Legge di gravitazione universale

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Legge di gravitazione universale"

Transcript

1 Legge di gravitazione universale Famosissima è la legge che fu ispirata, come i libri sono soliti raccontare, dalla caduta di una mela sulla testa di Isaac Newton ( ). Questa nota relazione, che collega una forza FF a due sorgenti gravitazionali che si attraggono, è stata pubblicata dal poliedrico scienziato inglese nel 1687 e prende il nome di Legge di attrazione gravitazionale. Egli, infatti, si chiese come fosse possibile che la Luna nel suo moto intorno alla Terra non vi ricadesse sopra, così come gli cadde una mela sulla testa mentre sedeva nella sua tenuta. In un primo momento, Newton fu scontento dei risultati ottenuti e decise (almeno momentaneamente) di accantonare questo studio. Qualche anno più tardi, la sua curiosità fu nuovamente accesa grazie anche a scienziati come Robert Hooke ed Edmund Halley, a cui per primo mostrò i suoi manoscritti in merito alla risoluzione di un problema meccanico. Fu, poi, proprio Halley ad esortare Newton alla pubblicazione del manoscritto De motu corporum che costituì la base della mirabile opera in tre volumi Philosophiae Naturalis Principia Mathematica (o Principia). La legge ipotizzata da Newton ebbe come base teorica le leggi di Keplero ( ) ed è facile ripercorrere i passi che ne determinarono la nascita. Considerando circolare (per semplicità di calcolo) il moto di rivoluzione della Terra intorno al Sole, piuttosto che ellittico (l eccentricità dell ellisse è piccola), si ottengono i medesimi risultati conseguiti da Newton. Immaginiamo, dunque, un sistema costituito da un corpo di massa mm che orbita intorno ad un corpo di massa MM > mm. Il raggio dell orbita circolare è detto rr. Il moto, allora, è circolare ed uniforme. La forza centrale che consente il moto è la forza centripeta FF CC, ovvero la forza di attrazione gravitazionale stessa. Possiamo allora scrivere, riferendoci prima al corpo di massa minore (1): FF CC = mm vv2 rr dove vv è il modulo della velocità lineare del corpo in orbita. Ricordando di descrivere un moto circolare uniforme, scriviamo, inoltre: vv = rrrr = ππ TT vv2 = 4ππ2 TT 2 rr2

2 Riscrivendo la terza legge di Keplero ( adattata ad un moto circolare), ovvero TT 2 = kkrr 3, e sostituendo nella precedente espressione, si ricava: che, sostituita nella (1), da: vv 2 = 4ππ2 kkrr 3 rr2 = 4ππ2 kkkk FF CC = mm 4ππ2 kk Posto LL = 4ππ2, otteniamo la relazione che descrive l andamento della forza kk attrattiva FF SSSS che agisce sul corpo in orbita al variare del raggio orbitale (2): FF SSSS = FF CC = LL mm Ripetendo un ragionamento del tutto analogo, scriviamo anche la relazione che lega la forza FF PPPP di attrazione agente sul corpo di massa MM in funzione del medesimo raggio orbitale (3): FF PPPP = FF CC = LL MM Per il terzo principio della dinamica, deve essere FF SSSS = FF PPPP, quindi: LL mm = LL MM LLLL = LL MM Da cui, introducendo una nuova costante, GG, si ha: Da cui è immediato ricavare che: LL MM = LL mm = GG LL = GGGG LL = GGGG Sostituendo quanto appena trovato nella (2) e nella (3), si ha, infine: FF SSSS = GG MMMM = FF PPPP = GG mmmm

3 Riscrivendo in forma vettoriale, troviamo la formulazione generale della legge di gravitazione universale: FF (rr ) = GG mmmm Essa è sostanzialmente una relazione di diretta proporzionalità tra la forza di gravità FF (in funzione del raggio vettore rr ) e le due masse coinvolte. Tale interazione si esplica sempre in modo attrattivo tra le due masse ed è inversamente proporzionale al quadrato della distanza congiungente i centri di massa dei due corpi. Solamente oltre un secolo dopo il lavoro di Newton si determinò il valore della costante GG: vi riuscì sperimentalmente Cavendish nel 1798, utilizzando una 11 NNmm 2 bilancia a torsione; tale valore è approssimabile a 6, Per kkkk 2 eliminare il concetto di azione a distanza, molto ostico allo stesso Newton, si introduce il campo gravitazionale, così definito: rr HH (rr ) = FF (rr ) mm = GGGG rr ottenuto normalizzando FF (rr ) alla massa mm. La forza gravitazionale FF (rr ) compie, inoltre, un lavoro pari a: LL = GG mmmm drr = GGGGGG drr = GG mmmm rr = GG mmmm rr GG mmmm rr (tenuto conto che rr dss = drr) Si definisce, dunque, energia potenziale gravitazionale la funzione: UU(rr) = GG mmmm rr Tale espressione (che trova fondamento nella conservatività del campo) si ottiene assumendo infinita, per convenienza, la distanza rr del corpo da un punto di riferimento arbitrario. Essa, pertanto, rappresenta proprio il lavoro compiuto dalle forze del campo gravitazionale sulla massa mm per portarla dal punto fino a distanza infinita.

4 Vale dunque: LL = FF GG dss = UU(rr ) UU(rr ) Ma, d altra parte, è anche vero che: LL = FF GG dss = 0 Pertanto, la forza gravitazionale si dice essere conservativa, poiché il lavoro da essa compiuto su un generico percorso chiuso è pari a 0. In altre parole, possiamo dire che è una forza è conservativa se il lavoro da essa compiuto dipende solo dai punti e. A partire dal carattere conservativo della forza gravitazionale è semplice verificare che anche il campo gravitazionale è conservativo (presenta circuitazione nulla). Infatti, ricordando la definizione del campo gravitazionale e considerando costante la massa sonda mm, scriviamo: FF GG dss = 0 1 mm FF GG dss = 0 FF GG mm dss = HH dss = 0 Inoltre, a partire dalla definizione di energia potenziale gravitazionale è possibile introdurre ancora un altra utile funzione dello spazio (così come il campo vettoriale HH ). Essa è detta potenziale gravitazionale ed è definita al seguente modo: VV(rr) = UU mm = GG MM rr Anche il potenziale gravitazionale (così come il campo), poiché ottenuto normalizzando l energia potenziale gravitazionale alla massa mm, è una funzione che risulta indipendente dalla massa sonda, ma dipendente dalla massa MM, che è la sorgente del campo gravitazionale. Il potenziale è, perciò, una caratteristica di ogni punto del campo ed è legato all energia potenziale tramite la relazione: UU(rr) = mmmm(rr)

5 Noto il potenziale, infatti, quest ultima permette di conoscere l energia potenziale di un qualsiasi corpo di massa mm. Modello (non in scala) del Sistema solare N.B. Si noti che nella formulazione dell energia potenziale e del potenziale gravitazionale è stata azzerata una costante (arbitraria), derivante dal calcolo integrale e dipendente dalle condizioni iniziali del moto, per cui queste funzioni saranno sempre negative. Poiché tali funzioni sono definite a meno di una costante, esse rappresentano grandezze matematiche. La loro differenza è una grandezza fisica, poiché essa non dipende da tale costante, che si semplifica. Vincenzo Ventriglia

(4 π 2 /kt) m t / r 2 = (4 π 2 /ks) m s / r 2

(4 π 2 /kt) m t / r 2 = (4 π 2 /ks) m s / r 2 Le leggi di Keplero Lo studio del moto dei pianeti, tramite accurate misure, permise a Keplero tra il 1600 ed il 1620 di formulare le sue tre leggi: I legge: I pianeti percorrono orbite ellittiche intorno

Dettagli

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione.

CAPITOLO 9: LA GRAVITAZIONE. 9.1 Introduzione. CAPITOLO 9: LA GRAVITAZIONE 9.1 Introduzione. Un altro tipo di forza piuttosto importante è la forza gravitazionale. Innanzitutto, è risaputo che nel nostro sistema di pianeti chiamato sistema solare il

Dettagli

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, /

LA GRAVITAZIONE. Legge di Gravitazione Universale 08/04/2015 =6, / LA GRAVITAZIONE Definizione (forza di attrazione gravitazionale) Due corpi puntiformi di massa e si attraggono vicendevolmente con una forza (forza che il corpo A esercita sul corpo B), o (forza che il

Dettagli

Il problema dei due corpi La dinamica planetaria

Il problema dei due corpi La dinamica planetaria Il problema dei due corpi La dinamica planetaria La Meccanica Classica Lagrange Hamilton Jacobi Vettori Per rendere conto della 3-dimensionalità in fisica, e in matematica, si usano delle grandezze più

Dettagli

Gravità e moti orbitali. Lezione 3

Gravità e moti orbitali. Lezione 3 Gravità e moti orbitali Lezione 3 Sommario Brevi cenni storici. Le leggi di Keplero e le leggi di Newton. La forza di gravitazionale universale e le orbite dei pianeti. 2 L Universo Geocentrico La sfera

Dettagli

1. Le leggi di Keplero Fino al 1600 si credeva che: la Terra fosse al centro dell'universo, con il Sole e i pianeti orbitanti attorno (modello

1. Le leggi di Keplero Fino al 1600 si credeva che: la Terra fosse al centro dell'universo, con il Sole e i pianeti orbitanti attorno (modello La gravitazione 1. Le leggi di Keplero Fino al 1600 si credeva che: la Terra fosse al centro dell'universo, con il Sole e i pianeti orbitanti attorno (modello geocentrico); i corpi celesti, sferici e perfetti,

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

GRANDEZZE SCALARI E VETTORIALI

GRANDEZZE SCALARI E VETTORIALI GRANDEZZE SCALARI E VETTORIALI Una grandezza scalare è definita da un numero reale con dimensioni. (es.: massa, tempo, densità,...) Una grandezza vettoriale è definita da un modulo (numero reale non negativo

Dettagli

, conservaz del mom della quant di moto, in cui abbiamo 3 cost scalari.

, conservaz del mom della quant di moto, in cui abbiamo 3 cost scalari. Il probl degli N corpi consiste nello studio del moto di un sistema di n punti di massa, soggetti alle mutue interazioni gravitaz descritte dalla legge newtoniana. L obiettivo è quello di identificare

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Tra le soluzioni pervenute pubblichiamo, con le dovute correzioni e precisazioni, quella inviata da Raffaele Campanile, perché ritenuta la più

Tra le soluzioni pervenute pubblichiamo, con le dovute correzioni e precisazioni, quella inviata da Raffaele Campanile, perché ritenuta la più Tra le soluzioni pervenute pubblichiamo, con le dovute correzioni e precisazioni, quella inviata da Raffaele Campanile, perché ritenuta la più completa. I dati forniti permettevano di arrivare alla soluzione

Dettagli

La rivoluzione scientifica. Copernico, Galileo, Newton

La rivoluzione scientifica. Copernico, Galileo, Newton La rivoluzione scientifica Copernico, Galileo, Newton La rivoluzione scientifica è quel movimento di idee che nel corso del XVI e XVII secolo portò all abbandono della precedente immagine della realtà,

Dettagli

DINAMICA DEL PUNTO MATERIALE

DINAMICA DEL PUNTO MATERIALE DINAMICA DEL PUNTO MATERIALE DOWNLOAD Il pdf di questa lezione (0308a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 08/03/2012 I 3 PRINCIPI DELLA DINAMICA PRIMO PRINCIPIO Esiste una

Dettagli

Gravità e moti orbitali. Lezione 3

Gravità e moti orbitali. Lezione 3 Gravità e moti orbitali Lezione 3 Sommario Brevi cenni storici. Le leggi di Keplero e le leggi di Newton. La forza di gravitazionale universale e le orbite dei pianeti. 2 L Universo Geocentrico La sfera

Dettagli

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Dinamica Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Cinematica Moto rettilineo uniforme s=s 0 +v(t-t 0 ) Moto uniformemente accelerato v=v 0 +a(t-t

Dettagli

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica

Tempi Moduli Unità /Segmenti. 2.1 La conservazione dell energia meccanica PERCORSO FORMATIVO DEL 3 ANNO - CLASSE 3 A L LSSA A. S. 2015/2016 Tempi Moduli Unità /Segmenti MODULO 0: Ripasso e consolidamento di argomenti del biennio MODULO 1: Il moto dei corpi e le forze. (Seconda

Dettagli

!" #$ !" #$!" !" #$!" !" #$!" % & ' !" #$!" % & ' ()*+,+ !" #$!" % & ' ()*+,+!" #$!" - $ !" #$!" % & ' ()*+,+!" #$!" - $! % % )./+0+*,).+,.+1+ %% % )./+0+*,).+,.+1+ %% +2 $ 3*)4.24*1"5* 3*)6+2++0)1,25

Dettagli

25 gennaio 2013 Primo-Levi I pianeti del Sistema solare - introduzione

25 gennaio 2013 Primo-Levi I pianeti del Sistema solare - introduzione 25 gennaio 2013 Primo-Levi I pianeti del Sistema solare - introduzione Bedogni Roberto INAF Osservatorio Astronomico di Bologna http://www.bo.astro.it/~bedogni/primolevi/ email: roberto.bedogni@oabo.inaf.it

Dettagli

MODULO ACCOGLIENZA : 4 ORE

MODULO ACCOGLIENZA : 4 ORE MODULO ACCOGLIENZA : 4 ORE Matematica Richiami di aritmetica algebra e geometria Fisica Osservazione ed interpretazione di un fenomeno Conoscersi; riconoscere e classificare il lavoro svolto negli altri

Dettagli

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino

Corso di Fisica. CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Corso di Fisica CdL in Scienze Infermieristiche CdL in Fisioterapia Sede di Cassino Docente: Deborah Lacitignola Dipartimento di Scienze Motorie e della Salute Università di Cassino Email: d.lacitignola@unicas.it

Dettagli

Dinamica: Forze e Moto, Leggi di Newton

Dinamica: Forze e Moto, Leggi di Newton Dinamica: Forze e Moto, Leggi di Newton La Dinamica studia il moto dei corpi in relazione il moto con le sue cause: perché e come gli oggetti si muovono. La causa del moto è individuata nella presenza

Dettagli

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali

approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali approfondimento La dinamica e le interazioni fondamentali Il principio di inerzia secondo Galileo Sistemi inerziali Forza gravitazionale e forza peso massa e peso, peso apparente Forze normali Moto circolare

Dettagli

IL PENDOLO A FILO Gruppo 2

IL PENDOLO A FILO Gruppo 2 IL PENDOLO A FILO Gruppo 2 Bistacchi S. Casconi S. Ermini A. Francini I. Scopo dell esperienza: pendolo a filo e determinazione dell accelerazione gravitazionale Apparecchiature di montaggio: filo inestensibile;

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac

circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo GALILEI e Isac La DINAMICA è il ramo della meccanica che si occupa dello studio del moto dei corpi e delle sue cause o delle circostanze che lo determinano e lo modificano. Secondo alcuni studi portati avanti da Galileo

Dettagli

Il campo elettrico. Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore

Il campo elettrico. Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore Il campo elettrico Giuseppe Frangiamore con la collaborazione di Mingoia Salvatore Legge di Coulomb I primi studi sulle forze agenti tra corpi elettrizzati si devono a COULOB il quale, verso la fine del

Dettagli

Laurea triennale in Fisica a.a

Laurea triennale in Fisica a.a Laurea triennale in Fisica a.a. 010-011 CORSO DI ASTRONOMIA LEZIONE 6 11 aprile 011 Prof. Angelo Angeletti Determinazione di un orbita ellittica da tre osservazioni ρ i u i indicano le posizioni geocentriche

Dettagli

τ (O) r F è semplicemente l intensità della forza F dal polo O: = r F sinθ = bf

τ (O) r F è semplicemente l intensità della forza F dal polo O: = r F sinθ = bf 5. Momenti, forze centrali e gravitazione Definizione di momento di una forza Si definisce momento della forza F rispetto al polo O la quantità data dal prodotto vettoriale τ (O) r F il cui modulo si misura

Dettagli

Meccanica parte seconda: Perche' i corpi. si muovono? la Dinamica: studio delle Forze

Meccanica parte seconda: Perche' i corpi. si muovono? la Dinamica: studio delle Forze Meccanica parte seconda: Perche' i corpi si muovono? la Dinamica: studio delle Forze Il concetto di forza Le forze sono le cause del moto o meglio della sua variazione Se la velocita' e' costante o nulla

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2012/2013, Fisica

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2012/2013, Fisica Unità di misura - misurare oggetti -grandezze fisiche: fondamentali: lunghezza, tempo, massa, intensità di corrente, temperatura assoluta, quantità di sostanza derivate: velocità, accelerazione, forza,

Dettagli

Verifica sommativa di Fisica Cognome...Nome... Data

Verifica sommativa di Fisica Cognome...Nome... Data ISTITUZIONE SCOLASTICA Via Tuscolana, 208 - Roma Sede Associata Liceo "B.Russell" Verifica sommativa di Fisica Cognome........Nome..... Data Classe 4B Questionario a risposta multipla Prova di uscita di

Dettagli

Lezione 6. Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. WWW.SLIDETUBE.IT

Lezione 6. Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. WWW.SLIDETUBE.IT Lezione 6 Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. Classificazione delle Forze Distinguiamo tra: Forze attive Forze passive Forze attive Le 4 forze fondamentali:

Dettagli

m p 6, j m 1 2 m e 3, j m 1 2 5, m 2 82, N w

m p 6, j m 1 2 m e 3, j m 1 2 5, m 2 82, N w Teoria della carica elettrica e calcolo del valore teorico Questa relazione è stata ricavata senza porre alcuna ipotesi restrittiva e dunque risulta di validità universale, applicabile in ogni circostanza

Dettagli

La forza gravitazionale: Newton, la mela, la luna e. perché la mela cade e la luna ruota?

La forza gravitazionale: Newton, la mela, la luna e. perché la mela cade e la luna ruota? La forza gravitazionale: Newton, la mela, la luna e perché la mela cade e la luna ruota? La causa dei due fenomeni è la stessa Accelerazione luna : a L = 0.0027 m/s 2 Accelerazione mela : a m = 9.81 m/s

Dettagli

Newton, lo scienziato che svelò il mistero della gravitazione universale

Newton, lo scienziato che svelò il mistero della gravitazione universale Newton, lo scienziato che svelò il mistero della gravitazione universale Perché la Luna gira attorno alla Terra e questa ruota attorno al Sole? Perché un sasso lasciato cadere da una torre giunge al suolo?

Dettagli

RISOLUZIONE DI PROBLEMI DI FISICA

RISOLUZIONE DI PROBLEMI DI FISICA RISOUZIONE DI PROBEMI DI FISICA Problema 1 Una massa puntiforme m = 2 kg è soggetta ad una forza centrale con associata energia potenziale radiale U( r) 6 A =, dove A = 2 J m 6. Il momento angolare della

Dettagli

PIANO DI STUDIO D ISTITUTO

PIANO DI STUDIO D ISTITUTO PIANO DI STUDIO D ISTITUTO Materia: FISICA Casse 2 1 Quadrimestre Modulo 1 - RIPASSO INIZIALE Rappresentare graficamente nel piano cartesiano i risultati di un esperimento. Distinguere fra massa e peso

Dettagli

Densità e volume specifico

Densità e volume specifico Densità e volume specifico Si definisce densità di un corpo,, il rapporto tra la sua massa, m, e il suo volume, V; essa quantifica la massa dell unità di volume. m = = V [ kg] 3 [ m ] E utile considerare

Dettagli

Lezione 5. L equilibrio dei corpi. Lavoro ed energia.

Lezione 5. L equilibrio dei corpi. Lavoro ed energia. Lezione 5 L equilibrio dei corpi. Lavoro ed energia. Statica E la parte della Meccanica che studia l equilibrio dei corpi. Dai principi della dinamica sappiamo che se su un corpo agiscono delle forze allora

Dettagli

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa

Dinamica. Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Dinamica Relazione tra forze e movimento dei corpi Principi della dinamica Conce4 di forza, inerzia, massa Cinematica Moto rettilineo uniforme s=s 0 +v(t-t 0 ) Moto uniformemente accelerato v=v 0 +a(t-t

Dettagli

IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo

IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo Il lavoro IL LAVORO E LE ENERGIE Giuseppe Frangiamore con la collaborazione di Carmelo Bastillo Il lavoro è una grandezza scalare, ed è definito dal prodotto di forza per spostamento. L unità di misura

Dettagli

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1

Università Politecnica delle Marche, Facoltà di Agraria. C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1 C.d.L. Scienze Forestali e Ambientali, A.A. 2009/2010, Fisica 1 Unità di misura - misurare oggetti - grandezze fisiche: fondamentali: lunghezza, tempo, massa, intensità di corrente, temperatura assoluta,

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

La Misura del Mondo. 4 Le distanze nel sistema solare. Bruno Marano Dipartimento di Astronomia Università di Bologna

La Misura del Mondo. 4 Le distanze nel sistema solare. Bruno Marano Dipartimento di Astronomia Università di Bologna La Misura del Mondo 4 Le distanze nel sistema solare Dipartimento di Astronomia Università di Bologna La triangolazione tra la Torre degli Asinelli, Porta S.Felice, il ponte sul Reno e il Colle della Guardia

Dettagli

Lez. 10 Concetto di forza

Lez. 10 Concetto di forza Lez. 10 Concetto di forza Prof. 1 Dott., PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-8016, Napoli mettivier@na.infn.it +39-081-676137 1 Ciascuno

Dettagli

Meccanica del punto materiale

Meccanica del punto materiale Meccanica del punto materiale Princìpi della dinamica. Forze. Momento angolare. Antonio Pierro @antonio_pierro_ (https://twitter.com/antonio_pierro_) Per consigli, suggerimenti, eventuali errori o altro

Dettagli

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ

Equilibrio dei corpi. Leggi di Newton e momento della forza, τ Equilibrio dei corpi Leggi di Newton e momento della forza, τ Corpi in equilibrio 1. Supponiamo di avere due forze di modulo uguale che agiscono lungo la stessa direzione, ma che siano rivolte in versi

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

STUDIO DEI SATELLITI DI GIOVE CON UN TELESCOPIO AMATORIALE D. Trezzi 01/02/2012, rev. 03/02/2012

STUDIO DEI SATELLITI DI GIOVE CON UN TELESCOPIO AMATORIALE D. Trezzi 01/02/2012, rev. 03/02/2012 ARTICOLI di ASTRONOMIA AMATORIALE STUDIO DEI SATELLITI DI GIOVE CON UN TELESCOPIO AMATORIALE D. Trezzi (datrezzi@alice.it) 01/02/2012, rev. 03/02/2012 ABSTRACT A poco più di quattrocento anni dalla scoperta

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Anno scolastico 2016/17. Piano di lavoro individuale ISS BRESSANONE-BRIXEN LICEO SCIENTIFICO - LICEO LINGUISTICO - ITE. Classe: V liceo linguistico

Anno scolastico 2016/17. Piano di lavoro individuale ISS BRESSANONE-BRIXEN LICEO SCIENTIFICO - LICEO LINGUISTICO - ITE. Classe: V liceo linguistico Anno scolastico 2016/17 Piano di lavoro individuale ISS BRESSANONE-BRIXEN LICEO SCIENTIFICO - LICEO LINGUISTICO - ITE Classe: V liceo linguistico Insegnante: Prof. Nicola Beltrani Materia: Fisica ISS BRESSANONE-BRIXEN

Dettagli

Collisioni e leggi di conservazione

Collisioni e leggi di conservazione Collisioni e leggi di conservazione Nello studio dei processi d urto si fa ampio uso delle leggi di conservazione della dinamica dei sistemi: per un sistema isolato esse sono quantita di moto, momento

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Junior

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Junior OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova Teorica - Categoria Junior 1. Vero o falso? Quale delle seguenti affermazioni può essere vera? Giustificate in dettaglio la vostra

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

Gravitazione universale

Gravitazione universale wwweasymathsaltervistaorg Gravitazione universale 01 - Gravitazione universale Newton scoprì la legge della gravitazione universale attorno alla metà del '600 Si dice che egli fosse rifugiato in campagna

Dettagli

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni

Dettagli

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze

LE FORZE. Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze LE FORZE Il mondo che ci circonda è costituito da oggetti che esercitano azioni gli uni sugli altri Queste azioni sono dette forze Le forze possono agire: Per contatto a distanza Effetto delle forze Le

Dettagli

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto

IISS Enzo Ferrari, Roma. Plesso Vallauri, Liceo delle Scienze Applicate. Programma svolto IISS Enzo Ferrari, Roma Plesso Vallauri, Liceo delle Scienze Applicate Programma svolto ANNO SCOLASTICO: 2015-2016 DISCIPLINA: FISICA CLASSE: 2ª F DOCENTE: MICHAEL ROTONDO Richiami sulle grandezze fisiche,

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

Leggi di Keplero e Gravitazione

Leggi di Keplero e Gravitazione Leggi di Keplero e Gravitazione Olimpiadi di Astronomia 2016 Selezione Interregionale Lazio astrolimpiadi.lazio@iaps.inaf.it Giovanni Keplero (1571-1630) Fu un convinto protestante, debole di costituzione

Dettagli

Gravitazione universale.

Gravitazione universale. Gravitazione universale. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, marzo 2014. Indice 1 Il sistema solare e il modello eliocentrico 2 1.1 Aristarco di Samo (310 a.c. - 230 a.c.).

Dettagli

VELOCITA' DI FUGA E RAGGIO DELL'ORIZZONTE DEGLI EVENTI SECONDO LA FISICA CLASSICA

VELOCITA' DI FUGA E RAGGIO DELL'ORIZZONTE DEGLI EVENTI SECONDO LA FISICA CLASSICA VELOCITA' DI FUGA E RAGGIO DELL'ORIZZONTE DEGLI EVENTI SECONDO LA FISICA CLASSICA Per sfuggire all'attrazione gravitazionale di un corpo celeste ( come una stella o un pianeta) occorre possedere una velocità

Dettagli

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton

Lezione 3 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 Cinematica Velocità Moto uniforme Accelerazione Moto uniformemente accelerato Concetto di Forza Leggi di Newton Sistemi

Dettagli

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche

Campi Elettrici e Magnetici. ELETTROSTATICA Cariche Elettriche e Forze Elettriche Campi Elettrici e Magnetici ELETTROSTATICA Cariche Elettriche e Forze Elettriche Esperienza ==> Forza tra cariche SI INTRODUCE UNA NUOVA GRANDEZZA FONDAMENTALE: LA CARICA ELETTRICA UNITÀ DI MISURA NEL

Dettagli

Ottavio Serra. Odografo di un punto mobile

Ottavio Serra. Odografo di un punto mobile Ottavio Serra Odografo di un punto mobile L odografo di un punto mobile P è la curva descritta dall estremo del vettore velocità applicato in un punto fisso O. L odografo è la rappresentazione del moto

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

Terza legge di Keplero, teoria e significato fisico della costante di Planck. m V p2

Terza legge di Keplero, teoria e significato fisico della costante di Planck. m V p2 estratto da : L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Terza legge di Keplero, teoria e significato fisico della costante di Planck La relazione E p h p p ci dice che all energia

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme Un oggetto si muove lungo una circonferenza con velocità costante T, il tempo che impiega a tornare al punto di partenza, è il periodo f = 1/T è la frequenza (s 1 o Hertz (Hz))

Dettagli

Storia della dinamica

Storia della dinamica Storia della dinamica Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Lo studio del movimento e delle sue cause è stato oggetto di analisi da parte dei primi filosofi greci. Aristotele

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

Il lavoro e l energia

Il lavoro e l energia Il lavoro e l energia Il concetto fondamentale che mette in relazione forze, spostamenti ed energia è quello di lavoro Lavoro di una forza costante Nel caso di forza e spostamento con uguale direzione

Dettagli

Determinazione degli Elementi Orbitali di un Corpo Celeste noti i Vettori r e V all istante t. Giuseppe Matarazzo

Determinazione degli Elementi Orbitali di un Corpo Celeste noti i Vettori r e V all istante t. Giuseppe Matarazzo Determinazione degli Elementi Orbitali di un Corpo Celeste noti i Vettori r e V all istante t Giuseppe Matarazzo Febbraio 2003 Dicembre 2008 2 I vettori Posizione e Velocità I vettori r, V assegnati La

Dettagli

Nozioni di meccanica classica

Nozioni di meccanica classica Nozioni di meccanica classica CORSO DI LAUREA IN TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA - Prof. Marco Maggiora Jacopo Pellegrino - jacopo.pellegrino@infn.it Introduzione Introduzione

Dettagli

IL CAMPO ELETTRICO ED IL POTENZIALE

IL CAMPO ELETTRICO ED IL POTENZIALE IL CAMPO ELETTRICO ED IL POTENZIALE 1 V CLASSICO PROF.SSA DELFINO M. G. UNITÀ 2 - IL CAMPO ELETTRICO ED IL POTENZIALE 1. Il campo elettrico 2. La differenza di potenziale 3. I condensatori 2 LEZIONE 1

Dettagli

Simulazionme Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti

Simulazionme Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Simulazionme Prova Scritta Completa-Fisica 9 CFU Corso di Laurea in Tossicologia dell ambiente e degli alimenti Quesito 1 In un moto uniformemente accelerato, quale tra le seguenti affermazioni è sempre

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA GARA INTERREGIONALE - Categoria Senior. Problemi con soluzioni

OLIMPIADI ITALIANE DI ASTRONOMIA GARA INTERREGIONALE - Categoria Senior. Problemi con soluzioni OLIMPIADI ITALIANE DI ASTRONOMIA 2012 GARA INTERREGIONALE - Categoria Senior Problemi con soluzioni Problema 1. Un sistema binario visuale si trova ad una distanza D=42 anni-luce dalla Terra. Le due stelle

Dettagli

Primo principio detto d'inerzia o di Galileo

Primo principio detto d'inerzia o di Galileo Dinamica del punto Forza ed accelerazione La prima legge di Newton : l inerzia La seconda legge di Newton: il pirincipio fondamentale della dinamica La terza legge di Newton : azione e reazione Le differente

Dettagli

SVOLTO DA:MARTINA VIGNOLA SOLA SIMONA IL MOTO DEI PIANETI

SVOLTO DA:MARTINA VIGNOLA SOLA SIMONA IL MOTO DEI PIANETI SVOLTO DA:MARTINA VIGNOLA SOLA SIMONA IL MOTO DEI PIANETI IL MOTO DELLE STELLE E DEI PIANETI In antichità il Sole,la Luna e le Stelle sono stati considerati vere e proprie divinità in grado di influire

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Sviluppo della forza (parte I).

Sviluppo della forza (parte I). Sviluppo della forza (parte I). Appunti 1 Corso sulla Preparazione fisica II livello A cura di MARCO VALENTE dell Organico Didattico di SdS Coni Liguria Genova, autunno/inverno 2010 http://sds.coniliguria.it

Dettagli

Progetto Matematica in Rete - Complementi di geometria analitica - Le coniche. Le sezioni di un cono

Progetto Matematica in Rete - Complementi di geometria analitica - Le coniche. Le sezioni di un cono Le coniche Le sezioni di un cono Parabola, ellisse, circonferenza, iperbole sono dette coniche poiché si possono ottenere sezionando un cono a doppia falda. Infatti: se il piano incontra tutte le generatrici

Dettagli

Sezione Il Sistema Solare Testo Parte III

Sezione Il Sistema Solare Testo Parte III Sezione Il Sistema Solare Testo Parte III Argomenti trattati Rappresentazione geometrica del sistema geocentrico o tolemaico Rappresentazione geometrica del sistema eliocentrico o copernicano Velocità

Dettagli

V 2 R V 2 R T 2 K 2. ; T eq. n 2 ; V eq

V 2 R V 2 R T 2 K 2. ; T eq. n 2 ; V eq alcolo teorico delle orbite ellittiche dei pianeti del Sistema Solare e loro evoluzione nel tempo Se,su un orbita,prendiamo in considerazione un intero periodo di rivoluzione T, possiamo assumere una velocità

Dettagli

L ORIGINE DELLA LUNA

L ORIGINE DELLA LUNA LA LUNA L ORIGINE DELLA LUNA La luna è l unico satellite naturale della Terra: un corpo celeste che ruota attorno alla Terra Appare molto più grande delle altre stelle ed anche più vicina L origine della

Dettagli

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere Facoltà di Farmacia - Anno Accademico 2014-2015 A 08 Aprile 2015 Esercitazione in itinere Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Dinamica I. Dinamica del punto materiale

Dinamica I. Dinamica del punto materiale Dinamica I Dinamica del punto materiale Si occupa di studiare gli effetti che l applicazione di una forza produce sul moto di un oggetto le cui dimensioni siano trascurabili rispetto al fenomeno in esame

Dettagli

Stampa Preventivo. A.S Pagina 1 di 6

Stampa Preventivo. A.S Pagina 1 di 6 Stampa Preventivo A.S. 2009-2010 Pagina 1 di 6 Insegnante VISINTIN ANTONELLA Classe 4AL Materia fisica preventivo consuntivo 129 0 titolo modulo 4.1 Grandezze fisiche e misure 4.2 Le forze e l'equilibrio

Dettagli

2 - Principi di Meccanica e di Equilibrio

2 - Principi di Meccanica e di Equilibrio 2 - Principi di Meccanica e di Equilibrio Cause dei fenomeni meccanici (quiete e moto) 1/2 Nella Meccanica Classica (Meccanica Newtoniana) si assume che tra corpi diversi, così come tra le diverse parti

Dettagli

LAVORO, POTENZA ED ENERGIA

LAVORO, POTENZA ED ENERGIA LAVORO, POTENZA ED ENERGIA Giuseppe Frangiamore con la collaborazione di Leonardo Zaffuto Solitamente si dice di compiere un lavoro ogni volta che si esegue un attività di tipo fisico o mentale. Quando

Dettagli

Fisica Generale A. 6. Dinamica del Punto Materiale. Il Primo Principio. Formulazione Classica. Il Moto nella Fisica Pre-Galileiana

Fisica Generale A. 6. Dinamica del Punto Materiale. Il Primo Principio. Formulazione Classica. Il Moto nella Fisica Pre-Galileiana Fisica Generale A Il Primo Principio. Formulazione Classica Detto anche principio di inerzia, descrive il moto di un punto materiale non soggetto a forze. Formulato da Galileo Galilei (1564-1642). 6. Dinamica

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 '

Grandezze cinematiche relative nel sistema L: r 12, v 12 a 12 e nel sistema del centro dimassa (C): r 12 ', v 12 ', e a 12 ' Sistemi di due particelle Problema dei due corpi: studio del moto relativo di due corpi supposti puntiformi sotto l azione della forza di interazione mutua. Esempio: moto (relativo) di due corpi celesti

Dettagli

SR P. G. Bracco - Appunti di Fisica Generale

SR P. G. Bracco - Appunti di Fisica Generale Moti relativi Nel trattare i moti bisogna definire il sistema di riferimento (SR) rispetto a cui si descrive il moto. A volte è più semplice usare un SR particolare (in moto rispetto ad un altro) ed è

Dettagli