Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006"

Transcript

1 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f).. Eventuali punti di intersezione con gli assi coordinati.. Studio di segno della funzione. 4. Ricerca degli asintoti orizzontali, verticali e obliqui). 5. Calcolo della derivata prima f ) e studio di segno di f ): studio degli intervalli di crescenza e decrescenza, ricerca di massimi e minimi. 6. Calcolo della derivata seconda f ) e studio di segno di f ): studio della concavità e convessità, ricerca dei flessi. Esercizio 1. Studiare la funzione f ) = 1 Il dominio della funzione è Df) = R-{±1} poiché è determinato dall insieme { R : 1 0}. La funzione interseca gli assi solo nell origine O0,0). Studiamo il segno della funzione risolvendo la disequazione f) 0. Il numeratore è positivo per 0. Il denominatore è non negativo all esterno delle soluzioni { = ±1}. Ne segue che la funzione razionale fratta è tale che f) 0 per 1 < 0 > 1 f) < 0 per < 1 0 < < 1 Analizziamo gli eventuali asintoti della funzione. Poiché il dominio è Df) = R-{±1}, calcoliamo i limiti destro e sinistro in ±1 e i limiti per che tende a ±. lim 1 ± 1 = ± quindi otteniamo l asintoto verticale = 1. per cui si ottiene l asintoto verticale = 1. lim 1 ± 1 = ± 1

2 lim ± 1 = 0 poiché sia il numeratore che il denominatore tendono ad infinito, ma il grado del denominatore maggiore del grado del numeratore. Otteniamo quindi l asintoto orizzontale y = 0 asse delle ascisse). f 1 ) ) ) = 1) = + 1 1) Analizziamo il segno di f ) per determinare gli intervalli di crescenza e decrescenza della funzione. Il numeratore è sempre negativo, il denominatore è positivo Df), allora si avrà f ) < 0 Df) La funzione decrescente in tutto il suo dominio e non ci sono punti di minimo o massimo perchè la derivata non si annulla mai. f ) = 1 ) + 1 ) 1 ) ) 1) 4 = + ) 1) Analizziamo il segno di f ) per determinare la convessità e la concavità della curva ed eventuali punti Il numeratore è positivo per 0, il denominatore, essendo una potenza di indice, è maggiore di 0, quando la sua base è maggiore di 0, quindi per < 1 e > 1. Ne segue che f ) 0 per 1 < 0 > 1 f) è convessa) f ) < 0 per < 1 0 < < 1 f) è concava) La derivata seconda si annulla nell origine, quindi si ha un flesso in O0,0). Esercizio 10. Studiare la funzione f ) = 1 Il dominio della funzione è Df) =, 1] [1, + ) poiché è determinato dall insieme { R : 1 0}. La funzione non interseca gli assi coordinati, ma agli estremi del dominio in = ±1) vale f 1) = 1 e f1) = 1 Studiamo il segno della funzione. Risolvere f) 0 equivale a risolvere la disequazione 1 ). In generale vale: f) 0, n f) g) g) 0 f) g n ) allora risolvere la disequazione ) equivale a risolvere il sistema 1 0, 0 1 La soluzione di tale sistema ci darà l intervallo in cui la funzione è positiva. Ne segue che f) > 0 per > 1 f) < 0 per < 1

3 Analizziamo gli eventuali asintoti della funzione. Poiché il dominio è Df) =, 1] [1, + ), calcoliamo i limiti per che tende a ±. Per che tende a + siamo di fronte ad una forma indeterminata + ) che risolviamo nel modo seguente lim ) 1 ) + 1 ) ) 1 )) ) ) = 0 Otteniamo quindi l asintoto orizzontale y = 0 asse delle ascisse). Per che tende a si ha lim ) 1 = La funzione potrebbe avere un asintoto obliquo, calcoliamo quindi il coefficiente angolare m: f ) 1 ) m Calcoliamo l intercetta q dell eventuale asintoto ) ) 1 1 ) 1 1 q f ) m) ) 1 + ) 1 = 0 Nota: In risultato si ottiene, come per il caso appena visto per che tende a + ), eliminando l indeterminazione con la razionalizzazione. Otteniamo quindi, per che tende a, l asintoto obliquo di equazione y =. f ) = 1 1 = 1 1 Analizziamo il segno di f ) per determinare gli intervalli di crescenza e decrescenza della funzione. Per lo studio di segno del numeratore si veda sopra studio di segno della funzione), da cui otteniamo che il numeratore è negativo per > 1 e non negativo per < 1 e non si annulla mai. Il denominatore è sempre positivo. Allora si ha f ) > 0 per < 1 f ) < 0 per > 1 La funzione decrescente in 1, + ) e crescente in, 1) e non ci sono punti di minimo o massimo perchè la derivata non si annulla. f 1 ) = 1) 1 =

4 Analizziamo il segno di f ) per determinare la convessità e la concavità della curva ed eventuali punti Il numeratore è una costante positiva, il denominatore è sempre positivo nei punti interni al dominio della funzione. Ne segue che, non ci sono punti di flesso e la curva volge la concavità verso l alto in ogni punto di Df). Esercizio 17. Studiare la funzione f ) = e 1 Il dominio della funzione è Df) = R {0} poiché è determinato dall insieme { R : 0}. Studiamo il segno della funzione. Essendo un esponenziale, f) > 0 per ogni R {0}. Analizziamo gli eventuali asintoti della funzione. Poiché il dominio è R {0}, calcoliamo i limiti per che tende a ± e i limiti destro e sinistro in = 0. Si noti che, in generale, vale: e g) + per g ) + e g) 0 per g ) Quindi si avrà lim e 1 ± ± e 1 1 ) e 1 1 ± = e 0 = 1 poiché l esponente tende a 0 per ±. Si ottiene così per asintoto orizzontale la retta y = 1. lim e 1 = ± poiché l esponente tende a per 0 ±. Il limite destro coincide con il limite sinistro, pertanto la funzione può essere prolungata con continuità, ponendo f0) = 0. f ) = e 1 Analizziamo il segno di f ) per determinare gli intervalli di crescenza e decrescenza della funzione. Il segno sarà dato dalla funzione razionale fratta in quanto l esponenziale è sempre non negativa in ogni punto del dominio. Allora si avrà f ) > 0 per 0 < < f ) < 0 per < 0 e > La derivata prima si annulla in =, quindi si avrà un massimo in, f))e con lo stesso procedimento di prima prolungando anche la derivata prima in 0 con continuità, si avrà un minimo nell origine. La funzione decrescente in, 0), + ) e crescente in 0, ). Il calcolo della derivata seconda è lasciato al lettore. Esercizio 18. Studiare la funzione f ) = ln ) 4 Il dominio della funzione è Df) =, ) 4, + ) poiché è determinato dall insieme { R : 4 > 0}. La funzione interseca gli assi in due punti: A0, ln 4 ) e B-1,0). Studiamo il segno della funzione. Risolvere la disequazione logaritmica ln 0 equivale a risolvere ) 4

5 Si ottiene f) 0 per 1 e > 4 f) < 0 per 1 < < Analizziamo gli eventuali asintoti della funzione. Poiché il dominio è, ) 4, + ), calcoliamo i limiti per che tende a ±, il limite destro in 4 e il limite sinistro in. Si noti che, in generale, vale: Quindi si avrà ln g ) + per g ) + ln g ) per g ) 0 ) ) lim ln ± 4 ln ± 1 4 = ln poiché l argomento del logaritmo tende a per ±. Si ottiene così per asintoto orizzontale la retta y = ln. ) lim ln = asintoto verticale = 4 ) ) lim ln = + asintoto verticale = 4) f 5 ) = ) 4) Analizziamo il segno di f ) per determinare gli intervalli di crescenza e decrescenza della funzione. Il numeratore è sempre negativo, mentre il denominatore è positivo in ogni punto interno al dominio. Allora si avrà f ) < 0 Df) La funzione è sempre decrescente nel campo d esistenza e non ci sono punti di massimo e minimo, perchè la derivata non si annulla. f ) = 4 11 ) 4) Analizziamo il segno di f ) per determinare la convessità e la concavità della curva ed eventuali punti Il denominatore non influisce sul segno della derivata seconda pechè è un quadrato, il numeratore è positivo per Ne segue che, non ci sono punti di flesso e f ) > 0 per > 4 f) è convessa) f ) < 0 per < f) è concava). 5

Studio di una funzione razionale fratta

Studio di una funzione razionale fratta Studio di una funzione razionale fratta Nella figura è rappresentata la funzione 1. Quale tra gli insiemi proposti è il suo CDE? 2. La funzione presenta un asintoto verticale di equazione... x = 0 x =

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

FUNZIONI REALI DI UNA VARIABILE REALE

FUNZIONI REALI DI UNA VARIABILE REALE FUNZIONI REALI DI UNA VARIABILE REALE Vogliamo ora limitare la nostra attenzione a quelle funzioni che hanno come insieme di partenza e di arrivo un sottoinsieme dei numeri reali, cioè A, B R. Es6. Funzione

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA

PROGRAMMA DI MATEMATICA APPLICATA PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra

Dettagli

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na)

Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) LO STUDIO DI FUNZIONE Lo studio di funzione è una delle parti più interessanti dell analisi perché permette di utilizzare le numerose conoscenze acquisite nel corso degli anni in un unico elaborato. Se

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA

Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Recupero primo quadrimestre CLASSE QUARTA FUNZIONE REALE IN UNA VARIABILE REALE IL CAMPO DI ESITENZA Si dice campo di esistenza (C.E.) di una funzione = f(), l'insieme di tutti i valori reali che assegnati

Dettagli

1. Funzioni reali di una variabile reale

1. Funzioni reali di una variabile reale Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica DISCIPLINA: MATEMATICA Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima tecnico della grafica calcolo numerico

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

Studio di una funzione. Schema esemplificativo

Studio di una funzione. Schema esemplificativo Studio di una funzione Schema esemplificativo Generalità Studiare una funzione significa determinarne le proprietà ovvero Il dominio. Il segno. Gli intervalli in cui cresce o decresce. Minimi e massimi

Dettagli

3. Quale affermazione è falsa?

3. Quale affermazione è falsa? 1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica

Dettagli

Esercizi sullo studio completo di una funzione

Esercizi sullo studio completo di una funzione Esercizi sullo studio completo di una funzione. Disegnare il grafico delle funzioni date, utilizzando ogni informazione utile che si può ricavare dalla funzione e dalle sue derivate prima e seconda. a.

Dettagli

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO

MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA

Dettagli

Le disequazioni frazionarie (o fratte)

Le disequazioni frazionarie (o fratte) Le disequazioni frazionarie (o fratte) Una disequazione si dice frazionaria (o fratta) se l'incognita compare al denominatore. Esempi di disequazioni fratte sono: 0 ; ; < 0 ; ; Come per le equazioni fratte,

Dettagli

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014

Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I. Prova scritta del 8 Gennaio 2014 Corso di Laurea in Ingegneria Edile-Architettura ANALISI MATEMATICA I Prova scritta del 8 Gennaio 214 Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile. (1) (Punti 8)

Dettagli

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011

ESAME DI STATO LICEO SCIENTIFICO MATEMATICA 2011 ESAME DI STATO LICEO SCIENTIFICO MATEMATICA PROBLEMA La funzione f ( ) ( )( ) è una funzione dispari di terzo grado Intercetta l asse nei punti ;, ; e ; Risulta f per e per è invece f per e per f ' risulta

Dettagli

Esercizi sulle Disequazioni

Esercizi sulle Disequazioni Esercizi sulle Disequazioni Esercizio Trovare le soluzioni delle seguenti disequazioni:.).).).) ).) ) ).).7) 8.8).) Esercizio Trovare le soluzioni delle seguenti disequazioni tratte dal secondo parziale

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y

0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2009/2010 Calcolo 1, Esame scritto del 19.01.2010 NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 009/00 Calcolo, Esame scritto del 9.0.00 Data la funzione fx = e /x x x +, a determinare il dominio massimale di f ; b trovare tutti gli asintoti

Dettagli

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n

Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x

Dettagli

log log, inversa: log.

log log, inversa: log. Università degli Studi di Siena Correzione Prova scritta di Matematica Generale (A.A. 14-15) 20 gennaio 2015 Compito ) : ; :, è multiplo di ed è pari; : a volte a volte, ad esempio la coppia ha prodotto

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2007 Sessione suppletiva ESAME DI STAT DI LIE SIENTIFI RS SPERIMENTALE P.N.I. 7 Sessione suppletiva Il candidato risolva uno dei due problemi e 5 dei quesiti in cui si articola il questionario. PRLEMA Si consideri la funzione

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO

EQUAZIONI CON VALORE ASSOLUTO DISEQUAZIONI CON VALORE ASSOLUTO EQUAZIONI CON VALORE AOLUTO DIEQUAZIONI CON VALORE AOLUTO Prima di tutto: che cosa è il valore assoluto di un numero? Il valore assoluto è quella legge che ad un numero (positivo o negativo) associa sempre

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 2014

SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 2014 SOLUZIONE DEL PROBLEMA 1 CORSO DI ORDINAMENTO 214 1. Per determinare f() e f(k), applichiamo il teorema fondamentale del calcolo integrale, che si può applicare essendo f continua per ipotesi: g() = f(t)dt

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

y = è una relazione tra due variabili, che ad ogni valore della

y = è una relazione tra due variabili, che ad ogni valore della LE FUNZIONI DEFIINIIZIIONE Una funzione f () = è una relazione tra due variabili, che ad ogni valore della VARIABILE INDIPENDENTE associa AL PIU (al massimo) un valore della VARIABILE DIPENDENTE E UNA

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Derivate delle funzioni di una variabile.

Derivate delle funzioni di una variabile. Derivate delle funzioni di una variabile. Il concetto di derivata di una funzione di una variabile è uno dei più fecondi della matematica ed è quello su cui si basa il calcolo differenziale. I problemi

Dettagli

5 DERIVATA. 5.1 Continuità

5 DERIVATA. 5.1 Continuità 5 DERIVATA 5. Continuità Definizione 5. Sia < a < b < +, f : (a, b) R e c (a, b). Diciamo che f è continua in c se sono verificate le ue conizioni: (i) c esiste (ii) = f(c) c Si osservi che nella efinizione

Dettagli

GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE. Il grafico della funzione. Appunti di Matematica xoomer.virgilio.

GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE. Il grafico della funzione. Appunti di Matematica xoomer.virgilio. GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE Funzione opposta y = Il grafico della funzione funzione f( x ). f( x ) si ottiene simmetrizzando rispetto all asse x, il grafico della f( x ) Appunti di

Dettagli

PROGRAMMA SVOLTO DI MATEMATICA

PROGRAMMA SVOLTO DI MATEMATICA CLASSE: 2 Sezione: G A.S.: 2015/2016 Libro di testo: Matematica.bianco, volume 1, di Bergamini, Trifone Barozzi, edizioni Zanichelli. Libro di testo: Matematica.rosso, volume 2, di Bergamini, Trifone Barozzi,

Dettagli

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue:

SEGNO DELLA FUNZIONE. Anche in questo caso, per lo studio del segno della funzione, occorre risolvere la disequazione: y > 0 Ne segue: CAMPO DI ESISTENZA. Poiché la funzione data è una razionale fratta, essa risulta definita su tutto l asse reale tranne che nei punti in cui il denominatore della frazione si annulla, cioè: C.E. { R: 0}

Dettagli

B6. Sistemi di primo grado

B6. Sistemi di primo grado B6. Sistemi di primo grado Nelle equazioni l obiettivo è determinare il valore dell incognita che verifica l equazione. Tale valore, se c è, è detto soluzione. In un sistema di equazioni l obiettivo è

Dettagli

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio

ITCS Erasmo da Rotterdam. Anno Scolastico 2014/2015. CLASSE 4^ M Costruzioni, ambiente e territorio ITCS Erasmo da Rotterdam Anno Scolastico 014/015 CLASSE 4^ M Costruzioni, ambiente e territorio INDICAZIONI PER IL LAVORO ESTIVO DI MATEMATICA e COMPLEMENTI di MATEMATICA GLI STUDENTI CON IL DEBITO FORMATIVO

Dettagli

Lezioni sullo studio di funzione.

Lezioni sullo studio di funzione. Lezioni sullo studio di funzione. Schema. 1. Calcolare il dominio della funzione D(f).. Comportamento della funzione agli estremi del dominio. Ad esempio se D(f) = [a, b] si dovrà calcolare f(a) e f(b),

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

Funzioni elementari: funzioni potenza

Funzioni elementari: funzioni potenza Funzioni elementari: funzioni potenza Lezione per Studenti di Agraria Università di Bologna (Università di Bologna) Funzioni elementari: funzioni potenza 1 / 36 Funzioni lineari Come abbiamo già visto,

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

SOLUZIONI D = (-1,+ ).

SOLUZIONI D = (-1,+ ). SOLUZIONI. Data la funzione f() ( ) ln( ) a) trova il dominio di f b) indica quali sono gli intervalli in cui f() risulta positiva e quelli in cui risulta negativa c) determina le eventuali intersezioni

Dettagli

Studio grafico analitico delle funzioni reali a variabile reale y = f(x)

Studio grafico analitico delle funzioni reali a variabile reale y = f(x) Studio grafico analitico delle funzioni reali a variabile reale y = f() 1 Ecco i passi utili allo studio di una funzione reale: Determinare il dominio della funzione Ricercare l eventuale intersezione

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. IMPERATORE D. CLASSE: prima servizi commerciali Utilizzare le tecniche e le procedure

Dettagli

UNITA DIDATTICA. Conoscenze. Abilità

UNITA DIDATTICA. Conoscenze. Abilità Titolo: Problemi di geometria analitica : la parabola e l iperbole Codice: B1_S Ore previste:15 Equazione della parabola e coordinate del vertice Grafico di una parabola Equazione dell iperbole equilatera

Dettagli

Studio di funzioni ( )

Studio di funzioni ( ) Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente

Dettagli

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI

INDICAZIONI PER LA RICERCA DEGLI ASINTOTI VERTICALI 2.13 ASINTOTI 44 Un "asintoto", per una funzione y = f( ), è una retta alla quale il grafico della funzione "si avvicina indefinitamente", "si avvicina di tanto quanto noi vogliamo", nel senso precisato

Dettagli

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni

Anno 3. Funzioni esponenziali e logaritmi: le 4 operazioni Anno 3 Funzioni esponenziali e logaritmi: le 4 operazioni 1 Introduzione In questa lezione impareremo a conoscere le funzioni esponenziali e i logaritmi; ne descriveremo le principali caratteristiche e

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI LE DISEQUAZIONI LINEARI Per ricordare H Una disequazione si rappresenta come una disuguaglianza fra due espressioni algebriche A e B ; essa assume dunque la forma A Per risolvere una disequazione

Dettagli

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique.

Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti Gli asintoti di una funzione sono rette, quindi possono essere: rette verticali o rette orizzontali o rette oblique. Asintoti verticali Sia 0 punto di accumulazione per dom(f). La retta = 0 è

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

Funzioni convesse su intervallo

Funzioni convesse su intervallo Università degli Studi di Palermo Facoltà di Economia Dip. di Scienze Statistiche e Matematiche Silvio Vianelli Appunti del corso di Matematica Generale Funzioni convesse su intervallo Anno Accademico

Dettagli

FUNZIONI QUADRATICHE

FUNZIONI QUADRATICHE f: R R si dice funzione quadratica se è del tipo f(x) =ax 2 +bx+c, dove a,b,c sono costanti Il grafico di una funzione quadratica è una curva detta parabola Abbiamo incontrato funzioni di questo tipo quando

Dettagli

21. Studio del grafico di una funzione: esercizi

21. Studio del grafico di una funzione: esercizi 1. Studio del grafico di una funzione: esercizi Esercizio 1.6. Studiare ciascuna delle seguenti funzioni in base allo schema di pagina 194, eseguendo anche il computo della derivata seconda e lo studio

Dettagli

SIMULAZIONE - 29 APRILE 2016 - PROBLEMA 1

SIMULAZIONE - 29 APRILE 2016 - PROBLEMA 1 www.matefilia.it SIMULAZIONE - 29 APRILE 216 - PROBLEMA 1 Le centraline di controllo del Po a Pontelagoscuro (FE) registrano il valore della portata dell'acqua, ovvero il volume d'acqua che attraversa

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO

MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO MATEMATICA PROPEDEUTICA PER LO STUDIO DELLE FUNZIONI GSCATULLO 1 Propedeutica alle Funzioni Premessa Questo documento vuole essere una preparazione per lo studio delle funzioni, comprendendo tutte quelle

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE

TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE FACOLTÀ DI INGEGNERIA CORSI DI POTENZIAMENTO - MATEMATICA E LOGICA ANNO ACCADEMICO 008-009 ESERCIZI DI TRIGONOMETRIA: DISEQUAZIONI TRIGONOMETRICHE Esercizio : Risolvere la seguente disequazione >. Svolgimento:

Dettagli

FUNZIONI ESPONENZIALI

FUNZIONI ESPONENZIALI FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE SIMMETRIE E GRAFICI DEDUCIBILI Angela Donatiello FUNZIONI ESPONENZIALI Crescita

Dettagli

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A

MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Matematica La funzione aritmica e la funzione esponenziale Questa opera è distribuita con: Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate.0 Italia Ing. Alessandro

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A.

Amministrazione, finanza e marketing - Turismo Ministero dell Istruzione, dell Università e della Ricerca PROGRAMMAZIONE DISCIPLINARE PER U. di A. CLASSE quarta INDIRIZZO SIA UdA n. 5 B Titolo: COSTI E GUADAGNI Utilizzare le strategie del pensiero razionale negli aspetti dialettici ed algoritmici per affrontare situazioni problematiche, elaborando

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

Esercizi sulle equazioni logaritmiche

Esercizi sulle equazioni logaritmiche Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log

Dettagli

Sistemi di equazioni di secondo grado

Sistemi di equazioni di secondo grado 1 Sistemi di equazioni di secondo grado Risoluzione algebrica Riprendiamo alcune nozioni che abbiamo già trattato in seconda, parlando dei sistemi di equazioni di primo grado: Una soluzione di un'equazione

Dettagli

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x

UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida. 4 x UNO STUDIO DI FUNZIONE CON DERIVE a cura del prof. Guida Con questa guida si vuol proporre un esempio di studio di funzione con Derive. La versione che ho utilizzato per questo studio è la 6.0. Consideriamo

Dettagli

Detto x 0 il numero di minuti di conversazione già effettuati nel mese corrente, determina x 1 tale che: g ( x 1. )= x 0

Detto x 0 il numero di minuti di conversazione già effettuati nel mese corrente, determina x 1 tale che: g ( x 1. )= x 0 Piano tariffario: un canone fisso di euro al mese piú centesimi per ogni minuto di conversazione. Indicando con x i minuti di conversazione effettuati in un mese, con f(x) la spesa totale nel mese e con

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

DERIVATE SUCCESSIVE E MATRICE HESSIANA

DERIVATE SUCCESSIVE E MATRICE HESSIANA FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale

Dettagli

Equazioni Polinomiali II Parabola

Equazioni Polinomiali II Parabola Equazioni Polinomiali II Parabola - 0 Equazioni Polinomiali del secondo grado (Polinomi II) Forma Canonica e considerazioni La forma canonica dell equazione polinomiale di grado secondo è la seguente:

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

Quadro riassuntivo di geometria analitica

Quadro riassuntivo di geometria analitica Quadro riassuntivo di geometria analitica IL PIANO CARTESIANO (detta ascissa o coordinata x) e y quella dall'asse x (detta ordinata o coordinata y). Le coordinate di un punto P sono: entrambe positive

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa

Dettagli

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO

CLASSE terza SEZIONE H A.S. 14/ 15 PROGRAMMA SVOLTO DOCENTE: Laura Marchetto CLASSE terza SEZIONE H A.S. 14/ 15 RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni di primo e di secondo grado Sistemi di disequazioni di primo grado Equazione

Dettagli

Programma di matematica classe Prima

Programma di matematica classe Prima Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,

Dettagli

Anno 3 Rette e circonferenze

Anno 3 Rette e circonferenze Anno 3 Rette e circonferenze 1 Introduzione In questa lezione esamineremo le reciproche posizioni che possono sussistere tra retta e circonferenza o tra due circonferenze. Al termine della lezione sarai

Dettagli

Programmazione per competenze del corso Matematica, Quinto anno 2015-16

Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Competenze di aree Traguardi per lo sviluppo dellle competenze Abilità Conoscenze Individuare le principali proprietà di una - Individuare

Dettagli

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R?

PROVA N 1. 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(x) PROVA N 2. è monotona in R? PROVA N 1 1. Elencare gli elementi che conviene esaminare per tracciare il grafico di una funzione y=f(). Studiare la funzione f()= 8+ 7 9 (Sono esclusi i flessi) 3. Data la funzione f()= 1 6 3 - +5-6

Dettagli