ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3"

Transcript

1 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all talana al tasso annuo = 4%. Dopo 5 ann, l tasso vene rvsto e portato a 1 = 6%. Calcolate la dfferenza tra l ultma rata del pano rspettvamente con e senza cambamento d tasso. Soluzone. La generca rata R k, ad una determnata epoca ntermeda k compresa tra 1 e n, n un pano all talana, è data dalla formula R k = C (1 + (n k + 1)), ove C è la quota captale costante, data da C = D 0 /n, mentre è l tasso annuo. Poché no dobbamo calcolare l ultma rata, ossa per k = n = 120 (12 rate mensl per 10 ann fa 120 rate n tutto), e l tasso n goco è quello mensle m, s ha che R 120 = C (1 + m ), qund la dfferenza cercata è R 120 ( 1,m ) R 120 ( m ) = D 0 n ( 1,m m ) = D ) 0 ((1 n + 1 ) (1 + ) 12, (1) ove nell ultmo passaggo abbamo trasformato l tasso mensle n annuo, evtando troppe approssmazon, con la solta formula 1,m = (1 + 1 ) e m = (1 + ) Inserendo dat numerc nella (1), s ha che R 120 ( 1,m ) R 120 ( m ) 0, , 16. Eserczo 2. Non potendo pagare l ultma rata R n, par a 1000e, d un mutuo a tasso = 10%, ottenete d chudere l prestto pagando tre rate costant par a R alle epoche t = n + 1, t = n + 2 e t = n + 3 sempre con lo stesso tasso. A quanto ammonta R? 1

2 2 ESERCIZI DI MATEMATICA FINANZIARIA Soluzone. L equazone da mpostare è la seguente: Sccome s trova che da cu D n 1 = R (1 + ) 2 + R (1 + ) 3 + R (1 + ) 4. D n 1 = R n (1 + ), R n (1 + ) = R (1 + ) 2 + R (1 + ) 3 + R (1 + ) 4, R n = R R (1 + ) 2 + R (1 + ) 3 = R a 3, ossa, poché l tasso rmane lo stesso, l ultma rata è uguale al valore attuale rferto all epoca t = n d cascuna delle tre nuove rate par a R. Dunque abbamo R = R n = R n 402, 11e. a 3 1 (1 + ) 3 Eserczo 3. Un prestto d 70000e vene rmborsato n 25 ann con rate mensl costant al tasso annuo = 5, 2%. Dopo 10 ann, l tasso annuo vene rvsto e portato a 1 = 6, 2%. Se R è la rata costante de prm 10 ann e R è quella costante degl ultm 15 ann, determnare R. Soluzone. La prospettva da cu partre, come se fosse per l momento l epoca nzale, è all epoca t = 10. Da tale epoca, per 15 ann, ossa per 180 rate mensl, s ha un normale ammortamento alla francese d rata costante R, che è data dalla solta formula R 1,m = D (1 + 1,m ) 180, ove D 120 è l debto resduo dopo 10 ann, ossa dopo 120 rate mensl pagate al veccho tasso annuo, mentre 1,m è l nuovo tasso su base mensle. Convene trasformare l tasso mensle n annuo, evtando troppe approssmazon, ossa pertanto 1,m = (1 + 1 ) , (1) R (1 + 1 ) (1 + 1 ) = D 120 ( ) 1 (1 + 1 ) = D 120. (2) 1 ( ) 15

3 ESERCIZI DI MATEMATICA FINANZIARIA 3 Ora, l problema è trovare l debto resduo D 120 : qu convene usare la formula compatta che dce che l debto resduo ad una generca epoca ntermeda k, nell ammortamento alla francese d complessve epoche n, ad un arbtraro tasso annuo x, è data da 1 (1 + x) n+k D k = D 0 1 (1 + x) n. Se applcate tale formula al vostro caso, n cu n = 300 e k = 120 e l tasso è mensle e non annuo, rsulta D 120 = D 0 1 (1 + m) (1 + m ) 300 = D 0 ( 1 1 (1 + ) 1 12 ( (1 + ) 1 12 ) 180 ) 300 = D 0 1 (1 + 1) 15 1 (1 + 1 ) 25, ove nel penultmo passaggo abbamo usato come al solto la (1). Inserendo quest ultmo rsultato nella (2), tenendo conto che D 0 = 70000e, s trova che R = D 0 1 (1 + 1) 15 1 (1 + 1 ) 25 (1 + 1 ) , 71e. 1 (1 + 1 ) 15 Eserczo 4. Redgere un pano d ammortamento all talana n 4 ann, sapendo che dat sono le 4 quote n conto captale, costant e par a C, ed l tasso annuo par a. Supposto po d dover allungare la durata del pano da 4 a 5 ann, dmezzando l orgnara ultma quota n conto captale n due part, una per l quarto e l altra per l qunto anno, rscrvere gl ultm due ann del nuovo pano. Soluzone. Prmo Caso. Poché l pano è all talana, la quota captale è costante, allora abbamo che D 0 = 4 C. Impostamo l pano relatvo al prmo anno. Abbamo che I 1 = D 0 = 4 C ; R 1 = I 1 + C = 4 C + C = C (1 + 4 ); D 1 = D 0 C = 4 C C = 3 C. Procedendo n modo analogo per le epoche 2, 3, 4, abbamo l seguente pano d ammortamento:

4 4 ESERCIZI DI MATEMATICA FINANZIARIA k C k I k R k D k C 1 C 4 C C (1 + 4 ) 3C 2 C 3 C C (1 + 3 ) 2C 3 C 2 C C (1 + 2 ) C 4 C C C (1 + ) 0 Secondo Caso. Dobbamo scrvere gl ultm due ann del nuovo pano, sapendo che C 1 = C 2 = C 3 = C e C 4 = C 5 = C 2, dunque l pano d ammortamento è l seguente: k C k I k R k D k C 1 C 4 C C (1 + 4 ) 3C 2 C 3 C C (1 + 3 ) 2C 3 C 2 C C (1 + 2 ) C 4 C/2 C C ( + (1/2)) C/2 5 C/2 (C/2) (C/2) (1 + ) 0 Eserczo 5. (Dffcle) In un pano d ammortamento alla francese su prestto nzale d e, a rate mensl, durata par a 10 ann e tasso annuo = 4%, dopo due ann l tasso passa a 1 = 5%. Supposto che vo non ruscate a pagare pú d 1020 e mensl, d quanto (eventualmente) s allunga l vostro pano? Soluzone. La rata R del nostro pano alla francese, con la varazone del tasso da mensle ad annuo, data dalla solta formula d conversone m = , è par a R = D 0 1 (1 + ) 10, ove D 0 = L eserczo non rchede espressamente d calcolare R, n ogn caso, se lo faceste, rsulterebbe R = 1009, 06 e. Dopo k = 2 ann, camba l tasso e passa a 1 = 5%, qund la nuova rata R, usando la precedente formula con 1 al posto d, l debto resduo D k (con k = 2) al posto d D 0 e con durata che ora dovrebbe essere quella resdua, ossa 8 ann, rsulterebbe par a (1) R = D (1 + 1 ) 8,

5 ESERCIZI DI MATEMATICA FINANZIARIA 5 ove D 2 s puó determnare attraverso la seguente formula generale, valda n un arbtaro pano alla francese: D k = D 0 1 (1 + ) n+k 1 (1 + ) n. Nel nostro caso 1 (1 + ) 8 D 2 = D 0 1 (1 + ) 10. Se nseramo tale formula n eq. (1), trovamo (2) R = D 0 1 ( ) (1 + ) 10 1 (1 + 1 ) 8. Se ora nserte dat, troverete R = 1046, 50 e, qund sopra l vostro tetto mensle R max = 1020 e. Conseguentemente, essendo ora evdente che, potendov permettere d pagare al massmo R max ogn mese, la durata resdua s debba allungare, dovete rscrvete la formula data n eq. (2), con R max al posto d R e x al posto d 8, perché ora la vostra vera ncognta è la nuova durata del pano. Pertanto la nuova formula dvene 1 ( ) 8 R max = D 0 1 (1 + ) (1 + 1 ) x, da cu, con qualche passaggo algebrco, s arrva a log x = ( 1 D 0 R max 1 (1+) 8 1 (1+) 10 ( ) log(1 + 1 ) ) = 8, 2558, ossa la durata supera ora gl 8 ann d crca 0, 25 ann, l che sgnfca (approssmando per leggero dfetto) 3 mes. Eserczo 6. (Dffcle) A due ann dall estnzone d un prestto a rata costante a tasso = 5, 5%, sete d fronte a due possbl scelte. La prma consste nel chudere antcpatamente l prestto, con una penale α > 0 da defnrs, proporzonale al debto resduo. Supponendo peró d non possedere la cfra necessara per la chusura antcpata, ve la fate prestare da un altra sttuzone fnanzara, presso la quale v mpegnate n un ammortamento n 2 ann a rata costante, detta R α, sempre a tasso. La seconda, nvece, consste nel contnuare l pano orgnaro, ma sapendo questa volta che l tasso subrá un nnalzamento, passando da = 5, 5% a 1 = 6%, l che ovvamente produrrá una rata R 1 pú gravosa negl ultm 2 ann. La domanda è: per qual α è pú convenente uscre antcpatamente puttosto che contnuare? Soluzone. Se s esce antcpatamente, s deve pagare l debto resduo D n 2 pú la penale par a α D n 2, ossa n tutto D n 2 (1+α). C faccamo prestare tale somma da un altra banca, presso la quale c s mpegna n un pano alla francese a tasso n

6 6 ESERCIZI DI MATEMATICA FINANZIARIA 2 ann, qund, usando la solta formula generale dell ammortamento alla francese, s ha che (3) D n 2 (1 + α) = R α a 2, ove rcordamo che, n generale, s ha 1 (1 + ) n a n =. Se, nvece, optamo per la seconda scelta, rapplchamo la formula precedente sosttuendo D n 2 (1 + α) con D n 2, perché non v é penale, ma anche con 1, a causa dell aggravo d tasso, ottenendo qund (4) D n 2 = R 1 a 2 1. Se ora s sosttusce D n 2 rcavato dalla (4) nella (3), s trova che R 1 (1 + α) a 2 1 = R α a 2, da cu, con un semplce passaggo algebrco, s ha che (5) R α R 1 = (1 + α) a2 1 a 2. Poché la maggore convenenza nell uscre antcpatamente puttosto che contnuare é ovvamente equvalente a dre che R α < R 1 o, che é lo stesso, che R α R 1 < 1, allora, nserendo questa condzone nella (5), s trova faclmente che ossa α < 1 (1 + ) 2 dunque α < 0, 7051%. α < a 2 a 2 1 1, 1 1 (1, 055) 2 0, 06 1 = 1 0, (1 + 1 ) 2 0, (1, 06) 2 Pan d ammortamento ad nteress antcpat Eserczo 7. Un bene del valore d 4329, 4766e è venduto a rate. L acqurente effettua 5 pagament rateal annual con pano alla francese. Sapendo che l tasso annuo è = 5%, scrvere l pano d ammortamento. Redgere po un pano d ammortamento a nteress antcpat, con stesso tasso e numero d ann del precedente, con vncol che l fnanzamento netto complessvo e le rate sano ugual al pano precedente. Infne, redgere anche un pano d ammortamento alla tedesca.

7 ESERCIZI DI MATEMATICA FINANZIARIA 7 NOTA BENE: la rata del pano alla francese deve venre un numero esatto, mentre tutte le altre voc dello stesso pano vanno approssmate alla seconda cfra decmale. Soluzone. Nel pano alla francese la rata è par a: R = D e. 1 (1 + ) 5 Abbamo dunque l seguente pano d ammortamento: t C k I k R k D k , ,53 216, , ,70 177, , ,84 136, , ,03 92, , ,38 47, Dobbamo redgere un pano d ammortamento a nteress antcpat, sempre al tasso del 5%, alle seguent condzon: - l fnanzamento netto complessvo nzale è lo stesso del precedente pano, ossa 4329, 4766e; - le rate complessve sono le stesse del precedente pano; dunque valgono le seguent formule: I k = I k+1 per k = 0,..., 4; I 5 = 0; D k = D k (1 + ) per k = 0,..., 5, dove I k e D k ndcano rspettvamente la quota n conto d nteresse e l debto resduo del nuovo pano. Il pano d ammortamento è dunque l seguente: k C k I k R k D k ,47 216, , ,70 177, , ,84 136, , ,03 92, , ,38 47,

8 8 ESERCIZI DI MATEMATICA FINANZIARIA Infne, nell ultmo tpo d pano da stlare, ossa quello alla tedesca, avendo a dsposzone l corrspondente pano alla francese, sappamo che la rata tedesca, denomnata R (T ), é data da R (T ) = , 05 = 952, 38, e debt resdu e le quote captale sono dentche a quelle del corrspondente pano alla francese, mentre le quote nteress s possono rcavare per dfferenza tra la rata e le quote captale. Il pano d ammortamento alla tedesca è dunque l seguente: t C k I k R k D k ,16 206, , ,53 168,85 952, , ,70 129,68 952, , ,84 88,54 952, , ,03 45,35 952,38 952, , ,38 0 Eserczo 8. Un debto d 20000e vene estnto n 5 ann con un pano d ammortamento a nteress antcpat. Sapendo che: a) C 1 = 4000e; C 2 = 6000e; C 3 = 2000e; C 4 = 5000e; C 5 = 3000e; b) l tasso annuo è tale che: 1 + = 8%; redgere l pano d ammortamento. Soluzone. Poché l pano è a nteress antcpat, vale la seguente formula: I k = 1 + D k per k = 0,..., n. Osservamo che n tale pano l debtore effettua un pagamento vrtuale par a I 0 = 1 + D 0 = 1600e, qund rceve n prestto D 0 I 0 = 18400e, anzché D 0 = 20000e.

9 Il pano d ammortamento è l seguente: ESERCIZI DI MATEMATICA FINANZIARIA 9 k C k I k R k D k Eserczo 9. Un bene d 6000e vene venduto a rate. La rateazone è all talana, a tasso annuo = 5% su 5 ann. Redgere po un pano d ammortamento a nteress antcpat, con stesso tasso e numero d ann del precedente, con vncol che l fnanzamento netto complessvo e le rate complessve sano ugual al pano precedente. Soluzone. Nel pano all talana la quota captale è par a: C = D 0 5 = 1200e. Abbamo l seguente pano d ammortamento: k C k I k R k D k Dobbamo ora redgere un pano d ammortamento a nteress antcpat, sempre al tasso del 5%, alle seguent condzon: - l fnanzamento netto complessvo nzale è lo stesso del precedente pano, ossa 6000e; - le rate complessve sono le stesse del precedente pano; dunque valgono le seguent formule: I k = I k+1 per k = 0,..., 4; I 5 = 0; D k = D k (1 + ) per k = 0,..., 5, dove I k e D k ndcano rspettvamente la quota n conto d nteresse e l debto resduo del nuovo pano. Il pano d ammortamento è dunque l seguente:

10 10 ESERCIZI DI MATEMATICA FINANZIARIA k C k I k R k D k Eserczo fnale Eserczo 10. Un fnanzamento d 1000e vene resttuto n 4 ann a tass = 12% per prm due ann e 1 = 10% negl ultm due ann. Sapendo che la prma e la terza rata sono ugual, mentre la seconda è par a 320e e l ultma a 394, 064e, determnare la rata del prmo e terzo anno. Soluzone. Per rsolvere questo problema, è suffcente mpostare la condzone d chusura fnanzara, dove peró bsogna fare attenzone al fatto che l tasso non è costante, qund essa dvene R 1 (1 + ) + R 2 (1 + ) 2 + R 3 (1 + ) 2 (1 + 1 ) + R 4 (1 + ) 2 (1 + 1 ) 2 = 1000, ove R 1 = R 3 = R è l ncognta, mentre R 2 = 320 e R 4 = 394, 064. Se s sola l ncognta R, s arrva alla soluzone R = (1000 (1 + )2 (1 + 1 ) 2 394, (1 + 1 ) 2 ) (1 + 1 ) (1 + (1 + )(1 + 1 )) = 300.

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 21 LUGLIO 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL LUGLIO 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo ntende acqustare un motorno che ha un prezzo d 300. Volendo accedere ad un fnanzamento, gl engono proposte le seguent

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 Esercitazione: 16 marzo 2012 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 Eserctazone: 16 marzo 2012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/8? Eserczo Un prestto d d 24 350 è rmborsable

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi: lezione 04/11/2016

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi: lezione 04/11/2016 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercizi: lezione 04/11/2016 Piani di ammortamento Esercizio 1. Un finanziamento pari a 100000e viene rimborsato

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 7 NOVEMBRE 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo contrae un prestto d.000 da rborsare edante rate annual costant postcpate al tasso annuo del,%. Dopo l pagaento

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5

Sommario 2. Introduzione 3. Capitalizzazione semplice 4 Esercizi sulla capitalizzazione semplice 5 Primo livello 5 Secondo livello 5 Sommaro Sommaro 2 Introduzone 3 Captalzzazone semplce 4 Esercz sulla captalzzazone semplce 5 Prmo lvello 5 Secondo lvello 5 Sconto commercale 6 Esercz sullo sconto commercale 7 Sconto razonale 7 Esercz

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

AMMORTAMENTO A RATE POSTICIPATE CON TASSO FISSO

AMMORTAMENTO A RATE POSTICIPATE CON TASSO FISSO Aortaento a rate postcpate con tasso fsso AMMORTAMENTO A RATE POTICIPATE CON TAO FIO + R1 K 1 R R 0 1 K -1 a l tasso d nteresse rferto alla perodctà d pagaento delle rate (es. tasso annuo nel caso d rate

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

1. La domanda di moneta

1. La domanda di moneta 1. La domanda d moneta Esercz svolt Eserczo 1.1 (a) S consder l modello della domanda d moneta a scopo speculatvo d Keynes. Un ndvduo può sceglere d allocare la propra rcchezza sottoscrvendo un ttolo rredmble

Dettagli

La ripartizione trasversale dei carichi

La ripartizione trasversale dei carichi La rpartzone trasversale de carch La dsposzone de carch da consderare ne calcol della struttura deve essere quella pù gravosa, ossa quella che determna massm valor delle sollectazon. Tale aspetto nveste

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA

FORMULE PRELIMINARI RIGUARDANTI LA TRAVE APPOGGIATA Captolo TRV CONTINU. TRV CONTINU FORU PRIINRI RIGURDNTI TRV PPOGGIT Trave appoggata soggetta a: carco () moment, cedment Determnaon delle rotaon,. a) Carco - - d d - d ( ) d 77 Captolo TRV CONTINU b) oment,

Dettagli

V n. =, e se esiste, il lim An

V n. =, e se esiste, il lim An Parttore resstvo con nfnte squadre n cascata. ITIS Archmede CT La Fg. rappresenta un parttore resstvo, formato da squadre d restor tutt ugual ad, conness n cascata, e l cu numero n s fa tendere ad nfnto.

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Premessa essa sulle soluzioni

Premessa essa sulle soluzioni Appunt d Chmca La composzone delle soluzon Premessa sulle soluzon...1 Concentrazone...2 Frazone molare...2 Molartà...3 Normaltà...4 Molaltà...4 Percentuale n peso...4 Percentuale n volume...5 Massa per

Dettagli

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA GUGLIOTTA CALOGERO Lceo Scentco E.Ferm Men (Ag.) ENTROIA Il concetto d processo termodnamco reversble d un dato sstema è collegato all dea che s possa passare dallo stato allo stato attraverso una successone

Dettagli

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante Unverstà degl Stud d Roma Tre - Facoltà d Ingegnera Laurea magstrale n Ingegnera Cvle n Protezone Corso d Cemento Armato Precompresso A/A 2015-16 Progetto d trav n c.a.p sostatche Il traccato del cav e

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema B Corso d Laurea n Economa Prof.ssa Gordano Appello del 15/07/011 Cognome Nome Matr. Teora Dmostrare la propretà assocatva della meda artmetca. Eserczo 1 L accesso al credto è sempre

Dettagli

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze

Luciano Battaia. Versione del 22 febbraio L.Battaia. Condensatori e resistenze Lucano attaa Versone del 22 febbrao 2007 In questa nota presento uno schema replogatvo relatvo a condensator e alle, con partcolare rguardo a collegament n sere e parallelo. Il target prncpale è costtuto

Dettagli

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola..

MATEMATICA FINANZIARIA 1 ECONOMIA AZIENDALE. Cognome... Nome Matricola.. MATEMATICA FINANZIARIA PROVA SCRITTA DEL 0 FEBBRAIO 009 ECONOMIA AZIENDALE Cognome... Nome Matrcola.. ESERCIZIO Un ndduo ha ogg a dsposzone una somma S0.000 che ha accumulato negl ultm ann tramte l ersamento

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo La funzone d domanda ndvduale e l denttà d Slutsky. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fa:

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi: lezione 20/10/2016

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi: lezione 20/10/2016 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 206/207. Esercizi: lezione 20/0/206 Regime di sconto commerciale Esercizio. Un impresa ha un credito C scadente tra due

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T.

Le operazioni che vogliamo realizzare sono. Supporremo che una tabella T abbia i seguenti attributi: 1. Table(T): costruisce una tabella vuota T. tabelle dnamche Tabelle dnamche Spesso non s conosce a pror quanta memora serve per memorzzare una struttura dat (tabella d dat ~ array, tabella hash, heap, stack, ecc.. Può captare qund d allocare una

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I.

Esercitazione 12 ottobre 2011 Trasformazioni circuitali. v 3. v 1. Per entrambi i casi, i valori delle grandezze sono riportati in Tab. I. Eserctazone ottobre 0 Trasformazon crcutal Sere e parallelo S consderno crcut n Fg e che rappresentano rspettvamente un parttore d tensone e uno d corrente v v v v Fg : Parttore d tensone Fg : Parttore

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Condensatori e resistenze

Condensatori e resistenze Condensator e resstenze Lucano attaa Versone del 22 febbrao 2007 Indce In questa nota presento uno schema replogatvo relatvo a condensator e alle resstenze, con partcolare rguardo a collegament n sere

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

CPM: Calcolo del Cammino Critico

CPM: Calcolo del Cammino Critico Supponamo d conoscere per ogn attvtà A = (,j) la sua durata t j t j j Calcolamo l tempo al pù presto n cu può nzare o fnre una attvtà. Supponamo d dover calcolare l tempo al pù presto n cu s possono nzare

Dettagli

Corso di Economia Pubblica Lezione 4 - Neutralità IRES

Corso di Economia Pubblica Lezione 4 - Neutralità IRES (materale gentlmente concesso dalla Prof.ssa Alessandra Casarco) Corso d Economa Pubblca Lezone 4 - Neutraltà IRES Prof. Paolo Buonanno paolo.buonanno@unbg.t Investmento: no mposte P = π( I) δi I L mpresa

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI METODO DEGLI ELEMENTI FINITI Introduzone al metodo degl element fnt Il concetto base nella nterpretazone fsca del metodo degl element fnt è la decomposzone d un sstema meccanco complesso n pù semplc component

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 15 SETTEMBRE 2009 C.d.L. ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 5 SETTEMBRE 009 C.d.L. ECONOMIA AZIENDALE ESERCIZIO a) Il Sg. Ross ogg (t0) uole acqustare u furgoe del alore d 7000 per la sua atttà commercale. A tal fe egl ersa

Dettagli

2. La base monetaria e i mercati dei depositi e del credito

2. La base monetaria e i mercati dei depositi e del credito 2. La base monetara e mercat e epost e el creto Esercz svolt Eserczo 2.1 (a) Conserate l moello che rappresenta l equlbro el mercato ella base monetara e el mercato e epost (fate l potes che coe cent c;

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite

Trasformatore monofase. Le norme definiscono il rendimento convenzionale di un trasformatore come: = + Perdite Rendmento l rendmento effettvo d un trasformatore vene defnto come: otenza erogata al carco η otenza assorbta dalla rete 1 1 1 1 Le norme defnscono l rendmento convenzonale d un trasformatore come: η otenza

Dettagli

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry

Sommatori: Full Adder. Adder. Architetture aritmetiche. Ripple Carry. Sommatori: Ripple Carry [2] Ripple Carry. Ripple Carry CEFRIEL Consorzo per la Formazone e la Rcerca n Ingegnera dell Informazone Poltecnco d Mlano s Sommator: x y c x y c x y c x y c x y c Archtetture artmetche s x y Sommator:, Rpple Carry Sommator: Carry

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Amplificatori operazionali

Amplificatori operazionali Amplfcator operazonal Parte 3 www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-5-) Confgurazone nvertente generalzzata Se nella confgurazone nvertente s sosttuscono le resstenze R e R con due mpedenze

Dettagli

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro

NUMERI GRANDI DI FIBONACCI come trovare velocemente i loro esatti valori numerici Cristiano Teodoro NUMERI GRANDI DI FIBONACCI come trovare velocemente loro esatt valor numerc Crstano Teodoro crstanoteodoro@vrglo.t Sommaro: n questo artcolo vene proposto, n alternatva al metodo classco per l calcolo

Dettagli

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G.

1. Fissato un conveniente sistema di riferimento cartesiano Oxy si studino le funzioni f e g e se ne disegnino i rispettivi grafici G, G. Problema 1 S consderno le funzon f e g defnte, per tutt gl x real, da: f ( x) = x 3 4 x, g( x) = sn( π x) 1. Fssato un convenente sstema d rfermento cartesano Oxy s studno le funzon f e g e se ne dsegnno

Dettagli

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE

6. METODO DELLE FORZE IMPOSTAZIONE GENERALE aptolo6 ETODO DEE FORZE - IOSTZIOE GEERE 6. ETODO DEE FORZE IOSTZIOE GEERE ssocamo al sstema perstatco un altro sstema, denomnato sstema prncpale. Il sstema prncpale è un sstema statcamente determnato,

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro Metod d anals www.de.ng.unbo.t/pers/mastr/ddattca.htm ersone del -0-00 Premessa Nel caso pù generale è possble ottenere la soluzone d un crcuto rsolendo un sstema formato

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato:

ESERCIZIO N. 1. b) rendimenti reali dell azienda Gesis e del portafoglio di mercato: ESERCIZIO N. 1 Il canddato proceda a calcolare l tasso d congrua remunerazone reale dell azenda Gess al 31.12.2003 applcando l CAPM e l WACC della stessa azenda; dat d cu s dspone sono seguent: a) rendmento

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

Bipoli resistivi. (versione del ) Bipoli resistivi

Bipoli resistivi.  (versione del ) Bipoli resistivi Bpol resst www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 6--0) Bpol resst Bpolo ressto: componente a due termnal aente equazone caratterstca del tpo f (t), (t), t0 (f funzone generca) L equazone

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

COMPORTAMENTO DINAMICO DI ASSI E ALBERI

COMPORTAMENTO DINAMICO DI ASSI E ALBERI COMPORTAMENTO DNAMCO D ASS E ALBER VBRAZON TORSONAL Costruzone d Macchne Generaltà l problema del progetto d un asse o d un albero non è solo statco Gl ass e gl alber, come sstem elastc, sotto l azone

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO

Mauro Vettorello. Vi veneto. come Calcolare la Rata di un Finanziamento o di un Leasing senza calcolatrice STUDIO VETTORELLO Mauro Vettorello V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce STUDIO VETTORELLO V veneto come Calcolare la Rata d un Fnanzamento o d un Leasng senza calcolatrce Mauro

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE SUPPOSTO ALLA DIDATTICA- DOTT.SSA PICCAGLI IRENE A.A.

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE SUPPOSTO ALLA DIDATTICA- DOTT.SSA PICCAGLI IRENE A.A. ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE SUPPOSTO ALLA DIDATTICA- DOTT.SSA PICCAGLI IRENE A.A. 2016/2017 Esercizi 2 Rendite nel regime composto Esercizio 1. Un capitale

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI

RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI RIPARTIZIONE DELLE FORZE SISMICHE ORIZZONTALI (Modellazone approssmata alla rnter) Le strutture degl edfc sottopost alle forze ssmche sono organsm spazal pù o meno compless, l cu comportamento va analzzato

Dettagli