e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per"

Transcript

1 C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε. Dimostrzion. Pr dfinizion f è intgrbil s solo s } } f = inf h : h S + f = sup g : g S f. Si f intgrbil. Fissto ε > 0, pr dfinizion di strmo infrior, è possibil individur un funzion h ε S + f tl h h ε f < ε/2; nlogmnt, pr dfinizion di strmo suprior, si può trovr g ε S f tl h f g ε < ε/2. Prtnto h ε g ε = h ε f + f g ε < ε. Vivrs, usndo l Dfinizion 9.26 l Proprità 9.27, si h g ε f f h ε quindi f f h ε g ε < ε. Pr l rbitrrirtà di ε, si ottin f = f ovvro l funzion f è intgrbil su [, b].

2 2 C.13 ntgrl di Rimnn Pg. 339 Dimostrzion dl Torm 9.31 Torm 9.31 Sono intgrbili sull intrvllo [, b] ) l funzioni ontinu su [, b]; b) l funzioni ontinu trtti su [, b]; ) l funzioni ontinu su, b) limitt su [, b]; d) l funzioni monoton su [, b]. Dimostrzion. ) Pr il Torm di Wirstrss, f è limitt su [, b], pr il Torm C.6.4 di Hin-Cntor, f è uniformmnt ontinu in [, b]. Qusto signifi h pr ogni ε > 0 fissto, sist δ > 0 tl h s x, x [, b] x x < δ llor fx ) fx ) < ε. Considrimo un suddivision x 0, x 1,..., x n } di [, b] tl h ogni intrvllo [x k 1, x k ] bbi mpizz < δ k = 1,..., n). Applihimo il Torm di Wirstrss su ognuno di ssi: pr ogni k = 1,..., n, sistono punti ξ k, η k [x k 1, x k ] tli h fξ k ) = m k = Poihé η k ξ k < δ, si h min fx) fη k) = M k = mx fx). x [x k 1,x k ] x [x k 1,x k ] M k m k = fη k ) fξ k ) < ε. Sino or h ε S + f g ε S f dfinit om Mk s x x k 1, x k ], k = 1,..., n, h ε x) = f) s x =, mk s x x k 1, x k ], k = 1,..., n, g ε x) = f) s x =. Pr ogni x [, b], risult h ε x) g ε x) < ε quindi h ε g ε = h ε g ε ) < ε = b )ε. Poihé ε è rbitrrio, pplindo il Lmm C.13.1, si ottin il risultto. b) Sino x 1, x 2,..., x n 1 } i punti di disontinuità di f intrni ll intrvllo [, b], on x k 1 < x k ; ponimo poi x 0 = x n = b. Pr k = 1,..., n, onsidrimo l funzioni ontinu sull intrvllo [x k 1, x k ] osì dfinit fx) s x x k 1, x k ), lim fx) s x = x k 1, f k x) = x x + k 1 fx) s x = x k. lim x x k

3 C.13 ntgrl di Rimnn 3 Prodndo om nll dimostrzion dl punto ), fissto ε > 0, sistono h ε,k S + f k g ε,k S f k tli h h ε,k x) g ε,k x) < ε, x [x k 1, x k ]. Sino or h ε S + f g ε S f dfinit om hε,k x) s x x k 1, x k ], k = 1,..., n, h ε x) = f) s x =, gε,k x) s x x k 1, x k ], k = 1,..., n, g ε x) = f) s x =. Allor, pr ogni x [, b], risult h ε x) g ε x) < ε, om in prdnz, onludimo pplindo il Lmm C ) Si ε > 0 fissto tl h ε = [ + ε, b ε] [, b]. L funzion f è ontinu su ε, prodndo om nl punto ), è possibil trovr du funzioni sl dfinit su ε, sino ϕ ε ψ ε, tli h ϕ ε x) fx) ψ ε x) ψ ε x) ϕ ε x) < ε, x ε. Sino inoltr M = sup fx) m = inf fx). Considrimo or l funzioni sl x x h ε S + f g ε S f dfinit om ψε x) s x ε, h ε x) = M s x / ε, ϕε x) s x ε, g ε x) = m s x / ε. Usndo il Torm 9.33 i), si h h ε g ε = h ε g ε ) + [,+ε] = 2M m)ε + ε ε h ε g ε ) h ε g ε ) + h ε g ε ) [b ε,b] < 2M m)ε + b 2ε)ε < 2M m) + b ) ε. Applindo nor il Lmm C.13.1, si ottin il risultto. d) Pr fissr l id, supponimo h l funzion f si rsnt. Ossrvimo prliminrmnt h f è limitt su [, b] in qunto f) fx) fb), x [, b]. Fissto ε > 0, si n un intro tl h n > b ; suddividimo l intrvllo in n n prti uguli di mpizz b n < ε sino x 0, x 1,..., x n } i punti di suddivision. Dfinimo l funzioni sl h n S + f g n S f dfinit om

4 4 C.13 ntgrl di Rimnn Allor fxk ) s x x k 1, x k ], k = 1,..., n, h n x) = f) s x =, fxk 1 ) s x x k 1, x k ], k = 1,..., n, g n x) = f) s x =. h n g n = n fx k )x k x k 1 ) = b n n = ε fb) f) ). n fx k 1 )x k x k 1 ) fxk ) fx k 1 ) ) = b ) fb) f) n l risultto sgu nor dl Lmm C S l funzion f è drsnt, l dimostrzion è nlog. Pg. 340 Dimostrzion dll Proposizion 9.32 Proposizion 9.32 Si f un funzion intgrbil su [, b]. Allor i) f è intgrbil su ogni sottointrvllo [, d] [, b]; ii) l funzion f è intgrbil su [, b]. Dimostrzion. i) S f è un funzion sl il risultto è immdito. n gnrl, si f intgrbil su [, b]; fissto ε > 0, pr il Lmm C.13.1, sistono h ε S + f g ε S f tli h h ε Poihé d g ε = hε g ε ) < ε. ) b ) hε g ε hε g ε < ε, il risultto sgu pplindo il Lmm C.13.1 ll funzion f ristrtt ll intrvllo [, d]. ii) Riordndo h f = f + + f, dov f + f sono rispttivmnt l prt positiv l prt ngtiv di f, è suffiint mostrr h sono intgrbili f + f pplir il Torm 9.33 ii), pr ottnr il risultto. Dimostrimo h f + è intgrbil. Fissto ε > 0, pr il Lmm C.13.1 sistono h ε S + f g ε S f tli h h ε g ε < ε. Si x 0, x 1,..., x n } un suddivision di = [, b] dttt ntrmb l funzioni sl h ε g ε. Considrimo l funzioni h ε,+ g ε,+, prt positiv rispttivmnt di h ε g ε. Fissto un intrvllo k = [x k 1, x k ], sminndo l tr possibili situzioni 0 g ε h ε, g ε 0 h ε g ε h ε 0, si vrifi filmnt h

5 g ε,+ f + h ε,+ C.13 ntgrl di Rimnn 5 h ε,+ g ε,+ h ε g ε < ε. k k k k Di onsgunz, si h h ε,+ S + f + g ε,+ S f + h ε,+ g ε,+ = n h ε,+ k k g ε,+ ) n h ε k Prtnto, pplindo il Lmm C.13.1, si ottin l intgrbilità di f +. n modo nlogo si vrifi h nh f è intgrbil. k g ε ) < ε. Pg. 341 Dimostrzion dl Torm 9.33 Torm 9.33 Sino f g funzioni intgrbili su un intrvllo limitto dll rtt rl. i) Additività risptto l dominio di intgrzion) Pr ogni, b,, si h fx) dx = fx) dx + fx) dx. ii) Linrità dll intgrl dfinito) Pr ogni, b α, β R, si h ) αfx) + βgx) dx = α fx) dx + β gx) dx. iii) Positività dll intgrl dfinito) Sino, b, on < b. S f 0 in [, b], llor fx) dx 0. noltr, s f è ontinu, vl l uguglinz s solo s f è idntimnt null. iv) Confronto tr intgrli dfiniti) Sino, b, on < b. S f g in [, b], llor fx) dx gx) dx. v) Mggiorzion dll intgrl dfinito) Sino, b, on < b. Allor fx) dx fx) dx. Dimostrzion. Non è diffiil vrifir h l proprità i) -v) vlgono nl so in ui l funzioni f g sono funzioni sl. Dimostrimolo prtnto pr gnrih funzioni intgrbili. i) Vrifihimo l proprità nl so < < b. L ltr possibili situzioni si studino utilizzndo tl risultto l rlzioni 9.19). Pr l Proposizion 9.32

6 6 C.13 ntgrl di Rimnn i), f è intgrbil sugli intrvlli [, b], [, ] [, b]. noltr, fissto ε > 0, sino g ε S f h ε S + f tli h h ε g ε < ε g ε Poihé l proprità vl pr l funzioni sl, si h prtnto g ε = g ε + f g ε f f + Pr l rbitrrità di ε, il risultto sgu. f f h ε f h ε + g ε < ε. ii) Dividimo l dimostrzion in du prti, vrifindo h ) b) b αfx) dx = α fx) dx ) b fx) + gx) dx = fx) dx + gx) dx. h ε. h ε = h ε Supponimo, pr fissr l id, h si < b. Nl primo so, s α = 0 l vrifi è bnl. Si α > 0. Ossrvimo h s g S f h S+ f llor αg S αf αh S+ αf ; dunqu α gx) dx = Dll disuguglinz α αgx) dx αfx) dx gx) dx dgli intgrli g fndo vrir g S f ottin α fx) dx = α nlogmnt dll disuguglinz αfx) dx αhx) dx = α hx) dx. αfx) dx, prndndo l strmo suprior usndo l intgrbilità di f su [, b], si fx) dx αfx) dx α αfx) dx ; hx) dx si h n onlusion, αfx) dx α fx) dx = α fx) dx.

7 quindi α α fx) dx fx) dx = αfx) dx αfx) dx. C.13 ntgrl di Rimnn 7 αfx) dx α fx) dx S α < 0, l dimostrzion è nlog ossrvndo h s g S f h S+ f llor αg S + αf αh S αf. Vrifihimo or il punto b). Sino f 1 S f, f 2 S + f, g 1 S g g 2 S + g ; llor f 1 + g 1 S f+g f 2 + g 2 S + f+g. Dunqu f 1 x) dx + g 1 x) dx = = f1 x) + g 1 x) ) dx α fx) + gx) ) dx ) b fx) + gx) dx f2 x) + g 2 x) ) dx f 2 x) dx + g 2 x) dx. Fisst g 1, f 2 g 2 prndndo l strmo suprior dgli intgrli vrir di f 1 in S f fx) dx + si h g 1 x) dx fndo or vrir g 1 in S g g 1 x) dx si h fx) dx + gx) dx α fx) + gx) ) dx ) b fx) + gx) dx f 2 x) dx + f 1 x) dx l g 2 x) dx ; prndndo nor l strmo suprior dgli intgrli α fx) + gx) ) dx ) b fx) + gx) dx f 2 x) dx + g 2 x) dx. Riptndo lo stsso rgionmnto prim fissndo g 2 fndo vrir f 2 S + f poi fndo vrir g 2 S g + si ottin fx) dx + gx) dx α fx) + gx) ) dx ) b fx) + gx) dx fx) dx + gx) dx

8 8 C.13 ntgrl di Rimnn d ui il risultto. iii) L funzion g ostnt ugul zro pprtin S f, prtnto 0 = gx) dx fx) dx. Supponimo or h f si ontinu; ovvimnt s fx) = 0 llor Vrifihimo l implizion invrs, ossi h s fx) dx = 0. fx) dx = 0 llor fx) = 0. S pr ssurdo foss f x) 0 pr un rto x, b), pplindo il Torm C.4.2 sist un intorno δ x) = x δ, x + δ) [, b] un ostnt K f > 0, pr ogni x δ x). Prtnto l funzion sl Kf s x gx) = δ x) 0 s x / δ x) pprtin S f fx) dx gx) dx = δk f > 0, d ui l ssurdo. Quindi fx) = 0 pr ogni x, b), pr ontinuità, f è null nh ngli strmi b. iv) Sgu dirttmnt dl punto iii), ossrvndo h l funzion hx) = gx) fx) 0. v) Pr l Proposizion 9.32 ii), l funzion f è intgrbil su [, b]. Riordndo h f = f + f dov f + è l funzion prt positiv f l funzion prt ngtiv di f) usndo l linrità dll intgrl dimostrt nl punto ii), si h fx) dx = f + x) dx f x) dx. Utilizzndo l disuguglinz tringolr, l positività dll intgrl dimostrt nl punto iii) si riordi h f +, f 0) l rlzion f = f + + f si ottin fx) dx f + x) dx + f x) dx = f + x) dx + f x) dx = f+ x) + f x) ) dx = fx) dx.

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

DISPENSE DI ANALISI MATEMATICA. Indice

DISPENSE DI ANALISI MATEMATICA. Indice DISPENSE DI ANALISI MATEMATICA ANNAMARIA MONTANARI Indice. Integrle di Riemnn.. Proprietà elementri dell integrle di Riemnn 5.2. Teorem fondmentle del clcolo integrle. Primitive 6.3. Integrle generlizzto

Dettagli

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo.

Funzione esponenziale e logaritmo. Proprietà di esponenziale e logaritmo. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. 6. Funzion sponnzil ritmo. Proprità di sponnzil ritmo. Funzion sponnzil f ( ) fissto f : ( + ) è l bs dll funzion sponnzil d è fisst è l sponnt dll funzion

Dettagli

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale

Ellisse. L ellisse è il luogo geometrico dei punti del piano tali che la somma delle distanze da due punti fissi. definizione. P semidistanza focale Elliss dfinizion L lliss è il luogo gomtrio di punti dl pino tli h l somm dll distnz d du punti fissi F1 F2 dtti fuohi è ostnt, ioè: smiss mggior smiss minor P smidistnz fol F 2 smidistnz fol F 1 F 2 smiss

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo

Laurea triennale in Scienze della Natura a.a. 2009/2010. Regole di Calcolo Lure triennle in Scienze dell Ntur.. 2009/200 Regole di Clcolo In queste note esminimo lcune conseguenze degli ssiomi reltivi lle operzioni e ll ordinmento nell insieme R dei numeri reli. L obiettivo principle

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

a b }. L insieme Q è pertanto l insieme delle frazioni.

a b }. L insieme Q è pertanto l insieme delle frazioni. I1. Insimisti I1.1 Insimi Il ontto i insim è un ontto primitivo, prtnto non n vin t un finizion rigoros. Si può ir, intuitivmnt, h un insim è un ollzion i oggtti pr ui vlgono lun proprità: Un lmnto i un

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

tx P ty P 1 + t(z P 1)

tx P ty P 1 + t(z P 1) Esrcizi dll dcim sttimn - Soluzioni Indichimo con S R 3 l sfr unitri nll mtric Euclid di R 3, oro S {x, y, z R 3 x + y + z 1}. Indichimo con N S il polo nord il polo sud di S, rispttimnt, oro N,, 1 S,,

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE

GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE GEODESIA: PROPRIETA GEOMETRICHE DELL ELLISSOIDE PROPRIETA GEOMETRICHE DELL ELLISSOIDE Al fin di stbilir un gomtri sull llissoid di rotzion è ncssrio non solo dfinir l quzioni dll curv idon d individur

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d =

Esercizio 1. Dimostrare che se (X, d) è uno spazio metrico anche (X, d ) lo è, dove d = I seguenti esercizi sono stti proposti, e qusi tutti risolti, ttrverso l miling list del corso di Geometri IV durnte l nno ccdemico 2004/2005. Esercizio 1. Dimostrre che se (X, d) è uno spzio metrico nche

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

IL MOTO NELLA ZONA INSATURA

IL MOTO NELLA ZONA INSATURA L ritnzion dll umidità L suprfii d 1 4 rpprsntno l sussiv fsi di drnggio gio dll qu d un mzzo poroso. Al rsr dl drnggio l qu l si ritir ngli spzi intrstizili on suprfii urvtur ur rsnt d umntndo il rio

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri

+ poligoni e l equivalenza di figure piane + triangoli + quadrilateri + poligoni + poligoni l quivlnz i figur pin + tringoli + quriltri + poligoni l quivlnz i figur pin 1 Stilisi s l sgunti ffrmzioni sono vr o fls. SEZ. E In un poligono i lti sono onsutivi u u. L somm gli

Dettagli

INDICE. Studio di funzione. Scaricabile su: TEORIA. Campo di esistenza. Intersezione con gli assi

INDICE. Studio di funzione. Scaricabile su:  TEORIA. Campo di esistenza. Intersezione con gli assi P r o f. Gu i d of r a n c h i n i Antprima Antprima Antprima www. l z i o n i. j i md o. c o m Scaricabil su: http://lzioni.jimdo.com/ Studio di funzion INDICE TEORIA Campo di sistnza Intrszion con gli

Dettagli

Appunti di Analisi Matematica

Appunti di Analisi Matematica Appunti di Anlisi Mtemtic Stefno Med e Alberto Peretti Appunti per il corso di Mtemtic I I semestre,.. 2001/2002 Fcoltà di Scienze Sttistiche Università di Milno-Bicocc c Stefno Med e Alberto Peretti,

Dettagli

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI

ANALISI 2 ESERCITAZIONE DEL 06/12/2010 PUNTI CRITICI ANALISI ESERCITAZIONE DEL 06//00 PUNTI CRITICI Un punto critico è un punto in cui la funzion è diffrnziabil il piano tangnt al grafico è orizzontal Riconosciamo qusti punti prché il gradint è il vttor

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

1 Equazioni e disequazioni di secondo grado

1 Equazioni e disequazioni di secondo grado UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Fcoltà di Frmci e Medicin - Corso di Lure in CTF 1 Equzioni e disequzioni di secondo grdo Sino 0, b e c tre numeri reli noti, risolvere un equzione di secondo

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Funzioni a variazione limitata

Funzioni a variazione limitata Cpitolo 1 Funzioni vrizione limitt 1.1 Il problem delle primitive di funzioni L 1 Il problem dell ricerc delle primitive di un ssegnt funzione f : I R con I = [, b] intervllo limitto, cioè le soluzioni

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE L funzioni iprbolich sono funzioni spcili dott di proprità formlmnt simili qull di cui sono dott l funzioni goniomtrich ordinri. Anch l loro dfinizion in trmini gomtrici è molto simil

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato)

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato) Integrli impropri. Introduzione Abbimo introdotto il onetto di integrle onsiderndo unzioni ontinue (o ontinue trtti) in un intervllo limitto. Quest restrizione viene or rimoss onsiderndo dpprim unzioni

Dettagli

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve

Informatica 3. Informatica 3. LEZIONE 25: Algoritmi sui grafi. Lezione 25 - Modulo 1. Problema. Notazioni per il percorso più breve Informti Informti LZION : lgoritmi sui grfi Lzion - Moulo Moulo : Prolm l prorso più rv Moulo : Spnning tr osto minimo Prolm l prorso più rv Politnio i Milno - Prof. Sr omi Politnio i Milno - Prof. Sr

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

Micol Amr ANALISI MATEMATICA I - 999/2000 Dim. Considerimo il cso in cui l successione si crescente; l dimostrzione procede in modo del tutto nlogo, q

Micol Amr ANALISI MATEMATICA I - 999/2000 Dim. Considerimo il cso in cui l successione si crescente; l dimostrzione procede in modo del tutto nlogo, q TEOREMI DIMOSTRATI NEL CORSO. Successioni e serie numeriche. Teorem. (Unicit del ite) Si ( n ) n2in un successione di numeri reli convergente. Allor il suo ite e unico. Dim. Assumimo per ssurdo che n =

Dettagli

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi.

Corso di Analisi: Algebra di Base 5^ Lezione Logaritmi. Proprietà dei logaritmi Equazioni logaritmiche. Disequazioni logaritmiche. Allegato Esercizi. Corso di Anlisi: Algbr di Bs ^ Lzion Logritmi. Proprità di ritmi Equzioni ritmih. Disquzioni ritmih. Allgto Esrizi. LOGARITMI : Pr ritmo intndimo un sprssion lttrl indint un vlor numrio. Dfinizion : Si

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola

Ing. Gestionale Ing. Informatica Ing. Meccanica Ing. Tessile. Cognome Nome Matricola Ing Gstional Ing Informatica Ing Mccanica Ing Tssil Cognom Nom Matricola Univrsità dgli Studi di Brgamo Scondo Compitino di Matmatica II ) Si considri la matric 2 3 3 2 Si calcolino gli autovalori gli

Dettagli

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità.

I criteri di resistenza (o teorie della rottura) definiscono un legame tra lo stato tensionale e la sua pericolosità. 6-0 6- I critri di rsistnza (o tori dlla rottura) dfiniscono un lgam tra lo stato tnsional la sua pricolosità. Ogni stato tnsional può ssr rapprsntato da una funzion scalar dll tnsioni principali ch può

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

METODO DI NEWTON Esempio di non convergenza

METODO DI NEWTON Esempio di non convergenza METODO DI NEWTON S F(x) è C 2 si sa ch (x R k ) F(x+h) = F(x) + F(x) t h + 1/2 h t H(x)h +o( h 3 ) d una stima possibil dl punto di minimo è data da x# = x - H(x) -1 F(x) dov H(x) è la matric hssiana in

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva.

Integrazione numerica. I(f) := Non sempre si riesce a trovare la forma esplicita della primitiva. Approssimzione numeric di: Motivzioni. Integrzione numeric I(f) = f(x)dx. Non sempre si riesce trovre l form esplicit dell primitiv. Vlutzione costos dell primitiv. L funzione d integrre può essere dt

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

j Verso la scuola superiore Geometria euclidea e analitica

j Verso la scuola superiore Geometria euclidea e analitica j rso l suol suprior Gomtri uli nliti Ossrv l spzzt stilisi quli ll sgunti rmzioni sono vr quli ls. B D G E B è onsutivo B. DE è onsutivo G. B è onsutivo D. B è int D. B è onsutivo D. E è onsutivo G. Il

Dettagli

Prova scritta di Algebra 23 settembre 2016

Prova scritta di Algebra 23 settembre 2016 Prova scritta di Algbra 23 sttmbr 2016 1. Si considri la sgunt applicazion: { Z21 Z ϕ : 3 Z 7 [x] 21 ([2x] 3, [x] 7 ) a) Vrificar ch ϕ è bn dfinita. b) Dir s ([1] 3, [5] 7 ) Imϕ in tal caso trovarn la

Dettagli

Misura e incertezza METODI DI MISURA

Misura e incertezza METODI DI MISURA ppunti di Misur lttrih Misur inrtzz Mtodi di misur...1 Inrtzz di misur... Il risultto di un misur...3 rrori...3 Propgzion dgli rrori nll misur indirtt...4 smpi...6 Propgzion dll inrtzz nll misur indirtt...8

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

ELEMENTI DI TEORIA DEI NUMERI

ELEMENTI DI TEORIA DEI NUMERI ELEMENTI DI TEORIA DEI NUMERI 1. Richimi di teori Con Z indichimo l insieme dei numeri reltivi. Comincimo con il ricordre l definizione di quoziente e resto dell divisione di due numeri in Z. Definizione

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico Comunicazione Opzione Sportiva Tema di matematica wwwmatmaticamntit Nicola D Rosa maturità Esam di stato di istruzion scondaria suprior Indirizzi: Scintifico Comunicazion Opzion Sportiva Tma di matmatica Il candidato risolva uno di du problmi risponda

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica

Modelli dei Sistemi di Produzione Modelli e Algoritmi della Logistica Modlli di Sistmi di Produzion Modlli Algoritmi dll Logisti 000- Prolm dl ommsso viggitor: EURISTICHE CARLO MANNINO Spinz Univrsità di Rom Diprtimnto di Informti Sistmisti Euristih pr il TSP simmtrio Considrimo

Dettagli

Interpolazione polinomiale a tratti

Interpolazione polinomiale a tratti Interpolzione polinomile trtti È noto che dt un funzione f(x) di cui sono noti i vlori in n + 1 nodi distinti, i = 0,, n, esiste ed è unico il polinomio di interpolzione p n (x) di grdo l più n tle che

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Capitolo 7. Integrali doppi. 7.1 Motivazioni

Capitolo 7. Integrali doppi. 7.1 Motivazioni Cpitolo 7 Integrli doppi In questo cpitolo studieremo gli integrli per funzioni di più vribili: più precismente ci occuperemo degli integrli di funzioni di due vribili (dunque integrli doppi), m piccole

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

1. Elementi di analisi funzionale Esercizi

1. Elementi di analisi funzionale Esercizi . Elementi di nlisi funzionle Esercizi http://www.cirm.unibo.it/~brozzi/mi/pdf/mi-cp.-ese.pdf.. Spzi vettorili.. Spzi vettorili normti.-. Dimostrre l diseguglinz tringolre in C n reltivmente ll norm (

Dettagli

Costruiamo un aquilone SLED

Costruiamo un aquilone SLED Costruimo un quon SLED Sgnr sul sgmnto cod du rifrimnti 3 cm dgli spigoli (vrso l'trno) poi sul bordo ntrior dll du li 11 cm dgli spigoli (vrso l'strno); qusto punto si dvono pplicr l du mnich sul bordo

Dettagli

1 Espressioni polinomiali

1 Espressioni polinomiali 1 Espressioni polinomili Un monomio è un espressione letterle in un vribile x che contiene un potenz inter (non negtiv, cioè mggiori o uguli zero) di x moltiplict per un numero rele: x n AD ESEMPIO: sono

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

In questo capitolo svilupperemo la teoria dell integrazione secondo Riemann per funzioni di una variabile reale.

In questo capitolo svilupperemo la teoria dell integrazione secondo Riemann per funzioni di una variabile reale. Cpitolo 1 Integrle di Riemnn In questo cpitolo svilupperemo l teori dell integrzione secondo Riemnn per funzioni di un vribile rele. 1.1 Motivzioni Considerimo i seguenti problemi. 1. Clcolo di un re.

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

Analisi Matematica: Calcolo Integrale. Francesco Russo

Analisi Matematica: Calcolo Integrale. Francesco Russo Anlisi Mtemtic: Clcolo Integrle Frncesco Russo 2 settembre 200 2 Indice Integrli indefiniti 5. Primitive ed integrli indefiniti................. 5.2 Formule di integrzione..................... 6 2 Integrle

Dettagli

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO. Prova di Matematica

Simulazione Prova Esame di Maturità di Matematica per Liceo Scientifico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO. Prova di Matematica Simulzion Prov Esm di Mturità di Mtmtic pr Lico Scintiico SIMULAZIONE PROVA ESAME DI MATURITA PER LICEO SCIENTIFICO PROBLEMA Prov di Mtmtic Si dt l unzion. Studir l unzion dtrminndo l ntur vntuli punti

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 17/18 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 7/8 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione

LEZIONE 20. è lineare. Per la commutatività del prodotto scalare segue anche la linearità dell applicazione LEZIONE 20 20.1. Prodotti sclri. Definizione 20.1.1. Si V uno spzio vettorile su R. Un prodotto sclre su V è un ppliczione tle che:, : V V R (v 1, v 2 ) v 1, v 2 (PS1) per ogni v 1, v 2 V si h v 1, v 2

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

Metodo degli elementi finiti in una dimensione

Metodo degli elementi finiti in una dimensione Metodo degli elementi finiti in un dimensione Luci Gstldi DICATAM - Sez. di Mtemtic, http://luci-gstldi.unibs.it Indice 1 Problemi di diffusione-rezione del secondo ordine Formulzione debole Metodo di

Dettagli

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI

RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI RACCORDI PER APPLICAZIONI SPECIALI GIUNTI ECCENTRICI E CONICI 2 L soluzion dimnsionl ottiml pr signz prtiolri Rordi on snz ihir Innsti on snz ihir Clssi sondo nssità Dimtro di usit vriil Collgmnto l fondo

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza

Informatica II. Capitolo 5. Alberi. E' una generalizzazione della struttura sequenza Alri Informtic II Cpitolo 5 Alri E' un gnrlizzzion dll struttur squnz Si rilss il rquisito di linrità: ogni lmnto (nodo) h un solo prdcssor m può vr più succssori. Il numro di succssori (figli) può ssr

Dettagli