Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere"

Transcript

1 Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica 69AA) A.A. 06/7 - Prima prova in itinere La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema Un ladro alquanto sbadato vuole aprire una serratura servendosi di una copia della chiave originale, che però ha raccolto in un mazzo insieme ad altre 3 chiavi che non aprono. Inoltre, la copia della chiave originale è difettosa, e la probabilità di aprire la serratura con essa, in ogni singolo tentativo, è / indipendentemente da altri tentativi). Dopo tentativi di apertura falliti il ladro decide di lasciar perdere. Poniamo T {,, 3,, S} la variabile aleatoria definita come T = k, per k {,, 3, }, se al tentativo k apre la serratura, mentre T = S se ladro rinuncia quindi tentativi falliti).. Supponiamo che il ladro decida di prendere ad ogni tentativo una chiave dal mazzo, anche eventualmente ripetendo quelle che ha già provato. Descrivere la legge di T, ossia la probabilità degli eventi {T = k}, per k {,, 3, } e di {T = S}.. Supponiamo invece che il ladro usi una seconda strategia, che consiste nel prendere una sola chiave e provare per volte al più) di aprire la serratura con quella chiave. Descrivere la legge di T. 3. Supponiamo invece che il ladro usi la strategia di provare ad ogni tentativo una chiave diversa dal mazzo, senza ripetere quelle che ha provato. Descrivere la legge di T.. Supponiamo di sapere che il ladro abbia seguito una delle tre strategie descritte sopra, ma non sapere quale: assegniamo inizialmente eguale probabilità ai tre eventi il ladro usa la strategia i per ciascun i {,, 3}. Per ogni k {,, 3, }, sapendo che T = k, come cambiano le probabilità dei tre eventi? quale strategia è più probabile che abbia usato? Sapendo che T = S, quale strategia è più probabile che abbia usato? Una soluzione:. La prima strategia utilizza estrazioni con reimmissione. Consideriamo prima un singolo tentativo: affinché la serratura si apra successo) il ladro deve scegliere la chiave giusta e deve avere successo nonostante il difetto della copia: otteniamo che la probabilità di aprire la serratura è P T = Ω) = = 8. La strategia descritta consiste nell effettuare al più prove indipendenti e interrompere nel caso vi siano fallimenti. Otteniamo quindi, per k {,, 3, }, P T = k strat. ) = ) 7 k 8 8, mentre P T = S strat. ) = ) 7 8 Pag.

2 . Nella seconda strategia, basta condizionare rispetto all evento il ladro ha scelto la chiave giusta. Abbiamo infatti, per k {,, 3, }, P T = k strategia ) = P T = k strat. chiave giusta)p chiave giusta strat. ) = k mentre P T = S strat. ) = P T = S strategia chiave giusta)p chiave giusta strat. ) + P T = S strat. chiave sbagliata)p chiave sbagliata strat. ) = Nella terza strategia il ladro usa estrazioni senza reimmissione. La probabilità che il successo avvenga al primo tentativo è ancora P T = strategia ) = = 8, ma affinché il successo nel secondo tentativo dobbiamo aver scelto la chiave sbagliata nel primo, quindi e similmente e quindi P T = strategia 3) = 3 3 = 8, P T = 3 strat. 3) = 3 3 = 8 P T = strat. 3) = 3 3 = 8 P T = S strat. 3) = P T {,, 3, } strat. 3) = =.. Usiamo la formula di Bayes, per i {,, 3}, k {,, 3, }, Similmente, per T = S, P strat. i T = S) = P T = S strat. i ) P T = S strat. ) + P T = k strat. ) + P T = k strat. 3). Per capire quale strategia ha probabilità maggiore sapendo T = k, basta quindi capire quale tra le probabilità ) 7 k P T = k strat. ) = 8 8, P T = k start. ) = k, P T = k strat. 3) = 8 è maggiore, e in modo simile quale tra le tre probabilità ) 7 P T = S strat. ) =, P T = S strat. ) = 8 + 3, P T = S strat. 3) = è maggiore. Per k =, si ha 8 = 8 = 8, quindi nessuna delle tre strategie è più probabile delle altre. k {, 3, }, si vede che Per tutti gli altri ) < 8 e k < 8, Pag.

3 quindi la terza strategia è la più probabile. Se T = S, troviamo invece ) 7 < e < + 3, e quindi la seconda strategia è la più probabile. Problema Un drone è programmato per sorvolare quattro regioni numerate,, 3, ) seguendo una catena di Markov schematizzata come segue, dove [0, ] è un parametro fissato. 3. Per ogni [0, ], scrivere la matrice di transizione Q della catena descritta sopra e, per ogni k {,, 3, }, calcolare la probabilità che al tempo k il drone si trovi in una posizione dispari ossia X k {, 3}), sapendo che al tempo 0 si trova nello stato.. Per ogni [0, ], trovare tutte le distribuzioni invarianti di Q. Per ogni 0, ], nel caso in cui la catena di Markov sia stazionaria, è più probabile che il drone all istante 00 si trovi in una posizione dispari o pari? 3. Fissato =, supponendo che la catena di Markov sia stazionaria e che all istante il drone si trovi in una posizione dispari, ossia X {, 3}, qual è la probabilità che al tempo 0 si trovi nella posizione? Come cambia la probabilità dello stesso evento se si suppone che la catena sia stazionaria e che all istante si trovi nella posizione? è maggiore o minore? Una soluzione:. La matrice di transizione è Q = Per calcolare le probabilità richieste, troviamo prima, 0, 0, 0) Q k per k {,, 3, }:, 0, 0, 0) Q =,, 0, 0), 0, 0, 0) Q =,, 0, 0) Q = ), ),, 0), 0, 0, 0) Q 3 = ) 3, 3 ), 3 ), 3 ), Pag. 3

4 , 0, 0, 0) Q = ) +, ) 3, 6 ), 3 )). Per trovare le probabilità richieste basta sommare la prima e la terza componente di ciascun vettore trovato: P X dispari X 0 = ) =, P X dispari X 0 = ) = ) +, P X 3 dispari X 0 = ) = ) ) P X dispari X 0 = ) = ) ).. Dobbiamo risolvere il sistema omogeneo associato alla matrice Q τ I, ossia Se = 0, otteniamo la matrice nulla, quindi le distribuzioni invarianti sono infinite: ogni vettore µ, µ, µ 3, µ ) con µ i [0, ] e i= µ i = è una distribuzione invariante. Se invece 0, possiamo dividere ogni riga per e trovare la matrice equivalente da cui si vede che tutte le soluzioni sono della forma t,,, ) per t R. L unica distribuzione invariante è quindi /, /, /, /). La probabilità che al tempo k in particolare k = 00) la catena stazionaria si trovi in una posizione pari è + =, e quindi vale anche la probabilità che si trovi in una posizione dispari. 3. La formula di Bayes implica P X 0 = staz. e X dispari) = P X dispari staz. e X 0 = )P X 0 = staz.) P X dispari staz.) ) ) ) = = ) ) ) = nel caso = /. Per la seconda domanda, troviamo similmente P X 0 = staz. e X = ) = P X = staz. e X 0 = )P X 0 = staz.) P X = staz.) ) + ) = = ) + = 8 nel caso = /. Pag.

5 Problema 3 Si suppone che il tempo di funzionamento T [0, ] in una certa unità di misura) di un componente elettronico dipenda da una variabile aleatoria θ N, avente legge Poisson di parametro rispetto ad una informazione Ω). Precisamente, rispetto a Ω {θ = 0}, si sa che T = 0 con probabilità mentre, per n, la funzione di sopravvivenza di T, per t [0, ], vale P T > t Ω {θ = n}) = t n.. Verificare che, per ogni n, la variabile T, rispetto a Ω {θ = n}, è assolutamente continua e calcolarne la densità, il valore atteso e la varianza.. All istante / il componente non sta funzionando quindi T /). Come cambia la legge di θ? calcolarne valore atteso e varianza. 3. Supponiamo invece di scoprire che esattamente all istante t = / il componente smette di funzionare. Come cambia la legge di θ? Calcolarne valore atteso e varianza. Sugg: potrebbe essere utile ricordare l identità e = + n=0 n!.) Una soluzione:. Se una variabile è assolutamente) continua, allora la sua densità si ottiene derivando la funzione di sopravvivenza e cambiandone il segno. Quindi deve valere ϱt = t Ω {θ = n}) = d dt tn ) = nt n, per t [0, ]. Se vogliamo verificare che ϱ così trovata è la densità di T rispetto all informazione Ω {θ = n}) basta notare che per ogni t [0, ], Calcoliamo il valore atteso e la varianza da cui Var T Ω {θ = n} = t ns n ds = t n ) = P T > t Ω {θ = n}). E [T Ω {θ = n}] = E [ T Ω {θ = n} ] = 0 0 tnt n dt = t nt n dt = n n +, n n + n ) n n + = n n + ) nn + ) n + n + ) = n + ) n n + ) n + ).. Per n 0, P θ = n T ) = P θ = n Ω) P T {θ = n} Ω) P T Ω) n = e n! P n = e n! T > {θ = n}) P T Ω) n P T Ω) = e P T Ω) n!. Pag. 5

6 Qui possiamo procedere in due modi: o si calcola P T + Ω) = P n=0 T ) + {θ = n} Ω P θ = n Ω) = n=0 e n! = e, oppure si riconosce che la legge di θ è Poisson di parametro, a meno di moltiplicare per una costante: ma allora la costante e /P T ) deve essere quella della Poisson di parametro, ossia e. Avendo notato che θ è Poisson di parametro, segue che [ E θ T ] =, Var θ T ) =. 3. Innanzitutto non può essere θ = 0, perché altrimenti T = 0 e invece abbiamo osservato T = /. Per n, usiamo la formula di Bayes discreto/continuo, P θ = n T ) = P θ = n Ω) ϱ T {θ = n} Ω) ϱt = Ω) n = e n! n n ϱt = Ω) = e P T ) n )!. e Anche stavolta si potrebbe argomentare che la costante deve valere P T ) e, perché la legge di θ risulta Poisson di parametro. Si può anche fare il calcolo direttamente ϱt = Ω) = + = n= + e n= ϱt = Ω {θ = n})p θ = n Ω) n )! = e. Abbiamo quindi trovato che θ ha legge Poisson di parametro, perché { P θ = n Ω T = } { ) = P θ = n + Ω T = } ) = e n!. Infine calcoliamo E [ θ Ω { T = }] [ { = E θ Ω T = }] + =, { Var θ Ω T = }) { = Var θ Ω T = }) =. Pag. 6

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di PS-Probabilità P.Baldi Tutorato 9, 19 maggio 11 Corso di Laurea in Matematica Esercizio 1 a) Volendo modellizzare l evoluzione della disoccupazione in un certo ambito

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di Mercoledì giugno 4 (tempo a disposizione: ore. Scrivere su ogni foglio NOME e COGNOME. Le

Dettagli

Note sulle Catene di Markov

Note sulle Catene di Markov Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

Lezione n. 1 (a cura di Irene Tibidò)

Lezione n. 1 (a cura di Irene Tibidò) Lezione n. 1 (a cura di Irene Tibidò) Richiami di statistica Variabile aleatoria (casuale) Dato uno spazio campionario Ω che contiene tutti i possibili esiti di un esperimento casuale, la variabile aleatoria

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica

LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi Corso di laurea in Informatica e Bioinformatica 5 VARIABILI ALEATORIE DISCRETE LA VARIABILE BINOMIALE Sia n

Dettagli

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2,

) la sua densità discreta sarà della forma. p X (0) = 1 2, p X(1) = 1 2, Esercizi settimana 6 Esercizi applicati Esercizio. Siano X e Y due v.a. discrete indipendenti tali che X B(, ) e Y B(, ), n 0. (i) Si calcoli la legge di X + Y ; (ii) Si calcoli la legge di X Y ; (iii)

Dettagli

I appello di calcolo delle probabilità e statistica

I appello di calcolo delle probabilità e statistica I appello di calcolo delle probabilità e statistica A.Barchielli, L. Ladelli, G. Posta 8 Febbraio 13 Nome: Cognome: Matricola: Docente: I diritti d autore sono riservati. Ogni sfruttamento commerciale

Dettagli

CP110 Probabilità: Esonero 1

CP110 Probabilità: Esonero 1 Dipartimento di Matematica, Roma Tre Pietro Caputo 2016-17, II semestre 11 aprile, 2017 CP110 Probabilità: Esonero 1 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante l esame

Dettagli

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 In ingegneria un sistema formato da n componenti è detto k su n se funziona quando almeno k

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Stima puntuale di parametri

Stima puntuale di parametri Probabilità e Statistica Esercitazioni a.a. 006/007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) =

P(X > 0) = P(X 1 = 1) + P(X 1 = 1, X 2 = 1, X 3 = 1) = 1 Esercizi settimana 3 Esercizio 1. Un urna contiene 8 palline bianche, 4 nere e rosse. Si assuma di vincere e ogni volta che si estragga una pallina nera, si perda 1e per ogni pallina bianca e non succeda

Dettagli

Variabili casuali. - di Massimo Cristallo -

Variabili casuali. - di Massimo Cristallo - Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 16 e 27 maggio 2013 - di Massimo Cristallo - Variabili casuali

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE CATENE DI MARKOV TEMPO CONTINUE Definizioni Sia dato un processo stocastico x(t) che può assumere valori discreti appartenenti ad un insieme se accade che il processo è una catena

Dettagli

TEORIA DEI SISTEMI SISTEMI LINEARI

TEORIA DEI SISTEMI SISTEMI LINEARI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.

Dettagli

Esercizi svolti di statistica. Gianpaolo Gabutti

Esercizi svolti di statistica. Gianpaolo Gabutti Esercizi svolti di statistica Gianpaolo Gabutti (gabuttig@hotmail.com) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione

Dettagli

Traccia della soluzione degli esercizi del Capitolo 3

Traccia della soluzione degli esercizi del Capitolo 3 Traccia della soluzione degli esercizi del Capitolo 3 Esercizio 68 Sia X una v.c. uniformenente distribuita nell intervallo ( π, π, cioè f X ( = π ( π, π (. Posto Y = cos(x, trovare la distribuzione di

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 3 Abbiamo visto: Definizione di partizione di Teorema di Bayes Definizione di variabile aleatoria

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 10 settembre 2012 Matricola: Nome:

Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica. 10 settembre 2012 Matricola: Nome: Prova Scritta di Probabilità e Statistica Cognome: Laurea in Matematica Nome: 10 settembre 2012 Matricola: ESERCIZIO 1. Facendo uso solamente della definizione di spazio di probabilità, dell additività

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

La codifica digitale

La codifica digitale La codifica digitale Codifica digitale Il computer e il sistema binario Il computer elabora esclusivamente numeri. Ogni immagine, ogni suono, ogni informazione per essere compresa e rielaborata dal calcolatore

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi

LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 5 VARIABILI CASUALI DISCRETE LA VARIABILE BINOMIALE Sia n N e sia k n. La probabilità di osservare k successi

Dettagli

Metodi Matematici Probabilità e Statistica. Correzione Compitino del

Metodi Matematici Probabilità e Statistica. Correzione Compitino del Metodi Matematici Probabilità e Statistica Correzione Compitino del.4.04 nota: Una sola risposta è esatta. 4 punti per una risposta esatta, -2 per una sbagliata, 0 per una non data. Gli esercizi sono divisi

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE

MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI. Anna TORRE MATEMATICA PER LO STUDIO DELLE INTERAZIONI STRATEGICHE: TEORIA DEI GIOCHI Anna TORRE Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100, Pavia, Italy. E-mail: anna.torre@unipv.it 1 SOLUZIONI:

Dettagli

Correzione primo scritto, sessione estiva 2010

Correzione primo scritto, sessione estiva 2010 Correzione primo scritto, sessione estiva giugno Parte Esercizio.. Per la parte di teoria relativa alle percentuali vi rimandiamo a pag. 6 del vostro libro. Indicheremo con X il prezzo del prodotto all

Dettagli

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente Firenze - Dip. di Fisica 2 agosto 2008 Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente In questa dispensa, che presentiamo a semplice titolo di esercizio e applicazione

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioni di Statistica Stima Puntuale Prof. Livia De Giovanni statistica@dis.uniroma.it Esercizio In ciascuno dei casi seguenti determinare quale tra i due stimatori S e T per il parametro θ è distorto

Dettagli

Prodotto scalare e ortogonalità

Prodotto scalare e ortogonalità Prodotto scalare e ortogonalità 12 Novembre 1 Il prodotto scalare 1.1 Definizione Possiamo estendere la definizione di prodotto scalare, già data per i vettori del piano, ai vettori dello spazio. Siano

Dettagli

Elementi di base su modello binomiale e modello normale

Elementi di base su modello binomiale e modello normale Elementi di base su modello binomiale e modello normale (alcune note) Parte 1: il modello binomiale Di fondamentale importanza nell analisi della qualità sono i modelli. I due principali modelli statistico-probablistici

Dettagli

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3

Esercizi settimana 5. Esercizi applicati. Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 2 3 1 Esercizi settimana 5 Esercizi applicati Esercizio 1. Si considerino tre monete truccate, ognuna con probabilità 3 di ottenere testa. Se scegliete la prima moneta vincete 10 punti se esce testa e punti

Dettagli

TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE

TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE TEST DI AUTOVALUTAZIONE APPROSSIMAZIONE NORMALE I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. Sia X, X,...

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Operazioni tra matrici e n-uple

Operazioni tra matrici e n-uple CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,

Dettagli

B =3 0 1=3 0 1=3

B =3 0 1=3 0 1=3 Corsi di Probabilità, Statistica e Processi stocastici per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, a.a. / // Esercizio. Un PC comprato da alcuni mesi, all accensione compie alcune operazioni

Dettagli

Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).

Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità A. A. /5 prova scritta (//5(docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento dei punti non facoltativi

Dettagli

Ripasso segnali e processi casuali. Trasmissione dell Informazione

Ripasso segnali e processi casuali. Trasmissione dell Informazione Ripasso segnali e processi casuali 1 Breve ripasso di segnali e trasformate Dato un segnale s(t), la sua densità spettrale si calcola come dove S(f) è la trasformata di Fourier. L energia di un segnale

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 2015-16 P.Baldi Lista di esercizi 4, 11 febbraio 2016. Esercizio 1 Una v.a.

Dettagli

ESERCIZI HLAFO ALFIE MIMUN

ESERCIZI HLAFO ALFIE MIMUN ESERCIZI HLAFO ALFIE MIMUN December, 27. Testo degli esercizi Risolvere i seguenti problemi: () Siano X, X 2, X 3 variabili aleatorie i.i.d. bernulliane di media.5 e siano Y, Y 2, Y 3, Y 4 variabili aleatorie

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità 1 A. A. 4/5 a prova in itinere 8/6/5docenti G. Nappo, F. Spizzichino La prova scritta consiste nello svolgimento degli Esercizi

Dettagli

1 Esercizi tutorato 1/4

1 Esercizi tutorato 1/4 Esercizi tutorato 1/ 1 1 Esercizi tutorato 1/ Esercizio 11 Siano X e Y due va discrete indipendenti di distribuzione geometrica con parametro p [0, 1] (i) Si calcoli la legge di X + Y, è una legge nota?

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

Distribuzioni di due variabili aleatorie

Distribuzioni di due variabili aleatorie Statistica e analisi dei dati Data: 6 Maggio 206 Distribuzioni di due variabili aleatorie Docente: Prof. Giuseppe Boccignone Scriba: Noemi Tentori Distribuzioni congiunte e marginali Consideriamo due variabili

Dettagli

CP110 Probabilità: Esonero 1. Testo e soluzione

CP110 Probabilità: Esonero 1. Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2009-2010, II semestre 1 aprile, 2010 CP110 Probabilità: Esonero 1 Testo e soluzione 1. (7 pt Una scatola contiene 15 palle numerate da 1 a 15. Le palle

Dettagli

Test delle Ipotesi Parte I

Test delle Ipotesi Parte I Test delle Ipotesi Parte I Test delle Ipotesi sulla media Introduzione Definizioni basilari Teoria per il caso di varianza nota Rischi nel test delle ipotesi Teoria per il caso di varianza non nota Test

Dettagli

DINAMICA E STATICA RELATIVA

DINAMICA E STATICA RELATIVA DINAMICA E STATICA RELATIVA Equazioni di Lagrange in forma non conservativa La trattazione della dinamica fin qui svolta è valida per un osservatore inerziale. Consideriamo, ora un osservatore non inerziale.

Dettagli

0.1 Condizione sufficiente di diagonalizzabilità

0.1 Condizione sufficiente di diagonalizzabilità 0.1. CONDIZIONE SUFFICIENTE DI DIAGONALIZZABILITÀ 1 0.1 Condizione sufficiente di diagonalizzabilità È naturale porsi il problema di sapere se ogni matrice sia o meno diagonalizzabile. Abbiamo due potenziali

Dettagli

Esame di Probabilità e Statistica del 23 agosto 2010 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Probabilità e Statistica del 23 agosto 2010 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Probabilità e Statistica del 3 agosto 00 Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. Es. 3 Es. 4 Somma Voto finale Attenzione: si

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 1 Abbiamo visto: Definizioni di statistica, statistica inferenziale, probabilità (interpretazione

Dettagli

Tutorato 1 (20/12/2012) - Soluzioni

Tutorato 1 (20/12/2012) - Soluzioni Tutorato 1 (20/12/2012) - Soluzioni Esercizio 1 (v.c. fantasia) Si trovi il valore del parametro θ per cui la tabella seguente definisce la funzione di probabilità di una v.c. unidimensionale X. X 0 1

Dettagli

STATISTICA (2) ESERCITAZIONE 1. Dott.ssa Antonella Costanzo

STATISTICA (2) ESERCITAZIONE 1. Dott.ssa Antonella Costanzo STATISTICA (2) ESERCITAZIONE 1 29.01.2014 Dott.ssa Antonella Costanzo Esercizio 1. Modelli discreti di probabilità: le v.c. binomiale e geometrica (come caso particolare della v.c. binomiale negativa)

Dettagli

Strutture di controllo iterative

Strutture di controllo iterative Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione Problema Scrivere un programma che acquisisca da standard input un intero

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione

ESERCIZIO SVOLTO N 1 ESERCIZIO SVOLTO N 2. Determinare e rappresentare graficamente il dominio della funzione ESERCIZIO SVOLTO N 1 Determinare e rappresentare graficamente il dominio della funzione f(x, y) = y 2 x 2 Trovare gli eventuali punti stazionari e gli estremi di f Il dominio della funzione è dato da dom

Dettagli

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x?

ESAME DI MATEMATICA I parte Vicenza, 05/06/2017. x log 2 x? A. Peretti Svolgimento dei temi d esame di Matematica A.A. 6/7 ESAME DI MATEMATICA I parte Vicenza, 5/6/7 log? Domanda. Per quali valori di è definita l espressione L espressione è definita se l argomento

Dettagli

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE

ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE ESERCITAZIONE 20 : VARIABILI ALEATORIE DISCRETE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 30 Aprile 2013 Esercizio

Dettagli

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Davide Ciaccia 19 ottobre 2016 1 Se z = (1

Dettagli

Vedi: Probabilità e cenni di statistica

Vedi:  Probabilità e cenni di statistica Vedi: http://www.df.unipi.it/~andreozz/labcia.html Probabilità e cenni di statistica Funzione di distribuzione discreta Istogrammi e normalizzazione Distribuzioni continue Nel caso continuo la probabilità

Dettagli

Note per la Lezione 6 Ugo Vaccaro

Note per la Lezione 6 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2016 2017 Note per la Lezione 6 Ugo Vaccaro Ancora sulla tecnica Programmazione Dinamica Nella lezione scorsa abbiamo appreso che la tecnica Divide-et-Impera,

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI II Esercizio 1. Una ditta che produce schermi a cristalli liquidi deve tenere in controllo il numero di pixel non funzionanti. Vengono ispezionati venti schermi alla

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x

Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio Soluzioni degli esercizi. 2(x 2) 2(x 1) + 2 = 3x Anno Scolastico 2014/15 - Classe 1D Verifica di matematica dell 11 Maggio 2015 - Soluzioni degli esercizi Risolvere le seguenti equazioni. Dove è necessario, scrivere le condizioni di accettabilità e usarle

Dettagli

Calcolo delle Probabilità 2013/14 Foglio di esercizi 2

Calcolo delle Probabilità 2013/14 Foglio di esercizi 2 Calcolo delle Probabilità 2013/1 Foglio di esercizi 2 Calcolo combinatorio. Esercizio 1. In un mazzo di 52 carte da Poker ogni carta è identificata da un seme (cuori, quadri, fiori, picche e da un tipo

Dettagli

Tempo a disposizione. 90 minuti. 1 [6 punti] Dimostrare che, per ogni n N, n 1, vale la disuguaglianza:

Tempo a disposizione. 90 minuti. 1 [6 punti] Dimostrare che, per ogni n N, n 1, vale la disuguaglianza: Dipartimento di Matematica e Informatica Anno Accademico 05-06 Corso di Laurea in Informatica (L-) Prova in itinere di Matematica Discreta ( CFU) Febbraio 06 A Tempo a disposizione. 90 minuti [6 punti]

Dettagli

Esercizi Applicazioni Lineari

Esercizi Applicazioni Lineari Esercizi Applicazioni Lineari (1) Sia f : R 4 R 2 l applicazione lineare definita dalla legge f(x, y, z, t) = (x + y + z, y + z + t). (a) Determinare il nucleo di f, l immagine di f, una loro base e le

Dettagli

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Calcolo delle Probabilità e Statistica Matematica

Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Calcolo delle Probabilità e Statistica Matematica Corso di Laurea in Ingegneria Informatica Anno Accademico 2012/2013 Calcolo delle Probabilità e Statistica Matematica Nome... N. Matricola... Ancona, 9 luglio 2013 1. Mario chiede al vicino di casa di

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stimatore media campionaria Il tempo in minuti necessario a un certo impiegato dell anagrafe

Dettagli

a) 36/100 b) 1/3 c)

a) 36/100 b) 1/3 c) Da un urna contenente 10 palline, di cui 6 bianche e 4 nere, si estraggono due palline. Determinare la probabilità del seguente evento E=«le due palline sono bianche» nel caso di estrazioni a) con rimbussolamento

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m

LEZIONE Equazioni matriciali. Negli Esempi e si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = R m,n, B = (b i,h ) 1 i m LEZIONE 4 41 Equazioni matriciali Negli Esempi 336 e 337 si sono studiati più sistemi diversi AX 1 = B 1, AX 2 = B 2,, AX p = B p aventi la stessa matrice incompleta A Tale tipo di problema si presenta

Dettagli

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati.

LEZIONE 2. ( ) a 1 x 1 + a 2 x a n x n = b, ove a j, b R sono fissati. LEZIONE 2 2 Sistemi di equazioni lineari Definizione 2 Un equazione lineare nelle n incognite x, x 2,, x n a coefficienti reali, è un equazione della forma (2 a x + a 2 x 2 + + a n x n = b, ove a j, b

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 8/04/2016

Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 8/04/2016 Corso di Laurea in Ingegneria Informatica e Automatica (A-O) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 8/4/26 NOME: COGNOME: MATRICOLA: Esercizio Si supponga di avere

Dettagli

PROCESSI STOCASTICI 1: ESERCIZI

PROCESSI STOCASTICI 1: ESERCIZI PROCESSI STOCASTICI 1: ESERCIZI (1) ESERCIZIO: Date P e Q matrici stocastiche, dimostrare che la matrice prodotto P Q è una matrice stocastica. Dedurre che la potenza P n e il prodotto P 1 P 2 P n sono

Dettagli

Dipendenza e indipendenza lineare (senza il concetto di rango)

Dipendenza e indipendenza lineare (senza il concetto di rango) CAPITOLO 5 Dipendenza e indipendenza lineare (senza il concetto di rango) Esercizio 5.1. Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Esercizio 5.2. Stabilire se i vettori

Dettagli

Calcolo della probabilità

Calcolo della probabilità Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.

Dettagli

SOLUZIONE. a) Calcoliamo il valore medio delle 10 misure effettuate (media campionaria):

SOLUZIONE. a) Calcoliamo il valore medio delle 10 misure effettuate (media campionaria): ESERCIZIO SU TEST STATISTICO (Z, T e χ ) Da una ditta di assemblaggio di PC ci viene chiesto di controllare la potenza media dissipata da un nuovo processore, che causa a volte problemi di sovraccarico

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Prova di giovedi febbraio 2005 (tempo a disposizione: 3 ore). consegna compiti e inizio orale Lunedì

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE PROCESSI DI POISSON Definizione Un processo stocastico che assume valori interi non negativi si dice essere un processo di Poisson con frequenza λ se 1. A(t) è un prosesso di

Dettagli

Esercizi svolti sui sistemi lineari

Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1

Dettagli

Catene di Markov - Foglio 1

Catene di Markov - Foglio 1 Catene di Markov - Foglio 1 1. Una pedina si muove su un circuito circolare a 4 vertici, numerati da 1 a 4. La pedina si trova inizialmente nel vertice 1. Ad ogni passo un giocatore lancia un dado equilibrato:

Dettagli