrano una significativa deformazione plastica offset sforzo di snervamento a 0.2% è quello sforzo al quale avviene una deformazione plastica pari allo 0.2% La linea di costruzione, che parte allo 0.2% di deformazione, parallela al campo elastico, è disegnata per trovare l offset dello sforzo di snervamento a 0.2% di deformazione

68 Sforzo di snervamento

69 Sforzo a rottura Lo sforzo a rottura a trazione (s r ) è il massimo sforzo raggiunto in una curva sforzo/deformazione La strizione inizia quando è raggiunto s r Al 2024-Temprato Più duttile è il metallo, maggiore è la strizione prima della rottura Lo sforzo aumenta fino a rottura. La diminuzione nella curva s/ è dovuta al calcolo dello sforzo basato sull area iniziale. S f o r z o MPa Punto di strizione Al 2024-Ricotto deformazione Curve s/ di Al 2024 con due diversi trattamenti termici. il provino duttile ricotto si striziona di più

70 Sforzo a rottura

71 Allungamento percentuale L allungamento percentuale è una misura della duttilità di un materiale È l allungamento del metallo prima della rottura, espresso come percentuale della lunghezza iniziale % allungamento = Lunghezza finale Lunghezza iniziale Lunghezza iniziale Misurata usando un calibro unendo le due parti fratturate Esempio: allungamento percentuale di Al puro 35% per la lega di alluminio 7076-T6 11%

72 Riduzione percentuale d area La riduzione percentuale di area è un altra misura della duttilità Il diametro della zona fratturata si misura con un calibro % riduzione area = Area iniziale Area finale Area finale La riduzione percentuale di area nei metalli diminuisce in presenza di porosità Curve s/ per diversi metalli

73 Sforzo e deformazione reale Lo sforzo e la deformazione reali si basano sulla superficie resistente e la lunghezza istantanea Sforzo reale = σ t = F A i (superficie istantanea) Deformazione reale = ε t = d Ln Lo sforzo reale è sempre maggiore dello sforzo nominale i 0 li Ln l 0 A A 0 i

74 Durezza e prova di durezza La durezza è una misura della resistenza di un metallo alla deformazione (plastica) permanente Procedura generale: Premere il penetratore, che è più duro del metallo, sulla superficie del metallo Sollevare il penetratore Misurare la durezza misurando la profondità e la larghezza dell impronta Strumento per la durezza Rockwell

75 Prove di durezza La prova di durezza è molto più semplice da realizzare rispetto ad una prova a trazione e può essere di tipo non distruttivo. Per questo motivo è diffusa nel mondo dell industria.

76 Deformazione plastica in monocristalli La deformazione plastica di un monocristallo provoca segni di traslazione sulla superficie bande di scorrimento Atomi di specifici piani cristallografici (piani di scorrimento) provocano le bande di scorrimento Bande di scorrimento Sono dovute a sforzi di taglio

77 Bande di scorrimento e piani di scorrimento Le bande di scorrimento nei metalli duttili sono uniformi (avvengono su alcuni piani di scorrimento) Lo scorrimento avviene su diversi piani di scorrimento all interno delle bande di scorrimento I piani di scorrimento hanno spessori di circa 200Å e sono compensati da circa 2000Å

78 Bande di scorrimento e piani di scorrimento Se calcolassimo l energia necessaria per lo scorrimento di un blocco di atomi su un altro in un cristallo metallico perfetto, si avrebbe una resistenza di circa più grande di quella reale

79 Bande di scorrimento e piani di scorrimento Perché i cristalli di un metallo si deformino ai bassi valori di resistenza di taglio osservati, devono essere presente un elevata densità di dislocazioni. Le dislocazioni si formano durante la solidificazione di un metallo, ma molte di più quando questo viene deformato passando da un numero di 10^6 cm/cm^3 a 10^12 cm/cm^3

80 Ricordando le Dislocazioni Difetti Cristallini difetti di linea

81 Ricordando le Dislocazioni Difetti Cristallini difetti di linea Formata dall inserimento di semipiani di atomi extra dislocazione a spigolo positiva dislocazione a spigolo negativa Il vettore di Burgers mostra lo scorrimento di atomi (slittamento) Vettore di Burgers

82 Ricordando le Dislocazioni Difetti Cristallini difetti di linea Formata dagli sforzi di taglio applicati su regioni di un cristallo perfetto separato da un piano di taglio Distorsione del reticolo sottoforma di una scala a spirale Il vettore di Burgers è parallelo alla linea di dislocazione

83 Ricordando le Dislocazioni Difetti Cristallini difetti di linea

84 Meccanismo di scorrimento Durante il taglio, gli atomi non scorrono uno sull altro Lo scorrimento avviene per il movimento delle dislocazioni Parete ad alta densità di dislocazioni Struttura di una dislocazione in alluminio deformato

85 Scorrimento nei cristalli Lo scorrimento avviene in piani densi o strettamente impaccati È richiesto un basso sforzo di taglio affinché avvenga lo scorrimento su piani densamente impaccati Se lo scorrimento è ristretto in piani impaccati, allora i piani meno densi diventano operativi È richiesta meno energia per muovere gli atomi lungo piani più densi Piano molto impaccato Piano poco impaccato

86 La Frattura duttile La frattura causa la separazione di un solido stressato in due o più parti. Frattura duttile: alta deformazione plastica e lenta propagazione della cricca Tre stadi: il provino forma un collo e cavità all interno le cavità formano una cricca e la cricca si propaga fino alla superficie, perpendicolare allo sforzo La direzione della cricca cambia di 45 portando alla frattura coppa-cono

87 La Frattura Fragile

88 La Frattura Fragile Tre stadi: La deformazione plastica concentra la dislocazione sui piani di scorrimento Si formano microcricche dovute allo sforzo di taglio dove le dislocazioni sono bloccate La cricca si propaga fino alla rottura SEM di una frattura duttile Esempio: Zinco EC monocristallino sotto alti sforzi sul piano {0001} va incontro a frattura fragile a causa del limitato Numero di piani di scorrimento. SEM di una frattura fragile

89 La Frattura Duttile e Fragile Frattura duttile Frattura fragile

90 La Frattura Fragile Le fratture fragili sono dovute a difetti come: Pieghe; flussi indesiderate di grano; Porosità; Strappi e cricche; danni da corrosione; infragilimento da idrogeno. A bassa temperatura di lavoro, avviene la transizione duttile-fragile. A bassa temperatura e ad alte velocità di deformazione anche metalli CCC, come ferro α, molibdeno e tungsteno si rompono in maniera fragile.

91 Tenacità e prove di impatto La tenacità è la misura dell energia assorbita prima della rottura La prova di impatto misura la capacità di un metallo di assorbire un impatto La tenacità è misurata utilizzando uno strumento per prove di impatto

92 Tenacità e prove di impatto Utilizzate anche per trovare l intervallo di temperatura della transizione duttile-fragile Affondamento del Titanic. Il Titanic era costruito con acciaio con temperatura di transizione duttile-fragile a 32 C. Il giorno dell affondamento, la temperatura del mare era -2 C che rese la struttura molto fragile e suscettibile al danneggiamento

93

94 Tenacità di Frattura Le cricche e i difetti sono concentrazioni di sforzi K I Ys a K 1 = fattore di intensità di sforzo σ = sforzo applicato a = lunghezza apice cricca Y = costante geometrica K Ic = valore critico di fattore di intensità degli sforzi (tenacità a frattura) K IC Ys f a Esempio: Al 2024 T MPam 1/2 Acciaio MPam 1/2

95 Misura della tenacità a frattura un intaglio viene realizzato su un provino di spessore B B > > a condizione di deformazione planare (no deformazioni lungo l asse z direzione dell intaglio) B = 2.5(K Ic /carico di snervamento) 2 Il provino è testato a trazione Maggiore è il valore di K Ic, maggiore è la duttilità del metallo Usato nella progettazione per ricavare la dimensione permessa del difetto

96 Misura della tenacità a frattura

97 Fatica dei metalli Il metallo spesso si rompe a sforzi molto inferiori per carichi ciclici rispetto a carichi statici La cricca enuclea nella regione di concentrazione degli sforzi e si propaga per il carico ciclico applicato La rottura avviene quando la sezione resistente del metallo è troppo piccola per sopportare il carico applicato Superficie fratturata a fatica di un asse inchiavettato La frattura inizia qui Rottura finale

98 Prove a fatica Si applica un carico alternato di compressione e trazione su un provino di metallo rastremato in direzione del centro

99 Prove a fatica prova a flessione rotante

100 Sforzi Ciclici Sono possibili differenti tipi di cicli di sforzo (assiale, torsionale e flessionale) Sforzo medio = s m s max s min 2 Range di sforzo = s r s max s min Ampiezza del Ciclo di sforzo s a s max s min 2 Rapporto tra gli sforzi = R s s min max Spettro di sollecitazione

101 La Scienza dei Materiali

Tecnologia Meccanica prof. Luigi Carrino. Solidificazione e

Tecnologia Meccanica prof. Luigi Carrino. Solidificazione e Solidificazione e Difetti Cristallini nei Solidi FONDERIA Nella tecnica di fonderia il metallo, fuso nei forni, viene colato in una forma cava della quale, solidificando, assume la configurazione e le

Dettagli

Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia

Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia Corso di Tecnologia dei Materiali ed Elementi di Chimica Docente: Dr. Giorgio Pia La Scienza dei Materiali Formazione di nuclei stabili Corso di Tecnologia dei Materiali e Chimica Applicata Solidificazione

Dettagli

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV ESERCIZIO 4.1 E dato il diagramma di stato del sistema Pb-Sn (figura 1). Figura 1 Diagramma di stato Pb-Sn 1. Determinare le fasi

Dettagli

a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180 e 20 C.

a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180 e 20 C. ESERCIZIO 1 E dato il diagramma di stato del sistema Pb-Sn (figura). a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180

Dettagli

Caratteristiche di materiali

Caratteristiche di materiali Caratteristiche di materiali Caratteristiche macroscopiche Lavorazione Microstruttura Formula chimica Legami chimici Struttura atomica Meccaniche Materiale Fisiche Elettriche Megnetiche Termiche Meccaniche

Dettagli

Sforzo e Deformazione nei Metalli

Sforzo e Deformazione nei Metalli Sforzo e Deformazione nei Metalli I metalli vanno incontro a deformazione sotto l azione di una forza assiale a trazione Deformazione elastica: il metallo ritorna alla sua dimensione iniziale quando la

Dettagli

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV ESERCIZIO 4.1 E dato il diagramma di stato del sistema Pb-Sn (figura 1). Figura 1 Diagramma di stato Pb-Sn 1. Determinare le fasi

Dettagli

Metallurgia e Materiali non Metallici. Prova di trazione. Marco Colombo.

Metallurgia e Materiali non Metallici. Prova di trazione. Marco Colombo. Metallurgia e Materiali non Metallici Prova di trazione Marco Colombo marco1.colombo@polimi.it 16/03/2016 La prova di trazione uniassiale Una delle più comuni e importanti prove distruttive, si ricavano

Dettagli

Tecnologia Meccanica Proff. Luigi Carrino Antonio Formisano Solidificazione

Tecnologia Meccanica Proff. Luigi Carrino Antonio Formisano Solidificazione Solidificazione FONDERIA Nella tecnica di fonderia il metallo, fuso nei forni, viene colato in una forma cava della quale, solidificando, assume la configurazione e le dimensioni FONDERIA Stampo per fonderia

Dettagli

Prova di trazione e compressione

Prova di trazione e compressione Prova di trazione e compressione SFORZO E DEFORMAZIONE NEI METALLI I metalli vanno incontro a deformazione sotto l azione di un sistema di forze Deformazione elastica: il metallo ritorna alla sua configurazione

Dettagli

RESISTENZA TEORICA AL TAGLIO

RESISTENZA TEORICA AL TAGLIO RESISTENZA TEORICA AL TAGLIO Deformazione plastica: variazione di forma del materiale spostamento permanente degli atomi dalle posizioni reticolari Scivolamento di piani reticolari di passo pari a multipli

Dettagli

CAPITOLO 6 Processi attivati termicamente e diffusione nei solidi ESERCIZI CON SOLUZIONE SVOLTA. Problemi di conoscenza e comprensione

CAPITOLO 6 Processi attivati termicamente e diffusione nei solidi ESERCIZI CON SOLUZIONE SVOLTA. Problemi di conoscenza e comprensione CPITOLO 6 Processi attivati termicamente e diffusione nei solidi ESERCIZI CON SOLUZIONE SVOLT Problemi di conoscenza e comprensione 6.1 Nella maggior parte dei casi, le lastre di metallo laminato sono

Dettagli

17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T.

17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Le prove meccaniche distruttive Le prove meccaniche distruttive Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Editrice, 2008 capitolo 3 Tecnologia meccanica S. Kalpakjian, S. R. Schmid Pearson

Dettagli

Università del Salento Facoltà di Ingegneria Costruzione di Macchine

Università del Salento Facoltà di Ingegneria Costruzione di Macchine Università del Salento Facoltà di Ingegneria Costruzione di Macchine Lezione 3 Prova di trazione a cura del prof. ing. Vito Dattoma e dell ing. Riccardo Nobile 1 Prove di caratterizzazione meccanica Prova

Dettagli

a) Descrivere brevemente l interdependenza tra Q e T fus. L energia di attivazione Q è direttamente proporzionale alla temperatura di fusione.

a) Descrivere brevemente l interdependenza tra Q e T fus. L energia di attivazione Q è direttamente proporzionale alla temperatura di fusione. Soluzione ESERCIZIO 1 Nel grafico sono riportati i valori dell energia di attivazione Q per l autodiffusione (es. diffusione di atomi di alluminio nell alluminio) verso la temperatura di fusione per ferro,

Dettagli

Dip. di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università Federico II di Napoli. Corso di Laurea in Ingegneria Edile

Dip. di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università Federico II di Napoli. Corso di Laurea in Ingegneria Edile Dip. di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università Federico II di Napoli Corso di Laurea in Ingegneria Edile Corso di Tecnologia dei Materiali e Chimica Applicata (Prof.

Dettagli

Caratteristiche di materiali

Caratteristiche di materiali Caratteristiche di materiali Caratteristiche macroscopiche Lavorazione Microstruttura Formula chimica Legami chimici Struttura atomica Meccaniche Materiale Fisiche Elettriche Megnetiche Termiche Meccaniche

Dettagli

L energia di attivazione Q è direttamente proporzionale alla temperatura di fusione T fus.

L energia di attivazione Q è direttamente proporzionale alla temperatura di fusione T fus. Università degli Studi di Cagliari - Facoltà di Ingegneria - Corso di Laurea in Ingegneria Civile A.A. 2015/2016 ESERCIZIO 3.1 Nel grafico sono riportati i valori dell energia di attivazione Q per l autodiffusione

Dettagli

Proprietà meccaniche. Proprietà dei materiali

Proprietà meccaniche. Proprietà dei materiali Proprietà meccaniche Proprietà dei materiali Proprietà meccaniche Tutti i materiali sono soggetti a sollecitazioni (forze) di varia natura che ne determinano deformazioni macroscopiche. Spesso le proprietà

Dettagli

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Proprietà meccaniche Prove meccaniche prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Prova di trazione provini di dimensione standard deformazione

Dettagli

PROPRIETÀ MECCANICHE DEI MATERIALI

PROPRIETÀ MECCANICHE DEI MATERIALI PROPRIETÀ MECCANICHE DEI MATERIALI Il comportamento meccanico di un materiale rappresenta la risposta ad una forza o ad un carico applicato 1. Comportamento elastico 2. Comportamento plastico 3. Comportamento

Dettagli

CAPITOLO 7 Frattura DUTTILE o FRAGILE

CAPITOLO 7 Frattura DUTTILE o FRAGILE CAPITOLO 7 Frattura DUTTILE o FRAGILE La frattura causa la separazione di un solido stressato in due o più parti. Comportamento duttile e fragile Frattura dei Metalli Frattura Duttile La frattura causa

Dettagli

ESERCIZIO 1. E` dato il diagramma di stato Ferro Fe 3 C.

ESERCIZIO 1. E` dato il diagramma di stato Ferro Fe 3 C. ESERCIZIO 1 E` dato il diagramma di stato Ferro Fe 3 C. a) Descrivere la trasformazione eutettoidica e spiegare perché la microstruttura della perlite è lamellare. trasformazione eutettoidica γ -> α +Fe

Dettagli

MATERIALI METALLICI. Si ottiene una ghisa (carbonio 3.5-4.5 %) alla quale viene ridotto il tenore di carbonio fino ad un massimo di 1.5%.

MATERIALI METALLICI. Si ottiene una ghisa (carbonio 3.5-4.5 %) alla quale viene ridotto il tenore di carbonio fino ad un massimo di 1.5%. MATERIALI METALLICI L acciaio viene prodotto in altoforno, a partire dal minerale ferroso (una miscela di ossidi di ferro) per riduzione con CO prodotto dal carbon coke e per aggiunta di fondenti (carbonati

Dettagli

Unità 2 Diagrammi di stato e proprietà dei materiali UNITA 2 DIAGRAMMI DI STATO E PROPRIETA DEI MATERIALI

Unità 2 Diagrammi di stato e proprietà dei materiali UNITA 2 DIAGRAMMI DI STATO E PROPRIETA DEI MATERIALI Esercizio.1 UNITA DIAGRAMMI DI STATO E PROPRIETA DEI MATERIALI Tracciare un diagramma di stato binario in cui sia presente un composto intermedio A x B y a fusione congruente e un composto intermedio A

Dettagli

PROPRIETÀ MECCANICHE DEI POLIMERI. Proprietà meccaniche

PROPRIETÀ MECCANICHE DEI POLIMERI. Proprietà meccaniche PROPRIETÀ MECCANICHE DEI POLIMERI Informazioni necessarie per la progettazione di componenti in materiale polimerico: MODULO DI YOUNG (RIGIDEZZA) RESISTENZA ULTIMA DUTTILITÀ / FRAGILITÀ Ricavate da curve

Dettagli

Proprietà meccaniche

Proprietà meccaniche Proprietà meccaniche Materiale per usi strutturali Proprietà meccaniche Resistenza a trazione Resistenza a compressione Durezza Resilienza Resistenza a fatica Resistenza al creep Prove meccaniche Solidi

Dettagli

PROVE MECCANICHE DI CREEP

PROVE MECCANICHE DI CREEP PROVE MECCANICHE DI CREEP una sollecitazione costante viene applicata ad alta temperatura eventualmente fino a produrre la rottura del campione Il campione viene sottoposto ad allungamento sotto trazione

Dettagli

Lo scorrimento viscoso o creep è una deformazione dipendente dal tempo che avviene a temperatura elevata dopo l applicazione di un carico mantenuto

Lo scorrimento viscoso o creep è una deformazione dipendente dal tempo che avviene a temperatura elevata dopo l applicazione di un carico mantenuto Scorrimento viscoso Lo scorrimento viscoso o creep è una deformazione dipendente dal tempo che avviene a temperatura elevata dopo l applicazione di un carico mantenuto costante, e che generalmente termina

Dettagli

Proprietà Meccaniche

Proprietà Meccaniche Proprietà Meccaniche In esercizio, tutti i materiali sono soggetti a sollecitazioni di varia natura (sempre riconducibili a forze) che ne determinano deformazioni macroscopiche e spesso le proprietà meccaniche

Dettagli

Tecnologia Meccanica prof. Luigi Carrino

Tecnologia Meccanica prof. Luigi Carrino Le lavorazioni per deformazioni plastiche CLASSIFICAZIONE DEI PROCESSI DI FORMATURA CLASSIFICAZIONE SECONDO LE DIMENSIONI E LA FORMA DEL SEMILAVORATO (BULK FORMING SHEET FORMING), CLASSIFICAZIONE IN FUNZIONE

Dettagli

SOLUZIONE ESERCIZIO 1.1

SOLUZIONE ESERCIZIO 1.1 SOLUZIONE ESERCIZIO 1.1 La temperatura di fusione ed il coefficiente di espansione termica di alcuni metalli sono riportati nella tabella e nel diagramma sottostante: Metallo Temperatura di fusione [ C]

Dettagli

MATERIALI STRUTTURALI PER L EDILIZIA: ACCIAIO, LATERIZIO E VETRO STRUTTURALE

MATERIALI STRUTTURALI PER L EDILIZIA: ACCIAIO, LATERIZIO E VETRO STRUTTURALE MATERIALI PER L EDILIZIA Prof. L. Coppola MATERIALI STRUTTURALI PER L EDILIZIA: ACCIAIO, LATERIZIO E VETRO STRUTTURALE Coffetti Denny PhD Candidate Dipartimento di Ingegneria e Scienze Applicate Università

Dettagli

Ingegneria del vetro V.M. Sglavo UNITN Proprietà meccaniche. elasticità! resistenza! densità di legami chimici! forza del legame!

Ingegneria del vetro V.M. Sglavo UNITN Proprietà meccaniche. elasticità! resistenza! densità di legami chimici! forza del legame! Proprietà meccaniche elasticità! r 0 resistenza! densità di legami chimici! forza del legame! Durezza! P! profilo impronta scala Mohs diamante 10 zaffiro 9 topazio 8 quarzo ortoclasio apatite fluorite

Dettagli

CLASSIFICAZIONE DEI PROCESSI DI FORMATURA PLASTICA

CLASSIFICAZIONE DEI PROCESSI DI FORMATURA PLASTICA CLASSIFICAZIONE DEI PROCESSI DI FORMATURA PLASTICA 1 CLASSIFICAZIONE DEI PROCESSI DI FORMATURA PLASTICA Condotta facendo riferimento ad alcuni elementi caratteristici dei processi: temperatura alla quale

Dettagli

Meccanica della Frattura Lecture 10 Temperatura di transizione duttile-fragile

Meccanica della Frattura Lecture 10 Temperatura di transizione duttile-fragile Lecture 10 Temperatura di transizione duttile-fragile Introduzione I metalli e le leghe (acciai) mostrano una dipendenza della tensione di snervamento e della rottura dalla temperatura. 2 1 rv Tensione

Dettagli

PARTE PRIMA ASPETTI GENERALI Capitolo 1 STRUTTURA E PROPRIET DEI MATERIALI 1. STRUTTURA DEI MATERIALI 1.1. Macrostruttura 1.2. Microstruttura 1.3.

PARTE PRIMA ASPETTI GENERALI Capitolo 1 STRUTTURA E PROPRIET DEI MATERIALI 1. STRUTTURA DEI MATERIALI 1.1. Macrostruttura 1.2. Microstruttura 1.3. PARTE PRIMA ASPETTI GENERALI Capitolo 1 STRUTTURA E PROPRIET DEI MATERIALI 1. STRUTTURA DEI MATERIALI 1.1. Macrostruttura 1.2. Microstruttura 1.3. Struttura atomica o molecolare 1.4. Complementarita degli

Dettagli

NYLON-CARBON DUREZZA & TRAZIONE

NYLON-CARBON DUREZZA & TRAZIONE NYLON-CARBON DUREZZA & TRAZIONE D R. F L A V I A N A C A L I G N A NO D R. M A S S I M O L O R U S S O D R. I G N A Z I O R O P P O L O N Y LO N - C A R BON PROVE DI DUREZZA E DI TRAZIONE INTRODUZIONE

Dettagli

COMPORTAMENTO PLASTICO DEI MATERIALI METALLICI

COMPORTAMENTO PLASTICO DEI MATERIALI METALLICI COMPORTMENTO PLSTICO DEI MTERILI METLLICI 1 1. Prove sperimentali per la caratterizzazione del comportamento plastico dei materiali metallici 2. Modelli reologici 3. Effetto Bauschinger 4. Condizioni di

Dettagli

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006 a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006 Deformazione dei materiali Un asta di acciaio posta su due appoggi si flette sotto l azione del suo

Dettagli

Il fenomeno della frattura ha assunto una notevole importanza solo in tempi relativamente recenti.

Il fenomeno della frattura ha assunto una notevole importanza solo in tempi relativamente recenti. Il fenomeno della frattura ha assunto una notevole importanza solo in tempi relativamente recenti. In passato, infatti, i materiali e le tecnologie di costruzione non avevano mai messo in luce questo fenomeno.....finché

Dettagli

Comportamento meccanico dei materiali

Comportamento meccanico dei materiali Comportamento meccanico dei materiali Fatica dei materiali Propagazione delle cricche Dati di fatica di base Dai provini ai componenti, fatica uniassiale Fatica con sollecitazioni ad ampiezza variabile

Dettagli

Università degli Studi di Catania

Università degli Studi di Catania Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria Corso di Tecnologie di Chimica Applicata ELEMENTI DI TEORIA DELLE DISLOCAZIONI Come nasce il concetto di

Dettagli

Le proprietà meccaniche

Le proprietà meccaniche Antonio Licciulli, Antonio Greco Corso di scienza e ingegneria dei materiali Le proprietà meccaniche Proprietà meccaniche L effetto delle forze è di indurre delle deformazioni nei materiali Le relazioni

Dettagli

Materiali metallici. Materiali ceramici Materiali polimerici

Materiali metallici. Materiali ceramici Materiali polimerici Materiali metallici Materiali ceramici Materiali polimerici Materiali ceramici Materiali inorganici non metallici Ceramici cristallini Distribuzione regolare e ripetitiva di una unità strutturale di base

Dettagli

Corso di Biomeccanica

Corso di Biomeccanica Corso di Laurea in Ingegneria Biomedica Corso di Biomeccanica Parte 3: prove di trazione F. Auricchio auricchio@unipv.it http://www.unipv.it/dms/auricchio Università degli Studi di Pavia Dipartimento di

Dettagli

I DIFETTI NEI CRISTALLI

I DIFETTI NEI CRISTALLI I DIFETTI NEI CRISTALLI Nessun cristallo è perfetto: tutti contengono difetti ed imperfezioni. Per difetto cristallinosi intende un irregolarità del reticolo con dimensioni dell ordine di un diametro atomico

Dettagli

La prova di trazione e l effetto dell anisotropia. Giuseppe Pellegrini, Universita degli Studi di Bergamo

La prova di trazione e l effetto dell anisotropia. Giuseppe Pellegrini, Universita degli Studi di Bergamo La prova di trazione e l effetto dell anisotropia. Giuseppe Pellegrini, Universita degli Studi di Bergamo E pratica comune valutare le proprieta meccaniche di una lamiera utilizzando la prova di trazione.

Dettagli

Esercizio_1. Una barra metallica cilindrica di diametro pari a 1.25cm è. MPa. Soluzione: m 2

Esercizio_1. Una barra metallica cilindrica di diametro pari a 1.25cm è. MPa. Soluzione: m 2 Esercizio_1 Una barra metallica cilindrica di diametro pari a 1.5cm è sottoposta ad un carico pari a 500Kg.Calcolare lo sforzo in MPa. Soluzione: Kg m F m g 500 9.81 455 455N s d 0.015 4 A0 πr π π 1. 10

Dettagli

La deformazione plastica. La deformazione plastica. Lavorazioni per deformazione. Il processo di laminazione Estrusione e trafilatura La forgiatura

La deformazione plastica. La deformazione plastica. Lavorazioni per deformazione. Il processo di laminazione Estrusione e trafilatura La forgiatura La deformazione plastica La deformazione plastica Il processo di laminazione Estrusione e trafilatura La forgiatura La formatura della lamiera 2 2006 Politecnico di Torino 1 Obiettivi dell Unità Riconoscere

Dettagli

Biomateriali. Proprietà meccaniche ING. DENNY COFFETTI UNIVERSITÀ DEGLI STUDI DI BERGAMO DIPARTIMENTO DI INGEGNERIA E SCIENZE APPLICATE

Biomateriali. Proprietà meccaniche ING. DENNY COFFETTI UNIVERSITÀ DEGLI STUDI DI BERGAMO DIPARTIMENTO DI INGEGNERIA E SCIENZE APPLICATE Biomateriali Proprietà meccaniche ING. DENNY COFFETTI UNIVERSITÀ DEGLI STUDI DI BERGAMO DIPARTIMENTO DI INGEGNERIA E SCIENZE APPLICATE MAIL: DENNY.COFFETTI@UNIBG.IT Classificazione dei materiali Elementi

Dettagli

nucleazione e accrescimento

nucleazione e accrescimento Gli aspetti cinetici della formazione di un vetro riguardano la possibilità di ottenere vetro per qualsiasi sostanza. Il processo di solidificazione avviene a causa una diminuzione dell energia libera.

Dettagli

Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia

Corso di Tecnologia dei Materiali ed Elementi di Chimica. Docente: Dr. Giorgio Pia Corso di Tecnologia dei Materiali ed Elementi di Chimica Docente: Dr. Giorgio Pia La Scienza dei Materiali Start Introduzione Modalità Esame Legami e strutture Struttura e proprietà Metalli Leganti Ceramici

Dettagli

La frattura nei materiali ceramici

La frattura nei materiali ceramici Giornata di studio Analisi del comportamento a frattura di materiali ceramici e compositi per applicazioni industriali Comportamento a fatica ciclica di compositi ceramici C/C SiC M. Labanti, G. L. Minoccari,

Dettagli

Tecnologie dei vetri e dei

Tecnologie dei vetri e dei Tecnologie dei vetri e dei polimeri organici PROPRIETA DEI VETRI Per i processi di formatura è importante conoscere il comportamento viscositàtemperatura del vetro. La lavorabilità del vetro dipende dalla

Dettagli

Presentazione del MATMEC

Presentazione del MATMEC FOCUS GROUP Materiali per la progettazione meccanica Presentazione del MATMEC 12 Dicembre 2005 Caratterizzazione di Materiali e Componenti Ing. M. Labanti ENEA CR Faenza Focus Group InnovaBologna 12-12-2005

Dettagli

La deformazione plastica. La deformazione plastica. Lavorazioni per deformazione. Il processo di laminazione. Estrusione e trafilatura.

La deformazione plastica. La deformazione plastica. Lavorazioni per deformazione. Il processo di laminazione. Estrusione e trafilatura. La deformazione plastica La deformazione plastica Lavorazioni per deformazione Il processo di laminazione La forgiatura La formatura della lamiera 2 2006 Politecnico di Torino 1 Obiettivi della lezione

Dettagli

CLASSIFICAZIONE DEI PROCESSI DI FORMATURA

CLASSIFICAZIONE DEI PROCESSI DI FORMATURA CLASSIFICAZIONE DEI PROCESSI DI FORMATURA 3 1. Classificazione in funzione della temperatura di processo 2. Classificazione secondo forma e dimensioni del semilavorato 3. Altre metodologie di classificazione

Dettagli

MECCANISMI PER AUMENTARE LA RESISTENZA

MECCANISMI PER AUMENTARE LA RESISTENZA MECCANISMI PER AUMENTARE LA RESISTENZA Introduzione Abbiamo dunque capito che la capacità di un materiale di deformarsi plasticamente dipende dalla capacità di movimento delle dislocazioni. Dal momento

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Materiali 1 Esercitazioni 6. Elasticità ver. 1.3 Sforzo e deformazione Sia dato un provino di lunghezza l avente area della sezione A, sottoposto ad una forza di trazione F. A causa di questa

Dettagli

Cauchy (XIX secolo) Introduce il concetto di deformazione relativa (ε = l/l o ) e la mette in relazione con lo sforzo applicato (σ = F/A o ):

Cauchy (XIX secolo) Introduce il concetto di deformazione relativa (ε = l/l o ) e la mette in relazione con lo sforzo applicato (σ = F/A o ): Cauchy (XIX secolo) Introduce il concetto di deformazione relativa (ε = l/l o ) e la mette in relazione con lo sforzo applicato (σ = F/A o ): σ = E ε LEGGE DI HOOKE A o l o Δl Young (XIX secolo) Il valore

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che

Dettagli

I materiali. I materiali. Introduzione al corso. Tecnologia di produzione. I materiali. La misura della durezza

I materiali. I materiali. Introduzione al corso. Tecnologia di produzione. I materiali. La misura della durezza Introduzione al corso Tecnologia di produzione La misura della durezza Le prove meccaniche distruttive Prove non distruttive La meccanica dei materiali 2 2006 Politecnico di Torino 1 Obiettivi della lezione

Dettagli

Durezza. La geometria che caratterizza l indentatore determina il particolare tipo di prova

Durezza. La geometria che caratterizza l indentatore determina il particolare tipo di prova Durezza Obiettivo della lezione: definire le modalità delle prove di durezza La durezza di un materiale è definita come la pressione di equilibrio che la superficie del solido riesce a sopportare a seguito

Dettagli

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep

Proprietà meccaniche. Prove meccaniche. prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Proprietà meccaniche Prove meccaniche prova di trazione prova di compressione prova di piegamento prova di durezza prova di fatica prova di creep Prova di trazione provini di dimensione standard deformazione

Dettagli

TRATTAMENTI TERMICI DEI MATERIALI FERROSI

TRATTAMENTI TERMICI DEI MATERIALI FERROSI TRATTAMENTI TERMICI DEI MATERIALI FERROSI Tempra Processi di tempra A seconda di come viene eseguito il trattamento, consentono di ottenere: un cambiamento di struttura totale a temperatura ambiente con

Dettagli

ESERCITAZIONI. MATERIALI PER L EDILIZIA Prof. L. Coppola. Coffetti Denny

ESERCITAZIONI. MATERIALI PER L EDILIZIA Prof. L. Coppola. Coffetti Denny MATERIALI PER L EDILIZIA Prof. L. Coppola ESERCITAZIONI Coffetti Denny PhD Candidate Dipartimento di Ingegneria e Scienze Applicate Università degli Studi di Bergamo ESERCIZIO 1 IL COLLAUDO DI UNA BARRA

Dettagli

Capitolo 2. Fondamenti del comportamento meccanico dei materiali Pearson Paravia Bruno Mondadori S.p.A.

Capitolo 2. Fondamenti del comportamento meccanico dei materiali Pearson Paravia Bruno Mondadori S.p.A. Capitolo 2 Fondamenti del comportamento meccanico dei materiali 1 Figura 2.1 Tipologie di deformazioni: (a) trazione, (b) compressione, (c) taglio. Tutti i processi di deformazione nell industria manifatturiera

Dettagli

Sollecitazioni delle strutture

Sollecitazioni delle strutture Sollecitazioni delle strutture I pilastri e i muri portanti sono tipicamente sollecitati a compressione Le travi e i solai sono sollecitati a flessione L indeformabilità di questi elementi costruttivi

Dettagli

Tecnologia Meccanica Proff. Luigi Carrino Antonio Formisano Diagrammi di stato

Tecnologia Meccanica Proff. Luigi Carrino Antonio Formisano Diagrammi di stato Diagrammi di stato INTRODUZIONE Fase: porzione omogenea (a livello microstrutturale) di un materiale, che è diversa per microstruttura e/o composizione chimica Diagramma di stato: rappresenta le fasi presenti

Dettagli

Corso di Laurea in Ingegneria Edile. Materiali metallici e leghe metalliche. Leghe del ferro: acciai e ghise.

Corso di Laurea in Ingegneria Edile. Materiali metallici e leghe metalliche. Leghe del ferro: acciai e ghise. Dip. di Ingegneria Chimica, dei Materiali e della Produzione Industriale Università Federico II di Napoli Corso di Laurea in Ingegneria Edile Corso di Tecnologia dei Materiali e Chimica Applicata (Prof.

Dettagli

Diagrammi di equilibrio delle leghe non ferrose

Diagrammi di equilibrio delle leghe non ferrose Così come il Ferro e il Carbonio danno luogo al diagramma di equilibrio Fe-C, che permette di effettuare lo studio della solidificazione di acciai e ghise quando i raffreddamenti sono lenti, analogamente

Dettagli

LA RESISTENZA DEI MATERIALI

LA RESISTENZA DEI MATERIALI Sussidi didattici per il corso di COSTRUZIONI EDILI Prof. Ing. Francesco Zanghì LA RESISTENZA DEI MATERIALI AGGIORNAMENTO DEL 30/09/2011 LEGAME COSTITUTIVO Il legame costitutivo rappresenta il collegamento

Dettagli

La deformazione plastica. La deformazione plastica. Lavorazioni per deformazione. Il processo di laminazione Estrusione e trafilatura.

La deformazione plastica. La deformazione plastica. Lavorazioni per deformazione. Il processo di laminazione Estrusione e trafilatura. La deformazione plastica La deformazione plastica Lavorazioni per deformazione Il processo di laminazione Estrusione e trafilatura La formatura della lamiera 2 2006 Politecnico di Torino 1 Obiettivi della

Dettagli

Esistono due tipologie tipo di frattura: duttile e fragile. Nel vetro si parla di frattura fragile (che avviene per propagazione veloce e instabile

Esistono due tipologie tipo di frattura: duttile e fragile. Nel vetro si parla di frattura fragile (che avviene per propagazione veloce e instabile Esistono due tipologie tipo di frattura: duttile e fragile. Nel vetro si parla di frattura fragile (che avviene per propagazione veloce e instabile di un difetto). 1 2 3 4 La resistenza teorica di un materiale

Dettagli

LEZIONE 2. MATERIALI E CARICHI DELLA COSTRUZIONE Parte I. I materiali della costruzione

LEZIONE 2. MATERIALI E CARICHI DELLA COSTRUZIONE Parte I. I materiali della costruzione Corso di TECNICA DELLE COSTRUZIONI Chiara CALDERINI A.A. 2007-2008 Facoltà di Architettura Università degli Studi di Genova LEZIONE 2 MATERIALI E CARICHI DELLA COSTRUZIONE Parte I. I materiali della costruzione

Dettagli

Proprietà meccaniche. elasticità. resistenza. densità di legami chimici forza del legame

Proprietà meccaniche. elasticità. resistenza. densità di legami chimici forza del legame Proprietà meccaniche elasticità r 0 resistenza densità di legami chimici forza del legame Anche le proprietà meccaniche dipendono sostanzialmente dai legami chimici presenti nel materiale. La curva che

Dettagli

o I I I I I I UTET LIBRERIA

o I I I I I I UTET LIBRERIA o I I I I I I UTET LIBRERIA IUAV-VENEZIA H 9813 BIBLIOTECA CENTRALE I.. FABRIZIA CAIAZZO Università degli Studi Salerno VINCENZO SERGI Università degli Studi Salerno TECNOLOGIE GENERALI DEI MATERIALI ISTITUTO

Dettagli

Calcolo a fatica di componenti meccanici. Prima parte

Calcolo a fatica di componenti meccanici. Prima parte Calcolo a fatica di componenti meccanici Prima parte Calcolo a fatica di componenti meccanici L esperienza, nella pratica costruttiva, di rotture improvvise, dovute a carichi che si ripetono ciclicamente,

Dettagli

Materiali ceramici. Resistenza ai carichi assiali ING. DENNY COFFETTI UNIVERSITÀ DEGLI STUDI DI BERGAMO DIPARTIMENTO DI INGEGNERIA E SCIENZE APPLICATE

Materiali ceramici. Resistenza ai carichi assiali ING. DENNY COFFETTI UNIVERSITÀ DEGLI STUDI DI BERGAMO DIPARTIMENTO DI INGEGNERIA E SCIENZE APPLICATE Materiali ceramici Resistenza ai carichi assiali ING. DENNY COFFETTI UNIVERSITÀ DEGLI STUDI DI BERGAMO DIPARTIMENTO DI INGEGNERIA E SCIENZE APPLICATE MAIL: DENNY.COFFETTI@UNIBG.IT Frattura dei materiali

Dettagli

Proprietà meccaniche e proprietà tecnologiche

Proprietà meccaniche e proprietà tecnologiche Proprietà meccaniche e proprietà tecnologiche Materiale per usi strutturali Proprietà tecnologiche Malleabilità Duttilità Saldabilità Temprabilità Proprietà meccaniche Resistenza a trazione Resistenza

Dettagli

Tecnologia Meccanica Proff. Luigi Carrino Antonio Formisano Difetti cristallini

Tecnologia Meccanica Proff. Luigi Carrino Antonio Formisano Difetti cristallini Difetti cristallini DIFETTI CRISTALLINI Nessun cristallo è perfetto I difetti influenzano le proprietà meccaniche, le proprietà chimiche e quelle elettriche I difetti possono essere classificati come o

Dettagli

Si valuti lo stato di tensione e la deformazione plastica permanente agli istanti A, B, C e D, assumendo valido il modello elasto-plastico perfetto.

Si valuti lo stato di tensione e la deformazione plastica permanente agli istanti A, B, C e D, assumendo valido il modello elasto-plastico perfetto. Esercizio n.: 1 4-18 Una barra in (σ S = 180 MPa, E = 70 GPa, α = 24 10-6 C -1 ), bloccata alle estremità, subisce il seguente ciclo termico: T 325 175 25 A Si valuti lo stato di tensione e la deformazione

Dettagli

Prodotti Siderurgici 3. PROFILATI CAVI / per impieghi strutturali

Prodotti Siderurgici 3. PROFILATI CAVI / per impieghi strutturali Prodotti Siderurgici 3. PROFILATI CAVI / per impieghi strutturali Profilati cavi finiti a caldo (laminati a caldo) Profilati cavi formati a freddo per strutture saldate Tubi Strutturali PROFILATI CAVI

Dettagli

LAVORAZIONE DEI POLIMERI I processi per trasformare granuli e pastiglie in prodotti finiti sono numerosi.

LAVORAZIONE DEI POLIMERI I processi per trasformare granuli e pastiglie in prodotti finiti sono numerosi. LAVORAZIONE DEI POLIMERI I processi per trasformare granuli e pastiglie in prodotti finiti sono numerosi. Generalmente i polimeri non vengono trasformati allo stato puro, ma miscelati con additivi che

Dettagli

Laboratori di Ricerca Faenza ATTIVITÀ DI SERVIZIO CONTO TERZI

Laboratori di Ricerca Faenza ATTIVITÀ DI SERVIZIO CONTO TERZI ATTIVITÀ DI SERVIZIO CONTO TERZI Elenco delle attività di servizio e delle caratterizzazioni meccaniche e termomeccaniche secondo normativa normalmente svolte come attività conto terzi nei Laboratori di

Dettagli

Università degli Studi di Catania

Università degli Studi di Catania Università degli Studi di Catania Dipartimento di Metodologie Fisiche e Chimiche per l Ingegneria Corso di Tecnologie di Chimica Applicata ELEMENTI DI TEORIA DELLE DISLOCAZIONI Come nasce il concetto di

Dettagli

La resistenza dei materiali può essere misurata facendo ricorso a prove normalizzate.

La resistenza dei materiali può essere misurata facendo ricorso a prove normalizzate. La resistenza dei materiali può essere misurata facendo ricorso a prove normalizzate. Segui attentamente il video relativo ad una prova normalizzata di trazione LA PROVA DI TRAZIONE Molte sono le prove

Dettagli

Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture

Michelangelo Laterza Principi di Statica e di Dinamica delle Strutture Michelangelo Laterza Principi di Statica e di Dinamica Introduzione al concetto di sforzo Alle sollecitazioni di trazione, di compressione, di taglio, o ai momenti flettenti all interno di una struttura

Dettagli

LE FAMIGLIE DI MATERIALI

LE FAMIGLIE DI MATERIALI LE FAMIGLIE DI MATERIALI POLIMERI (P.es. Polipropilene) COMPOSITI (P.es. Legno) METALLI (P.es. Acciaio) CERAMICI (P.es. Terracotta) SELEZIONE INGEGNERISTICA DEI MATERIALI Esempio di selezione Il tetraedro

Dettagli

Posizioni Atomiche nelle Celle Unitarie Cubiche

Posizioni Atomiche nelle Celle Unitarie Cubiche Posizioni Atomiche nelle Celle Unitarie Cubiche Il sistema di coordinate cartesiane è usato per individuare gli atomi. In una cella unitaria cubica l asse x è la direzione che esce dal foglio. l asse y

Dettagli

MATERIALI COMPOSITI: comportamento meccanico

MATERIALI COMPOSITI: comportamento meccanico MATERIALI COMPOSITI: comportamento meccanico Materiali tradizionali Proprietà Metalli Ceramiche Polimeri in massa in fibre Resistenza a trazione Rigidezza Tenacità Resistenza all'impatto Limite di fatica

Dettagli

11 aprile Annalisa Tirella.

11 aprile Annalisa Tirella. Scienze dei Materiali A.A. 2010/2011 11 aprile 2011 Annalisa Tirella a.tirella@centropiaggio.unipi.it Metalli I metalli sono elementi chimici che possono essere utilizzati sia puri che in forma di leghe

Dettagli

FATICA. FATICA: curva di Wohler

FATICA. FATICA: curva di Wohler FATICA Flessione rotante CURVA DI WOHLER 1 FATICA: curva di Wohler 2 1 FATICA: curva di Wohler 3 FATICA: curva di Wohler an f b f N f 1 1 m m f K N f f a 1 b 4 2 FATICA: curva di Wohler la curva viene

Dettagli

La resistenza di un materiale dal comportamento fragile può quindi essereanalizzata attraverso gli strumenti della meccanica della frattura.

La resistenza di un materiale dal comportamento fragile può quindi essereanalizzata attraverso gli strumenti della meccanica della frattura. Scopo della meccanica della frattura è definire grandezze intrinseche al materiale che permettano di definirne quantitativamente la resistenza e la fragilità. Utilizzando un approccio termodinamico (basato

Dettagli

I differenti materiali differiscono per le caratteristiche meccaniche e fisiche.

I differenti materiali differiscono per le caratteristiche meccaniche e fisiche. MATERIALI COMPOSITI I differenti materiali differiscono per le caratteristiche meccaniche e fisiche. I METALLI hanno forma cristallina e forti legami molecolari (legame metallico), che danno loro resistenza

Dettagli

MOLLE, MOLLE A SPIRALE E DI VARIA FOGGIA

MOLLE, MOLLE A SPIRALE E DI VARIA FOGGIA MOLLE, MOLLE A SPIRALE E DI VARIA FOGGIA Molla a spirale per compressione Molla a spirale per trazione (estensione) Molle con tante forme diverse! Leonardo da Vinci, Codice di Madrid, 1490-99 MOLLA A SPIRALE

Dettagli

Lavorazioni per asportazione di truciolo

Lavorazioni per asportazione di truciolo Lavorazioni per asportazione di truciolo Distacco di alcune parti di materiale dal pezzo attraverso l interazione con utensili che agiscono in maniera progressiva - cinematica del taglio - meccanica del

Dettagli

Unità di misura (SI)

Unità di misura (SI) Unità di misura (SI) Le grandezze fisiche e chimiche (o di altro tipo) vanno espresse preferibilmente secondo i simboli del Sistema Internazionale delle unità di misura (SI). Nelle seguenti tabelle vediamo

Dettagli

Transizioni liquido-solido: Aspetti cinetici

Transizioni liquido-solido: Aspetti cinetici Transizioni liquido-solido: Aspetti cinetici Prof.G.Marletta Chimica Fisica dei Materiali II e Laboratorio Laurea Magistrale in Chimica dei Materiali Università di Catania A.A. 2011/2012 1- Caratteri generali

Dettagli