Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Informazioni personali Si prega di indicare il proprio nome, cognome e numero di matricola nei seguenti campi. Nome e cognome: Matricola:"

Transcript

1 UNIVERSITÀ DEGLI STUDI DI VERONA CORSO DI LAUREA IN SCIENZE E TECNOLOGIE VITICOLE ED ENOLOGICHE Esame di MATEMATICA San Flrian, 08/09/07 Infrmazini persnali Si prega di indicare il prpri nme, cgnme e numer di matricla nei seguenti campi. Nme e cgnme: Matricla: Si prega inltre di cmpilare i seguenti campi, in base alla scelta che si intende fare. Chied che la mia prva d'esame venga crretta e valutata. Il vt che cnsegu cn questa prva annulla eventuali vti già cnseguiti in appelli d'esame precedenti. Rislvere il quesit n. + altri quesiti a scelta parte A + quesiti a scelta parte B Firma: Numer di fgli cnsegnati: Intend ritirarmi; chied che la mia prva nn venga crretta nè valutata. Firma: INDICAZIONI PER I CANDIDATI DURANTE LA PROVA NON È CONSENTITO AGLI STUDENTI COMUNICARE TRA LORO O CON L ESTERNO; PERTANTO I TELEFONI CELLULARI ED I DISPOSITIVI MULTIMEDIALI DEVONO RESTARE SPENTI! Scrivete le vstre rispste in md rdinat, utilizzand la penna stilgrafica la penna a sfera; disegnate a matita i grafici delle funzini. In cas di errre, tracciate un segn sulla rispsta scrretta e scrivete accant ad essa quella crretta. NON È AMMESSO L USO DELLA CANCELLINA NÉ DELLA PENNA ROSSA! Si pssn, invece, utilizzare penne di qualsiasi clre divers dal ROSSO; è ammess l us della calclatrice scientifica nn prgrammabile grafica. Alle rispste e alle crrezini scritte in md illeggibile verrann assegnati 0 punti. Utilizzate i fgli della minuta (che dvrann essere pprtunamente cntrassegnati) sl per l'impstazine delle sluzini, in quant essi nn verrann sttpsti a valutazine. Le rispste devn riprtare tutt il prcediment attravers il quale si giunge alla sluzine, cn i calcli intermedi e le vstre deduzini. Abbiate fiducia in vi stessi e nelle vstre capacità. Bun lavr! Lrenz Meneghini QUESITO ( /7) Studiare la funzine f x x x funzine. Test della prva d'esame Parte A, determinand, in particlare le tangenti di fless. Disegnare il grafic della

2 QUESITO ( /) Verificare che la parabla y kx 6k x 5k passa per il punt A,0, k del parametr k in md che la parabla e la funzine y ln x abbian la stessa tangente nel punt,0 l equazine della parabla crrispndente. ; determinare il valre A e QUESITO ( /) Determinare gli asintti della funzine f x x 6 x QUESITO ( /) Data la funzine f x k x kx k x kx k x x QUESITO 5 ( /) Determinare gli estremi della funzine: Specificare se si tratta di estremi relativi assluti. QUESITO 6 ( /) determinare per quali valri di k è cntinua in x. 5 f x x x x x x Dp averne studiat il dmini, dire mtivand esaurientemente la rispsta se le funzini ln ln x g x sn, in realtà, la stessa funzine. QUESITO 7 ( /) Dat il grafic della funzine f x in figura, disegnare il grafic di f x : f x x e x, stabilire qual è, tra i seguenti, il grafic di: a) f x b) f x c) f x Facend riferiment al grafic di f mtivand adeguatamente la rispsta. Fig. Fig. Fig.

3 Parte B QUESITO 8 ( /) Dp averne tracciat i grafici, trvare le intersezini delle parable di equazine y x 6x 6 e y x x e calclare l area della regine piana delimitata dai due grafici. QUESITO 9 ( /) Rislvere l equazine differenziale y" y ' 5y e QUESITO 0 ( /) Calclare la traspsta e il determinante della seguente matrice, dire se è invertibile e, in cas affermativ, calclarne l inversa: QUESITO ( /) Dp aver intersecat la parabla di equazine y x 6x cn l asse x determina il vlume del slid generat da una rtazine del segment parablic in figura attrn: a) all asse x; b) all asse y. QUESITO ( /) Studiare la cnvergenza degli integrali imprpri: a) x e dx b) 0 ln x dx x QUESITO ( /) Rislvere i seguenti sistemi lineari: x y 5z a) 6x 9y 0z x y 5z b) x y x y z 5 x y z 8 Punteggi ttale: /0

4 SOLUZIONE Appell Settembre 07 N. PARTE A è una funzine plinmiale, di dmini D, cntinua nel su dmini f x x x x x f x x x x x la funzine nn è né pari né dispari SEGNO E INT. ASSI: x x 0 x x 0, essend x 0, x x x 0 Il grafic della funzine interseca gli assi cartesiani in O 0,0 e,0 A. ASINTOTI: Il dmini è la funzine nn ammette asintti verticali. lim f x lim x la funzine nn ammette asintti rizzntali x x x f x lim lim x la funzine nn ammette asintti bliqui x x x x CRESCENZA: f ' x x 6x x x 0 x 0 x 7 7 min: f 7 M, CONCAVITÀ: f " x x x x x 0 x x 0 f La funzine ammette dei flessi in O 0,0 e F, TANGENTI DI FLESSO: Tangente in O: m f ' 0 0 y 0 Tangente in F: m f y x Il grafic della funzine è: ' y x

5 N. Verifichiam il passaggi della parabla y kx 6k x 5k per,0 y k 6k 5k 0 verificat! La tangente alla parabla in A ha cefficiente anglare m y ' : y ' kx 6k m y k k k Anche la funzine f x ln x ha il grafic passante per A, in quant ln 0 A : ' 6 in A se e sl se le due tangenti hann l stess cefficiente anglare. f ' x m f ' x Quindi: m m k k La parabla è, pertant: 5 y x 6 x y x x N. Il dmini di N. lim x f x x 6 x x 6 x x 6 x 6 lim lim x x x x x 6 x 6 lim lim x x x x Affinchè la funzine x x è D \. x è asintt verticale f x y è asintt rizzntale y è asintt rizzntale k x kx k x kx k x x lim f x lim kx k x k k x x lim x x lim f x lim k x kx k k 5 k ; le due curve sn tangenti sia cntinua in x è sufficiente che: f x lim f x. La cndizine di cntinuità in x è, perciò: k k k 5k k k 6 0 k k 0 k, Cncludend: la funzine è cntinua in x per k k. N. 5 Studiam la crescenza di f x x x x x x 5 : f x x x x x x x x ' La funzine ha un minim in x. f 0 M,0 NOTA: In realtà la funzine è una parabla (plinmi di grad), quindi ha un minim asslut nel su vertice e nn ha massimi (né relativi né assluti).

6 N. 6 Il dmini di f x è: 0 g x è: 0 x, ciè D 0, x, ciè D Il dmini di \ 0 Pertant, nnstante per x 0 si pssa scrivere, per le prprietà dei lgaritmi: ln x ln x le due funzini hann dmini divers e, quindi, nn pssn essere uguali. N. 7 Il grafic della funzine f x si ttiene da quell di f x simmetrizzand rispett all asse x gli archi del grafic di f x che giaccin nel semipian delle y 0, cme in figura. Cnsideriam ra: Fig. Fig. Fig. a) Il grafic di f x è quell in fig., piché si ttiene trasland il grafic di f x di u vers l alt. b) Il grafic di f x è quell in fig., simmetric di quell di f x rispett all asse y. c) Il grafic di f x è quell in fig., ttenut mediante una cntrazine lung l asse x. PARTE B N. 8 Intersechiam le parable: y x 6x 6 x 8x 6 0 sttraend membr a membr: y x x y x x Rislviam x x 0 : da cui: y y 9 6

7 Le intersezini sn, e,. Quindi l area cercata vale: x 6x 6 x x dx x 8x 6 dx x x dx x 7 8 x x 8 9 u N. 9 Cnsideriam l equazine differenziale y" y ' 5y e. Rislviam l equazine mgenea assciata: y" y ' 5y 0 L equazine caratteristica è: x l integrale generale dell equazine mgenea è ce ce Ricerca di un integrale particlare dell equazine data; dal mment che 5 è un zer dell equazine caratteristica, cnsideriam una funzine del tip: kx e " k 5e 5e ke 0 ' k e 5e x ke Sstituend nell equazine data: ke 0 ke 5kxe ke 0 0x 6ke e l integrale particlare cercat è 6 xe k 6 Cncludend: La sluzine dell equazine differenziale data è x y ce ce xe. 6 N. 0 La traspsta della matrice Il determinante di A è: 0 A 0 0 è T A la matrice A è invertibile. Calcliamne i cmplementi algebrici: A 0 A la matrice cfattre è: A A A 0 A 0 A 0 0 A 0 A 0

8 5 e quindi: A 0 cfa T cfa N. Intersecand la parabla y x 6x cn l asse x tteniam: x a) Rtazine attrn all asse x: Applicand il metd delle fette, x 0 x 0 x Vx x 6x dx x x dx x 6x 9x dx x x x 8 8 u b) Rtazine attrn all asse y: Applicand il metd dei gusci cilindrici, N. 0 x V x x 6x dx x x dx x y u x b x b x b a) e dx lim e dx lim e e dx lim e e e e b b b l integrale cnverge a dx lim dx lim ln x lim ln ln a lim ln a 0 x a 0 a x a 0 a a0 a0 l integrale diverge a ln x ln x b) N. x y 5z a) Cnsideriam il sistema: 6x 9y 0z. La matrice cmpleta è: x y 5z Ricaviam, quindi, il sistema: 5z x 5z x 5z x y 0 y 0 y 0 Sluzini: 5 z,0, z z

9 6 x y b) Cnsideriam il sistema: x y z 5. La matrice cmpleta è: x y z Sluzine:,,

SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1

SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1 www.matefilia.it SCUOLE ITALIANE ALL ESTERO (EUROPA) SESSIONE ORDINARIA 2013 QUESITO 1 Dat un triangl ABC, si indichi cn M il punt medi del lat BC. Si dimstri che la mediana AM è il lug gemetric dei punti

Dettagli

Unità Didattica N 28

Unità Didattica N 28 Unità Didattica N 8 Estremi,Asintti,lessi del graic di una unzine Unità Didattica N 8 Estremi, asintti, lessi del graic di una unzine ) Estremi delle unzini derivabili ) Prprietà degli estremi delle unzini

Dettagli

ASINTOTI di una funzione

ASINTOTI di una funzione LEZIONI ASINTOTI di una funzine Definizine Sia il grafic di una funzine di equazine y f ( ) avente un ram che si estende all'infinit e sia P un su punt. Una retta r si dice asintt per tale funzine se la

Dettagli

LE FUNZIONI REALI DI VARIABILE REALE

LE FUNZIONI REALI DI VARIABILE REALE LE FUNZIONI REALI DI VARIABILE REALE 1. La deinizine di unzine reale di variabile reale.. Le rappresentazini di una unzine reale di variabile reale. La classiicazine delle unzini. 4. Il dmini delle unzini.

Dettagli

Soluzioni degli esercizi su sistemi di equazioni dierenziali e alle dierenze 4. Corso di Metodi Matematici per le Scienze Economiche e Finanziarie

Soluzioni degli esercizi su sistemi di equazioni dierenziali e alle dierenze 4. Corso di Metodi Matematici per le Scienze Economiche e Finanziarie Sluzini degli esercizi su sistemi di equazini dierenziali e alle dierenze 4 Crs di Metdi Matematici per le Scienze Ecnmiche e Finanziarie Prf Faust Gzzi Es a I punti critici sn le sluzini del sistema x

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR 1 Luci sul palc La ptenza elettrica P assrbita da ciascuna lampada utilizzata per illuminare un palcscenic segue la seguente legge: Pr () V R = R Rr r dve V indica la tensine

Dettagli

Le disequazioni di primo grado

Le disequazioni di primo grado ) Disequazini di prim grad intere Le disequazini di prim grad Cnsider due plinmi A() e B(), entrambi di prim grad in. Le seguenti espressini: A()>B() A() B() A() B() A()

Dettagli

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO PROFESSIONALE SERVIZI COMMERCIALI

PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO PROFESSIONALE SERVIZI COMMERCIALI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE SECONDO BIENNIO PROFESSIONALE SERVIZI COMMERCIALI ANNO SCOLASTICO 2014/2015 1. SECONDO BIENNIO DISCIPLINA MATEMATICA DOCENTI PROVOLI, SILVA, VASSALLO CLASSE TERZA

Dettagli

Disequazioni in una incognita

Disequazioni in una incognita Disequazini in una incgnita. Cnsiderazini generali Dai principi di equivalenza delle disequazini segue che: a) quand si trasprta un termine da un membr all'altr si deve cambiarne il segn:. b) quand si

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MDELLI SCHEDA DI LAVR 1 La siepe Sul retr di una villetta deve essere realizzat un piccl giardin rettanglare di m riparat da una siepe psta lung il brd Dat che un lat del giardin è ccupat dalla

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO RELTÀ E MODELLI SCHED DI LVORO La rampa di access Per accedere a un edifici pubblic ci sn 6 gradini alti 6 cm e prfndi 0 cm; è necessari cstruire una rampa di access per carrzzine. La nrmativa prevede

Dettagli

Equazioni. Prerequisiti. Definizioni e concetti generali. Incognita Lettera (di solito X) alla quale è possibile sostituire dei valori numerici

Equazioni. Prerequisiti. Definizioni e concetti generali. Incognita Lettera (di solito X) alla quale è possibile sostituire dei valori numerici Scmpsizini plinmiali Calcl del M.C.D. e del m.c.m. tra plinmi P), cn P) plinmi di grad qualsiasi Equazini Prerequisiti Definizini e cncetti generali Incgnita Lettera di slit ) alla quale è pssibile sstituire

Dettagli

a) usando la formula (x-x C ) 2 +(y-y C ) 2 +(z-z C ) 2 =r 2 Esercizi vari - Esercitazioni di Algebra e Geometria - Anno Accademico 2009-2010 1

a) usando la formula (x-x C ) 2 +(y-y C ) 2 +(z-z C ) 2 =r 2 Esercizi vari - Esercitazioni di Algebra e Geometria - Anno Accademico 2009-2010 1 Esercizi di riepilg Esercizi In E 3 (R) si determinin: [(a)] una rappresentazine cartesiana della sfera di centr C=(,,) e raggi R=5; [(b)] una rappresentazine cartesiana della retta passante per C e rtgnale

Dettagli

Corso di Economia Politica Esercitazione 1 8 marzo 2013

Corso di Economia Politica Esercitazione 1 8 marzo 2013 Crs i Ecnmia litica Esercitazine 1 8 marz 013 Maalena Ragna (tutr) maalena.ragna@unib.it http://cms.stat.unib.it/ragna/teaching.aspx Esercizi Argmenti: mana, fferta, equilibri i mercat, renita el cnsumatre

Dettagli

RELAZIONI TRA VARIAIBLI

RELAZIONI TRA VARIAIBLI RELAZIONI TRA VARIAIBLI Esiste la pssibilità che la crrelazine tra due variabili x e y sia dvuta all influenza di una terza variabile z Relazine spuria Presenza di cvariazine in assenza di causazine. La

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS DI RDINAMENT 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRBLEMA Rispetto a un sistema di assi cartesiani

Dettagli

M557 - ESAME DI STATO DI LICEO SCIENTIFICO

M557 - ESAME DI STATO DI LICEO SCIENTIFICO M7 - ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO Tema di: MATEMATICA Il candidato risolva uno dei due problemi e cinque quesiti scelti nel questionario. PROBLEMA 1 Nel primo quadrante del

Dettagli

DISCIPLINA: Matematica Ordinamento CLASSE: 3^ SEZ.: Alunno/a:. Voto proposto dal Consiglio di Classe:..

DISCIPLINA: Matematica Ordinamento CLASSE: 3^ SEZ.: Alunno/a:. Voto proposto dal Consiglio di Classe:.. DISCIPLINA: Matematica Ordinament CLASSE: 3^ SEZ.: in termini di cnscenze relative ai cntenuti minimi: Disequazini: Abilità di calcl Gemetria Analitica: Analisi e cmprensine del test di un prblema Impstazine

Dettagli

5 Simulazione di prova d Esame di Stato

5 Simulazione di prova d Esame di Stato 5 Simulazione di prova d Esame di Stato Problema Risolvi uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario Tra le parabole di equazione k, individuare la parabola γ tangente alla

Dettagli

Matematica classe 5 C a.s. 2012/2013

Matematica classe 5 C a.s. 2012/2013 Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

DISCIPLINA: Matematica CLASSE: 3^ SEZ.: SCIENTIFICO. Alunno/a: Voto proposto dal Consiglio:

DISCIPLINA: Matematica CLASSE: 3^ SEZ.: SCIENTIFICO. Alunno/a: Voto proposto dal Consiglio: SCIENTIFICO LINGUISTICO Viale Papa Givanni XXIII 25 10090 via San Girgi, 10 e-mail: darwin@licedarwin.rivli.t.it www.licedarwin.rivli.t.it DISCIPLINA: Matematica CLASSE: 3^ SEZ.: SCIENTIFICO Alunn/a: Vt

Dettagli

f(x) = sin cos α = k2 2 k

f(x) = sin cos α = k2 2 k 28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza

Dettagli

Državni izpitni center. Livello superiore. Prova d esame 2. Lunedì, 26 agosto 2013 / 90 minuti

Državni izpitni center. Livello superiore. Prova d esame 2. Lunedì, 26 agosto 2013 / 90 minuti Codice del candidato: Državni izpitni center *M13240212I* Livello superiore SESSIONE AUTUNNALE Prova d esame 2 Lunedì, 26 agosto 2013 / 90 minuti Al candidato sono consentiti l'uso della penna stilografica

Dettagli

Matematica e Statistica (A-E, F-O, P-Z)

Matematica e Statistica (A-E, F-O, P-Z) Matematica e Statistica (A-E, F-O, P-Z) Prova d esame (24/06/20) Università di Verona - Laurea in Biotecnologie - A.A. 200/ Tema A Matematica e Statistica (A-E, F-O, P-Z) Prova di MATEMATICA (A-E, F-O,

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTÀ DI ECONOMIA DI RIMINI. MATEMATICA PER L ECONOMIA Prof.ssa Maria Letizia Guerra

UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTÀ DI ECONOMIA DI RIMINI. MATEMATICA PER L ECONOMIA Prof.ssa Maria Letizia Guerra UNIVERSITÀ DEGLI STUDI DI BOLOGNA FACOLTÀ DI ECONOMIA DI RIMINI MATEMATICA PER L ECONOMIA Prof.ssa Maria Letizia Guerra (CLEM) ESERCIZI RISOLTI COMPITO DEL -6-8 Esercizio Si stima che domanda di un certo

Dettagli

risoluzione della prova

risoluzione della prova Verso la seconda prova di matematica 7 Risoluzione della prova verso la seconda prova di matematica 7 risoluzione della prova Problemi 7 a Determiniamo l equazione della parabola di vertice V`; j e passante

Dettagli

( ) ( ) d x = ω. dsenθ dθ. d 2 senθ dθ 2. = d dθ. = sen θ. = d cosθ dθ. d 2 cosθ dθ. dcosθ dθ. = cosθ dθ. = d( senθ) = d sen θ dθ

( ) ( ) d x = ω. dsenθ dθ. d 2 senθ dθ 2. = d dθ. = sen θ. = d cosθ dθ. d 2 cosθ dθ. dcosθ dθ. = cosθ dθ. = d( senθ) = d sen θ dθ Mt armnic Cnsideriam ra il cas in cui l'accelerazine dipenda dalla psizine del punt materiale, in particlare esaminerem il cas in cui l'accelerazine è prprzinale all'ppst della psizine attravers la cstante

Dettagli

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1

Liceo Scientifico di ordinamento anno ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno PROBLEMA 1 Liceo Scientifico di ordinamento anno 00-00 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO anno 00-00 PROBLEMA Punto a Indicati rispettivamente con V ed S il volume e l area totale di T e con

Dettagli

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte. Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:

Dettagli

*M I* MATEMATICA Prova d'esame 2. Livello superiore. Giovedì, 26 agosto 2010 / 90 minuti SESSIONE AUTUNNALE

*M I* MATEMATICA Prova d'esame 2. Livello superiore. Giovedì, 26 agosto 2010 / 90 minuti SESSIONE AUTUNNALE Codice del candidato: Državni izpitni center *M10401I* Livello superiore MATEMATICA Prova d'esame SESSIONE AUTUNNALE Giovedì, 6 agosto 010 / 90 minuti Al candidato sono consentiti l'uso della penna stilografica

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

ISTRUZIONI PER INIZIARE

ISTRUZIONI PER INIZIARE I.C. Scarpa - Scula media Cairli ISTRUZIONI PER INIZIARE Questa è la barra di menu: serve per dare tutte le infrma zini sui file che devi creare, salvare, ecc. Questa icna serve per chiudere a brd pagina

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio 1. Si consideri il seguente sistema 2x 3y + z =5 x ky +2z = k kx y z = 1 Si trovino il numero delle soluzioni al variare del parametro

Dettagli

MODELLO DI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE ANNO SCOLASTICO 2015-16

MODELLO DI PROGRAMMAZIONE DISCIPLINARE PER COMPETENZE ANNO SCOLASTICO 2015-16 + LICEO STATALE G. CARDUCCI Scienze Umane, Linguistic, Scienze Umane pzine Ecnmic-sciale Via S.Zen 3 56127 Pisa TEL 050 555122 Fax 050 553014 C. F. 80006190500 - Cd. Mecc. PIPM030002 www.carducci.scule.pisa.it

Dettagli

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore

Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore Gruppo esercizi 1: Vettori e matrici [E.1] Date le due matrici e il vettore A = 1 2 0 0 2 1 B = 2 1 0 1 0 2 u = (1, 2, 1), 3 2 1 1 1 1 [E.2] Date le due matrici e il vettore A = 1 2 0 0 1 0 0 1 3 B = 1

Dettagli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli

1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli 1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio

Dettagli

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0

(E) : 4x 181 mod 3. h(h 1)x + 4hy = 0 Dipartimento di Matematica e Informatica Anno Accademico 206-207 Corso di Laurea in Informatica (L-3) Prova scritta di Matematica Discreta (2 CFU) 6 Settembre 207 Parte A [0 punti] Sia data la successione

Dettagli

Primo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti.

Primo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti. Primo appello di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 5 6 7 Tot. Cognome e nome in stampatello codice persona o n di matricola n

Dettagli

Esame di MATEMATICA CORSO BASE del

Esame di MATEMATICA CORSO BASE del Esame di MATEMATICA CORSO BASE del Cognome Matricola Nome Esercizio. Si consideri il seguente sistema x 3y + z =5 x ky +z = k kx y z = Si trovino il numero delle soluzioni al variare del parametro k e

Dettagli

( 3)( 9) x =. 3 = ; 3 = 28 ± 2 28z. 3 x. 1 x 2 2 = = 3. z = 3, da z 1 si ha:

( 3)( 9) x =. 3 = ; 3 = 28 ± 2 28z. 3 x. 1 x 2 2 = = 3. z = 3, da z 1 si ha: EQUAZIONI E DISEQUAZIONI ESPONENZIALI E LOGARITMICHE QUESITO[] Rislvi le seguenti equaini espneniali i cui membri sn riducibili a ptene di uguale base a) b) 0 c) + 8 0 - + 8+. (b) 0 0 + + 0+ 0 0. 0 (c)

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione

Dettagli

4 C. Prati. Il teorema del campionamento

4 C. Prati. Il teorema del campionamento 4 C. Prati Il terema del campinament Esercizi di verifica degli argmenti svlti nel quart capitl del test Segnali e Sistemi per le Telecmunicazini McGraw-Hill. ESERCIZIO Sia dat il seguente segnale temp

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata.

Per risolvere le equazioni alle differenze si può utilizzare il metodo della Z-trasformata. 8.. STRUMENTI MATEMATICI 8. Equazini alle differenze. Sn legami statici che legan i valri attuali (all istante k) e passati (negli istanti k, k, ecc.) dell ingress e k e dell uscita u k : u k = f(e 0,

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

ESERCIZI SULLO STUDIO DI FUNZIONI

ESERCIZI SULLO STUDIO DI FUNZIONI ESERCIZI SULLO STUDIO DI FUNZIONI 0 novembre 206 Esercizi Esercizio n. Si consideri la funzione f(x) = 7 x 2 + 3 Dominio: R Intersezioni con gli assi: Intersezioni con l asse x: { y = 0 y = 7 x 2 + 3.

Dettagli

*M I* MATEMATICA Prova d'esame 2. Livello superiore. Sabato, 7 giugno 2008 / 90 minuti SESSIONE PRIMAVERILE

*M I* MATEMATICA Prova d'esame 2. Livello superiore. Sabato, 7 giugno 2008 / 90 minuti SESSIONE PRIMAVERILE Codice del candidato: Državni izpitni center *M081401I* SESSIONE PRIMAVERILE Livello superiore MATEMATICA Prova d'esame Sabato, 7 giugno 008 / 90 minuti Al candidato sono consentiti l'uso della penna stilografica

Dettagli

La gestione informatizzata del farmaco

La gestione informatizzata del farmaco Azienda Ospedaliera di Verna Dipartiment di Medicina Clinica e Sperimentale Medicina Interna B - Reumatlgia La gestine infrmatizzata del farmac Crdinatre Stefania Discnzi Reggi Emilia 11-12 XII 2008 CRITICITA

Dettagli

Državni izpitni center. Livello superiore. Prova d esame 1. Lunedì, 27 agosto 2012 / 90 minuti

Državni izpitni center. Livello superiore. Prova d esame 1. Lunedì, 27 agosto 2012 / 90 minuti Codice del candidato: Državni izpitni center *M14011I* Livello superiore SESSIONE AUTUNNALE Prova d esame 1 Lunedì, 7 agosto 01 / 90 minuti Al candidato sono consentiti l'uso della penna stilografica o

Dettagli

Equazione della retta tangente al grafico di una funzione

Equazione della retta tangente al grafico di una funzione Equazione della retta tangente al grafico di una funzione Abbiamo già visto che in un sistema di assi cartesiani ortogonali, è possibile determinare l equazione di una retta r non parallela agli assi coordinati,

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI. della funzione y ln( x e)

ANNO SCOLASTICO SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI. della funzione y ln( x e) ANNO SCOLASTICO 009-0 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO INDIRIZZO: SCIENTIFICO CORSI SPERIMENTALI PROBLEMA Si consideri la funzione: ln( x e) se e x 0 f ( x) x ( x bx) e a se x

Dettagli

Teoria in sintesi 10. Teoria in sintesi 14

Teoria in sintesi 10. Teoria in sintesi 14 Indice L attività di recupero Funzioni goniometriche Teoria in sintesi 0 Obiettivo Calcolare il valore di espressioni goniometriche in seno e coseno Obiettivo Determinare massimo e minimo di funzioni goniometriche

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d)

Tipologia delle funzioni studiate: 1. y= ax n + bx n y= e x 3. y= (ax + b)/ (cx + d) 4. y= (ax 2 + b) (cx + d) - ricerca dei punti di flesso - ricerca dell asintoto orizzontale - ricerca dell asintoto verticale - ricerca dell asintoto obliquo - ricerca dei punti di intersezione con gli assi Tipologia delle funzioni

Dettagli

Richiami sullo studio di funzione

Richiami sullo studio di funzione Richiami sullo studio di funzione Per studiare una funzione y = f() e disegnarne un grafico approssimativo, possiamo procedere in ordine secondo i seguenti passi:. determinare il campo di esistenza (o

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

(E) : 2x 43 mod 5. (2 + h)x + y = 0

(E) : 2x 43 mod 5. (2 + h)x + y = 0 Dipartimento di Matematica e Informatica Anno Accademico 2016-2017 Corso di Laurea in Informatica (L-31) Prova scritta di Matematica Discreta (12 CFU) 27 Settembre 2017 Parte A 1 [10 punti] Sia data la

Dettagli

Esercizio 1. f (x) = e 8x x2 14 ***

Esercizio 1. f (x) = e 8x x2 14 *** Esercizio Studiare la funzione f () = e 8 () *** Soluzione Insieme di definizione La funzione è definita in X = (, + ) Intersezioni con gli assi essendo γ il grafico della funzione. Inoltre: X, f () >

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f è crescente nell intervallo (a, b) se

Dettagli

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2

Verifica di matematica. Nel piano riferito a coordinate ortogonali monometriche (x; y) è assegnata la curva Γ di equazione: 2 0 Marzo 00 Verifica di matematica roblema Si consideri l equazione ln( + ) 0. a) Si dimostri che ammette due soluzioni reali. Nel piano riferito a coordinate ortogonali monometriche (; ) è assegnata la

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione.. Funzioni iniettive, suriettive e biiettive.. Le funzioni

Dettagli

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo appello, 1 Luglio 010 Cognome: Nome: Matricola: Compito A Es. 1: 6 punti Es. : 1 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

MATEMATICA 5 PERIODI

MATEMATICA 5 PERIODI BACCALAUREATO EUROPEO 2010 MATEMATICA 5 PERIODI DATA : 4 Giugno 2010 DURATA DELL ESAME: 4 ore (240 minuti) MATERIALE AUTORIZZATO: Formulario delle scuole europee Calcolatrice non grafica e non programmabile

Dettagli

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

ESERCIZI INTRODUTTIVI

ESERCIZI INTRODUTTIVI ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo

Dettagli

Università Ca Foscari di Venezia

Università Ca Foscari di Venezia Università Ca Foscari di Venezia Simulazione Test Recupero Debito Matematica 14 settembre 2016 Cognome: Nome: Documento di riconoscimento: Per lo svolgimento della prova utilizzare esclusivamente i fogli

Dettagli

ESAME di STATO f(x) Disegni a cura del prof. Cristiano DOMENICHELLI. Testi della prof. ssa Tiziana LA TORELLA LICEO SCIENTIFICO GALILEO FERRARIS

ESAME di STATO f(x) Disegni a cura del prof. Cristiano DOMENICHELLI. Testi della prof. ssa Tiziana LA TORELLA LICEO SCIENTIFICO GALILEO FERRARIS ESAME di STATO 2010 f(x) Disegni a cura del prof. Cristiano DOMENICHELLI Testi della prof. ssa Tiziana LA TORELLA LICEO SCIENTIFICO GALILEO FERRARIS 1 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1).

4. Sia Γ la conica che ha fuoco F (1, 1) e direttrice d : x y = 0, e che passa per il punto P (2, 1). Geometria Complementi ed esercizi sulle coniche 1 (a) Scrivere l equazione dell ellisse Γ che ha fuochi F 1 ( 1, 1), F (1, 1) e che passa per il punto P (1, 1) (b) Determinare il centro, gli assi e i vertici

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

RISULTATI PROVE INVALSI

RISULTATI PROVE INVALSI UFFICIO SCOLASTICO REGIONALE PER IL Istitut Cmprensiv Statale Pal Ruffini SCUOLA DELL INFANZIA, PRIMARIA E SECONDARIA DI PRIMO GRADO RISULTATI PROVE INVALSI A. S. 2014/2015 1 Premessa L'INVALSI restituisce

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15

LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO. PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 LICEO SCIENTIFICO STATALE FILIPPO LUSSANA - BERGAMO PROGRAMMA EFFETTIVAMENTE SVOLTO a. s. 2014/15 CLASSE : 3N indirizzo scienze applicate DOCENTE: CAPRI MATTEO MATERIA: MATEMATICA Libro di testo utilizzato:

Dettagli

2. Verificare che la equazione +x+3=0 ammette una e una sola soluzione nell intervallo 10,0

2. Verificare che la equazione +x+3=0 ammette una e una sola soluzione nell intervallo 10,0 1 Compito 1. 08 - a 1. Studiare e rappresentare in Oxy la funzione. Verificare che la equazione +x+3=0 ammette una e una sola soluzione nell intervallo 10,0 3. Determinare la equazione della parabola passante

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/0/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/0/03) Università di Verona - Laurea in Biotecnologie

Dettagli

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO. t ed è nulla per t 0. Vale il limite:

SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO. t ed è nulla per t 0. Vale il limite: Simulazione /6 ANNO SCOLASTICO /6 SIMULAZIONE DELLA PROVA DI MATEMATICA DELL ESAME DI STATO PER IL LICEO SCIENTIFICO Risoluzione Problema Conversazioni telefoniche a) La funzione f t è continua e derivabile

Dettagli

*M I* Livello di base MATEMATICA Prova d'esame 1. Sabato, 7 giugno 2008 / 120 minuti SESSIONE PRIMAVERILE

*M I* Livello di base MATEMATICA Prova d'esame 1. Sabato, 7 giugno 2008 / 120 minuti SESSIONE PRIMAVERILE Codice del candidato: Državni izpitni center *M08140111I* SESSIONE PRIMAVERILE Livello di base MATEMATICA Prova d'esame 1 Sabato, 7 giugno 2008 / 120 minuti Al candidato sono consentiti l'uso della penna

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

RILEVAZIONE DELLE OPINIONI DEGLI STUDENTI COMPILAZIONE ON-LINE. Manuale Operativo STUDENTI

RILEVAZIONE DELLE OPINIONI DEGLI STUDENTI COMPILAZIONE ON-LINE. Manuale Operativo STUDENTI RILEVAZIONE DELLE OPINIONI DEGLI STUDENTI COMPILAZIONE ON-LINE Manuale Operativ STUDENTI Intrduzine: A partire dall A.A. 2013/14 l Università degli studi di Siena ha attivat una prcedura di rilevazine

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

G5. Studio di funzione - Esercizi

G5. Studio di funzione - Esercizi G5 Studio di funzione - Esercizi Tracciare il grafico delle seguenti funzioni I grafici delle seguenti funzioni sono al termine degli esercizi Per gli esercizi con l asterisco non è richiesta, date le

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

ESERCITAZIONE RETI IDRAULICHE

ESERCITAZIONE RETI IDRAULICHE ESERCITAZIONE RETI IDRAULICHE. Una azienda ha un fabbisgn di acqua per us tecnlgic pari a 300 m 3 /h medi. A tale scp, a seguit di indagini gelgiche decide di ttenere tale prtata dal preliev in falda freatica

Dettagli