Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il campo magnetico. 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz"

Transcript

1 Il campo magnetico 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz 1

2 Lezione 1 - Fenomeni magnetici I campi magnetici possono essere creati da un magnete o da una corrente elettrica 2

3 Lezione 1 - Fenomeni magnetici Magneti naturali: alcuni minerali di ferro (magnetite) hanno proprietà magnetiche (attirano piccoli pezzi di ferro). Alcune sostanze (ferro, acciaio, ) si magnetizzano (messe in contatto con magneti diventano magneti a loro volta). Poli di un magnete (polo Nord e polo Sud): zone in cui gli effetti magnetici sono più intensi I poli di un magnete non possono essere separati: spezzando un magnete in due parti si ottengono due coppie di poli 3

4 Lezione 1 - Fenomeni magnetici I magneti generano un campo vettoriale, il campo magnetico Direzione e verso del vettore B si evidenziano con un ago magnetico 4

5 Lezione 1 - Fenomeni magnetici Le linee magnetiche rappresentano graficamente il campo magnetico. Le linee magnetiche hanno, in ogni loro punto, il vettore B come tangente; sono rappresentate più fitte dove il campo è più intenso Il verso associato alle linee magnetiche va dal polo Nord al polo Sud In un campo magnetico uniforme, uguale in modulo, direzione e verso in tutti i punti, le linee magnetiche sono parallele ed equidistanti 5

6 Lezione 1 - Fenomeni magnetici Esperienza di Oersted Il passaggio di corrente in un filo provoca la deviazione di un ago magnetico Intorno a un filo percorso da corrente è presente un campo magnetico 6

7 Lezione 1 - Fenomeni magnetici Campo magnetico generato da un filo rettilineo Direzione del campo magnetico: tangente a ogni linea magnetica. Verso del campo magnetico: regola della mano destra 7

8 Lezione 2 -Calcolo del campo magnetico Il calcolo del campo magnetico è semplice solo in alcuni casi particolari; il campo nella materia dipende dalle caratteristiche della materia stessa 8

9 Lezione 2 -Calcolo del campo magnetico Il campo magnetico esercita una forza su un conduttore percorso da corrente Un conduttore rettilineo di lunghezza l e percorso da una corrente i, disposto perpendicolarmente a un campo magnetico uniforme B, è soggetto a una forza F tale che: Il valore di B si determina quindi misurando la forza F Nel SI B si misura in N/(A m), unità che prende il nome di tesla (T) 9

10 Lezione 2 -Calcolo del campo magnetico Campo magnetico generato da un filo rettilineo percorso da corrente L intensità del campo è data dalla Legge di Biot-Savart: La costante k0=m0/2p nel vuoto vale N/A 2 B è direttamente proporzionale alla corrente e inversamente proporzionale alla distanza 10

11 Lezione 2 -Calcolo del campo magnetico Campo magnetico generato da una spira circolare percorsa da corrente Nel centro della spira si ha: B è direttamente proporzionale alla corrente e inversamente proporzionale al raggio. B è perpendicolare al piano della spira, uscente se la corrente circola in senso antiorario,entrante se circola in senso orario. 11

12 Lezione 2 -Calcolo del campo magnetico Campo magnetico generato da un solenoide In un solenoide di lunghezza l percorso da una corrente i e formato da N spire il campo magnetico lungo l asse è: In un solenoide infinito, B è uniforme All esterno del solenoide, il campo è simile a quello generato da un magnete rettilineo: anche per un solenoide si possono definire i poli. 12

13 Lezione 2 -Calcolo del campo magnetico Permeabilità magnetica relativa μ r : rapporto tra intensità del campo magnetico in un mezzo (B) e nel vuoto (B 0 ): In un mezzo il campo può modificarsi in tre modi, a seconda del tipo di materiale e della sua permeabilità magnetica relativa μ r 13

14 Lezione 2 -Calcolo del campo magnetico Sostanze ferromagnetiche (come il ferro) μ r è molto alta e non costante; proprietà magnetiche dipendono dal valore del campo esterno B 0 e dalla storia del campione: i materiali ferromagnetici tendono a restare magnetizzati anche con B 0 = 0 Sostanze paramagnetiche (come l alluminio) μ r è costante per temperature non troppo elevate: μ r > 1 e quindi B > B 0 (leggermente) Sostanze diamagnetiche (come il rame) μ r è costante: μ r < 1 e quindi B < B 0 (leggermente) 14

15 Lezione 2 -Calcolo del campo magnetico Per i campi magnetici vale il principio di sovrapposizione Il campo magnetico terrestre B Terra è il responsabile della deviazione dell ago magnetico della bussola; le sue linee escono circa dal polo Sud geografico ed entrano nel polo Nord B Terra è sempre presente e si sovrappone agli altri campi magnetici B Terra è dell ordine di 10-5 T; può essere trascurato se i campi da studiare sono molto più intensi 15

16 Lezione 3 - Forze su conduttori percorsi da correnti Un conduttore percorso da corrente, posto dentro un campo magnetico, è sottoposto a una forza 16

17 Lezione 3 - Forze su conduttori percorsi da correnti La forza magnetica che agisce su un conduttore percorso da corrente è un vettore. Nel caso generale la sua intensità F è data da: La componente perpendicolare di B è: 17

18 Lezione 3 - Forze su conduttori percorsi da correnti La direzione della forza è sempre perpendicolare al piano individuato dalla direzione del campo e dalla direzione della corrente. Il verso si trova con la regola della mano destra: il pollice nel verso di i; le altre dita nel verso di B; la forza F esce perpendicolare al palmo. 18

19 Lezione 3 - Forze su conduttori percorsi da correnti Spira rettangolare percorsa da corrente libera di ruotare in un campo magnetico uniforme L asse di rotazione è perpendicolare alle linee del campo In posizione iniziale (a) le due forze magnetiche formano una coppia. Il momento della coppia mette in rotazione la spira. 19

20 Lezione 3 - Forze su conduttori percorsi da correnti Dopo ¼ di giro il momento della coppia è nullo, perché le due forze magnetiche hanno la stessa retta di azione: la spira, però, continua a ruotare per inerzia e oltrepassa la posizione perpendicolare (c). Oltre la posizione di equilibrio (c), il momento si inverte e richiama indietro la spira: si ha un moto di oscillazione. 20

21 Lezione 3 - Forze su conduttori percorsi da correnti Due fili paralleli percorsi da corrente interagiscono attraendosi o respingendosi a seconda del verso delle correnti. Ciascun conduttore, percorso da corrente, genera un campo magnetico, che esercita una forza magnetica sull altro conduttore 21

22 Lezione 3 - Forze su conduttori percorsi da correnti Per due fili paralleli di lunghezza l, posti a distanza d e percorsi da correnti i 1 e i 2, la forza di attrazione o repulsione magnetica è Definizione di ampere solamente in funzione di unità di misura di grandezze fondamentali meccaniche: Una corrente di intensità 1 A, che passa in due fili rettilinei molto lunghi e paralleli posti alla distanza di 1 m, produce una forza di attrazione o di repulsione uguale a N per ogni metro di filo. 22

23 Lezione 4 - La forza di Lorentz Una carica elettrica q che si muove con velocità v dentro un campo magnetico B è sottoposta a una forza F 23

24 Lezione 4 - La forza di Lorentz Una carica elettrica q che si muove in un campo magnetico viene deviata dalle forze magnetiche. Forza di Lorentz La forza magnetica che agisce su una carica in movimento con velocità v in un campo B è un vettore di modulo F dato da: Giuseppe Ruffo, Fisica: lezioni e problemi Zanichelli editore

25 Lezione 4 - La forza di Lorentz La direzione della forza di Lorentz è sempre perpendicolare al campo magnetico e alla velocità della carica, cioè è perpendicolare al piano individuato dalle loro due direzioni. Il verso si trova con la regola della mano destra. il vettore q v ha lo stesso verso di v se q è positiva, verso opposto se q è negativa 25

26 Lezione 4 - La forza di Lorentz La forza di Lorentz è sempre perpendicolare alla velocità della carica, quindi è perpendicolare allo spostamento. Il lavoro, per definizione, è dato da: Pertanto, il lavoro della forza di Lorentz è sempre nullo Per il teorema dell energia cinetica: La forza di Lorentz non produce variazione di energia cinetica La forza di Lorentz agisce modificando la direzione della velocità della particelle, ma non il suo modulo. 26

27 Lezione 4 - La forza di Lorentz Moto di una particella in un campo magnetico uniforme 1. Velocità iniziale della carica perpendicolare al campo B Il moto avviene in un piano, perpendicolare a B La traiettoria è un arco di circonferenza La velocità è costante in modulo, il moto è circolare uniforme e la forza centripeta corrisponde alla forza di Lorentz: Il raggio di curvatura della traiettoria è: 27

28 Lezione 4 - La forza di Lorentz 2. Velocità iniziale della carica non perpendicolare al campo B Il moto avviene su una traiettoria elicoidale Composizione di due moti: moto rettilineo uniforme nella direzione di B e moto circolare uniforme nel piano perpendicolare a B 28

29 Unità G18 - Il campo magnetico Campo magnetico Forza magnetica su conduttori percorsi da correnti Forza magnetica tra due conduttori Spira rotante in un campo magnetico Campo magnetico generato da correnti Filo rettilineo Spira Solenoide Forza di Lorentz Moto di una carica in un campo magnetico 29

30 Unità H19 - Induzione e onde elettromagnetiche 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti in corrente alternata 5. Il trasformatore 6. Le onde elettromagnetiche 30

31 Lezione 1 - Il flusso del vettore B Il flusso del campo magnetico attraverso una superficie dipende da come è orientata la superficie stessa rispetto alle linee del campo 31

32 Lezione 1 - Il flusso del vettore B Correnti indotte Magnete in movimento Il circuito è senza generatore: il galvanometro mostra che circola una corrente indotta mentre il magnete si muove (non quando è fermo), e il verso della corrente dipende dal verso del movimento 32

33 Lezione 1 - Il flusso del vettore B Correnti indotte Corrente variabile nel circuito induttore Il galvanometro del circuito indotto indica che circola una corrente indotta mentre varia la corrente del circuito induttore 33

34 Lezione 1 - Il flusso del vettore B Superficie piana A immersa in un campo magnetico uniforme B direzione normale alla superficie componente del campo diretta lungo la normale Flusso del vettore B attraverso la superficie A Nel SI il flusso di B si misura in weber (Wb) 34

35 Lezione 1 - Il flusso del vettore B Il flusso può essere positivo, negativo o nullo 35

36 Lezione 1 - Il flusso del vettore B Il flusso attraverso un circuito (o concatenato con un circuito) è il flusso attraverso la superficie che ha il circuito come contorno. È proporzionale al numero di linee che attraversano la superficie. 36

37 Lezione 1 - Il flusso del vettore B Il flusso di un campo magnetico uniforme B attraverso una spira piana di area A è quindi Il flusso attraverso una bobina di N spire di area A è invece È possibile, ma molto più complicato matematicamente, calcolare il flusso di un campo B non uniforme attraverso una superficie non piana. Gli esperimenti sulle correnti indotte mostrano che si produce una corrente indotta ogni volta che si ha una variazione del flusso del campo magnetico attraverso il circuito indotto. 37

38 Lezione 2 - La legge di Faraday- Neumann-Lenz Una variazione di flusso magnetico genera una d.d.p. indotta; la d.d.p. indotta fa circolare una corrente che si oppone alla variazione di flusso 38

39 Lezione 2 - La legge di Faraday- Neumann-Lenz Si ha una corrente indotta ogni volta che si ha una variazione del flusso del campo magnetico attraverso il circuito indotto. Perché in un circuito circoli corrente, occorre una differenza di potenziale: nel caso della corrente indotta, questa d.d.p è la d.d.p. indotta. Si ha una d.d.p. indotta ogni volta che si ha una variazione del flusso del campo magnetico attraverso il circuito indotto. 39

40 Lezione 2 - La legge di Faraday- Neumann-Lenz Legge di Faraday-Neumann La d.d.p. indotta in un circuito chiuso e direttamente proporzionale alla variazione di flusso magnetico e inversamente proporzionale all intervallo di tempo in cui avviene tale variazione. Nella formula ΔV i è il valore assoluto della d.d.p. indotta media 40

41 Lezione 2 - La legge di Faraday- Neumann-Lenz Se la resistenza del circuito indotto è R, la corrente indotta che circola è, per la prima legge di Ohm: 41

42 Lezione 2 - La legge di Faraday- Neumann-Lenz Legge di Lenz: una corrente indotta circola sempre in verso tale da creare un campo magnetico indotto che si oppone alla variazione di flusso che l ha generata 42

43 Lezione 2 - La legge di Faraday- Neumann-Lenz La legge di Lenz esprime la conservazione dell energia nel caso di d.d.p. o correnti indotte. Una corrente indotta che circola nel circuito indotto dissipa energia, che deve provenire dal lavoro di una forza esterna. Senza la legge di Lenz, le correnti indotte si rinforzerebbero da sole: verrebbe prodotta energia senza cessione di lavoro al sistema da parte di una forza esterna. La legge di Faraday-Neumann-Lenz: 43

44 Lezione 2 - La legge di Faraday- Neumann-Lenz Se il circuito non è chiuso, non circola corrente indotta. I fenomeni di induzione, però avvengono ancora. La legge di Faraday- Neumann-Lenz si formula in termini di f.e.m. indotta: 44

45 Lezione 3 - Induttanza e autoinduzione Modificando il valore della corrente in una bobina, nasce una d.d.p. autoindotta che è proporzionale alla variazione della corrente 45

46 Lezione 3 - Induttanza e autoinduzione Una bobina percorsa da una corrente i genera un campo magnetico B; B è direttamente proporzionale a i : Il flusso del campo magnetico B attraverso la bobina è direttamente proporzionale a i : La costante di proporzionalità L è l induttanza (o coefficiente di autoinduzione) della bobina: Nel SI, l induttanza L si misura in weber/ampere, cioè in henry (H) 46

47 Lezione 3 - Induttanza e autoinduzione In una bobina circola una corrente i variabile nel tempo: al tempo t 1 la corrente è i 1, al tempo t 2 è i 2. Nell intervallo di tempo Δt = t 2 t 1 si ha C è variazione di flusso, quindi c è tensione indotta Si parla di autoinduzione e di tensione autoindotta Per la legge di Faraday-Neumann-Lenz: 47

48 Lezione 3 - Induttanza e autoinduzione Nel circuito RL serie, una resistenza e una bobina di induttanza L (e di resistenza trascurabile) sono collegate in serie. A circuito aperto (a), la corrente i è nulla, a circuito chiuso (b) i vale 48

49 Lezione 3 - Induttanza e autoinduzione La d.d.p. autoindotta della bobina si oppone alla variazione di flusso, e quindi di corrente, che l ha generata: la corrente impiega un certo tempo per passare dal valore 0 al valore massimo, e viceversa. 49

50 Lezione 3 - Induttanza e autoinduzione Nel circuito RL l energia fornita dalla pila si ripartisce fra resistenza e induttanza. La potenza assorbita dalla resistenza R, che viene dissipata per effetto joule, è data da R i 2. L energia assorbita dall induttanza viene immagazzinata nel campo magnetico della bobina e si chiama energia magnetica U m. U m è direttamente proporzionale all induttanza L e al quadrato della corrente i: 50

51 Lezione 4 - I circuiti in corrente alternata In un circuito in corrente alternata, la corrente può non essere in fase con la tensione alternata 51

52 Lezione 4 - I circuiti in corrente alternata Un alternatore è un generatore che fornisce una tensione alternata sinusoidale. L andamento istantaneo della tensione V(t) è: V m è la tensione massima Se f è la frequenza della tensione alternata, ω = 2π f. -Negli impianti domestici e industriali si utilizza tensione alternata alla frequenza di 50 Hz 52

53 Lezione 4 - I circuiti in corrente alternata Corrente alternata in un resistore R La corrente è alternata sinusoidale, con la stessa frequenza della tensione Corrente e tensione oscillano in fase: i(t) e V(t) raggiungono il massimo nello stesso istante La relazione tra i valori istantanei e i valori massimi di V e i è: 53

54 Lezione 4 - I circuiti in corrente alternata Corrente alternata in una bobina di induttanza L La corrente è alternata sinusoidale, con la stessa frequenza della tensione La corrente è in ritardo rispetto alla tensione di ¼ di periodo: se V(t) raggiunge il massimo per t = 0, i(t) è massima per t = T/4 La relazione tra i valori massimi di V e i è: 54

55 Lezione 4 - I circuiti in corrente alternata Corrente alternata in un condensatore di capacità C La corrente è alternata sinusoidale, con la stessa frequenza della tensione La corrente è in anticipo rispetto alla tensione di ¼ di periodo: se V(t) raggiunge il massimo per t = 0, i(t) è massima per t = T/4 La relazione tra i valori massimi di V e i è: 55

56 Lezione 4 - I circuiti in corrente alternata Corrente alternata in un circuito RLC serie La corrente è alternata sinusoidale, con la stessa frequenza della tensione La corrente è sfasata rispetto alla tensione: lo sfasamento dipende da R, L, C e dalla frequenza I valori massimi di V e i sono legati dall impedenza Z: 56

57 Lezione 4 - I circuiti in corrente alternata In un resistore in corrente alternata la potenza dissipata è variabile nel tempo: Il valore medio nel tempo della potenza è: L intensità efficace di una corrente alternata e quel valore di corrente continua che, passando in un conduttore, produce la stessa quantità di calore in uguale tempo Per corrente e tensione alternata sinusoidale: Per un resistore in corrente alternata: 57

58 Lezione 5 - Il trasformatore La funzione del trasformatore è quella di abbassare o innalzare la tensione alternata che arriva al circuito primario 58

59 Lezione 5 - Il trasformatore In un trasformatore, due circuiti, primario (N p spire) e secondario (N s spire) sono avvolti intorno a un nucleo ferromagnetico. Se nel circuito primario circola una corrente alternata, si genera un campo magnetico alternato che, passando per il nucleo, attraversa il secondario. Per la legge di Faraday-Neumann, ai capi del circuito secondario si genera una tensione indotta alternata con la stessa frequenza 59

60 Lezione 5 - Il trasformatore V p e V s : f.e.m. ai capi rispettivamente del primario e del secondario (f.e.m. = tensione a circuito aperto). Si ha: = rapporto di trasformazione Rapporto di trasformazione > 1 (N s > N p ): trasformatore elevatore Rapporto di trasformazione < 1 (N s < N p ): trasformatore riduttore 60

61 Lezione 5 - Il trasformatore In un trasformatore ideale non ci sono dispersioni di energia. Dette P p e P s rispettivamente la potenza fornita al primario e disponibile al secondario, i p, i s, V p e V s i valori efficaci di corrente e tensione, si ha: Se il trasformatore aumenta la tensione di un certo fattore, allora diminuisce la corrente dello stesso fattore Il rendimento r di un trasformatore reale e il rapporto tra potenza resa e potenza fornita (in genere si ha r > 90%): 61

62 Lezione 5 - Il trasformatore Trasporto dell energia elettrica I trasformatori non funzionano in corrente continua, quindi la conversione da tensione alternata a continua avviene dopo il trasporto 62

63 Lezione 5 - Il trasformatore Trasporto dell energia elettrica: la tensione viene elevata prima del trasporto su lunga distanza, e viene ridotta prima dell utilizzo Corrente utilizzata per il trasporto di una potenza P: i = P / V - A parità di potenza, la corrente è inversamente proporzionale alla tensione. Occorrono cavi più piccoli per trasportare correnti inferiori, quindi è vantaggioso trasportare correnti basse Perdita di potenza su una linea di resistenza R: ΔP = R i 2 = R P 2 / V 2 - A parità di potenza e di resistenza la perdita di potenza è inversamente proporzionale al quadrato della tensione. Innalzando la tensione calano notevolmente le perdite lungo la linea 63

64 Lezione 6 - Le onde elettromagnetiche Un onda elettromagnetica è la sovrapposizione di un campo elettrico e un campo magnetico variabili che si propagano nello spazio. La velocità di propagazione si calcola con l equazione delle onde: v = λ f 64

65 Lezione 6 - Le onde elettromagnetiche La legge di Faraday-Neumann-Lenz può essere espressa in termini di campo elettrico indotto: un campo magnetico variabile crea un campo elettrico indotto, anch esso variabile Le linee di forza del campo elettrico indotto sono chiuse attorno alle linee del campo magnetico 65

66 Lezione 6 - Le onde elettromagnetiche Durante la carica di un condensatore, tra le armature non si ha passaggio di carica, ma, poiché il campo elettrico varia, si ha una corrente di spostamento, che genera un campo magnetico indotto Un campo elettrico variabile crea un campo magnetico indotto variabile 66

67 Lezione 6 - Le onde elettromagnetiche Campo elettrico variabile e campo magnetico variabile sono strettamente legati e non esistono indipendentemente l uno dall altro, ma come un unico campo, il campo elettromagnetico Un campo elettromagnetico generato in un punto si propaga nello spazio come un onda elettromagnetica. - L esistenza delle onde elettromagnetiche è stata prevista teoricamente da James Clerk Maxwell ( ), prima di essere verificata sperimentalmente nel 1888 da Heinrich Hertz 67

68 Lezione 6 - Le onde elettromagnetiche Le onde elettromagnetiche sono onde trasversali: i campi E e B oscillano perpendicolarmente tra loro e alla direzione di propagazione 68

69 Lezione 6 - Le onde elettromagnetiche Nel vuoto le onde elettromagnetiche si propagano con velocità c (velocità della luce), nei mezzi con velocità inferiore. La velocità lega la frequenza f e la lunghezza d onda λ: Spettro elettromagnetico Intervallo di frequenze e lunghezze d onda coperte dalla radiazione elettromagnetica 69

70 Unità H19 -Induzione e onde elettromagnetiche Induzione elettromagnetica Onde elettromagnetiche Flusso del campo magnetico Legge di Faraday- Neumann-Lenz Corrente di spostamento trasformatore f.e.m indotta d.d.p indotta Corrente indotta Autoinduzione Circuiti in corrente alternata Induttanza 70

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Scientifico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Dettagli

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE

Induzione magnetica. Corrente indotta. Corrente indotta. Esempio. Definizione di flusso magnetico INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Induzione magnetica INDUZIONE MAGNETICA E ONDE ELETTROMAGNETICHE Che cos è l induzione magnetica? Si parla di induzione magnetica quando si misura una intensità di corrente diversa da zero che attraversa

Dettagli

Limature di ferro orientate secondo le linee del campo magnetico generato da una barra

Limature di ferro orientate secondo le linee del campo magnetico generato da una barra Magnetismo naturale Un magnete (o calamita) è un corpo che genera una forza su un altro magnete che può essere sia attrattiva che repulsiva. Intorno al magnete c è un campo magnetico. Il nome deriva dal

Dettagli

I poli magnetici isolati non esistono

I poli magnetici isolati non esistono Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero

Dettagli

Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente

Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira. un campo magnetico variabile genera una corrente Induzione e.m. generazione di corrente dovuta al moto relativo del magnete rispetto alla spira un campo magnetico variabile genera una corrente INDUZIONE ELETTROMAGNETICA - ESPERIENZA 1 magnete N S µ-amperometro

Dettagli

Lezione 18. Magnetismo WWW.SLIDETUBE.IT

Lezione 18. Magnetismo WWW.SLIDETUBE.IT Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà

Dettagli

MAGNETISMO - prima parte. pina di vito 1

MAGNETISMO - prima parte. pina di vito 1 MAGNETISMO - prima parte 1 Magneti magneti naturali: magnetite (minerale del ferro Fe3O4) magneti artificiali: composti di Fe, Ni, Co poli magnetici: Nord e Sud I nomi dei poli magnetici derivano dall

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI

LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI LICEO SCIENTIFICO G. LEOPARDI A.S. 2010-2011 FENOMENI MAGNETICI FONDAMENTALI Prof. Euro Sampaolesi IL CAMPO MAGNETICO TERRESTRE Le linee del magnete-terra escono dal Polo geomagnetico Nord ed entrano nel

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI Struttura dell'atomo (nucleo, protoni, neutroni, elettroni); cariche elettriche elementari (elettrone,

Dettagli

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015

LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 LICEO STATALE A.VOLTA COLLE DI VAL D ELSA PROGRAMMA DI FISICA SVOLTO NELLA CLASSE VA ANNO SCOLASTICO 2014/2015 Insegnante: LUCIA CERVELLI Testo in uso: Claudio Romeni FISICA E REALTA Zanichelli Su alcuni

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

Le macchine elettriche

Le macchine elettriche Le macchine elettriche Cosa sono le macchine elettriche? Le macchine elettriche sono dispositivi atti a: convertire energia elettrica in energia meccanica; convertire energia meccanica in energia elettrica;

Dettagli

Definizione di mutua induzione

Definizione di mutua induzione Mutua induzione Definizione di mutua induzione Una induttanza produce un campo magnetico proporzionale alla corrente che vi scorre. Se le linee di forza di questo campo magnetico intersecano una seconda

Dettagli

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite

Magnetismo. limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Magnetismo Alcuni minerali (ossidi di ferro) attirano la limatura di ferro. Fenomeno noto fin dall antichità. Da Magnesia città dell Asia Minore - Magnetite Proprietà non uniforme. Se si ricava opportuno

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

nei materiali (Inserendo un materiale all interno di un campo magnetico generato da un magnete permanente)

nei materiali (Inserendo un materiale all interno di un campo magnetico generato da un magnete permanente) COMPORTAMENTO MAGNETICO DEI MATERIALI a) nel vuoto B = μ0 H μ0 = 4 π 10-7 H/m b) nei materiali (Inserendo un materiale all interno di un campo magnetico generato da un magnete permanente) Il materiale

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Elettrotecnica ed Elettronica

Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Elettrotecnica ed Elettronica Docenti: Coppola Filippo Sergio Sacco Giuseppe Istituto Tecnico dei Trasporti e Logistica Nautico San Giorgio Genova A/S 2012/2013 Programma Didattico Svolto Classe 3A2 Elettrotecnica ed Elettronica Modulo

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

MAGNETISMO ed ELETTROMAGNETISMO

MAGNETISMO ed ELETTROMAGNETISMO MAGNETIMO ed ELETTROMAGNETIMO INTRODUZIONE: CAMPO MAGNETICO NEL VUOTO appiamo dalla fisica che un pezzo di minerale di ferro come la magnetite presenta la proprietà di attrarre spontaneamente a se altri

Dettagli

Magnetismo. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica

Magnetismo. Roberto Cirio. Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica Roberto Cirio Corso di Laurea in Chimica e Tecnologia Farmaceutiche Anno accademico 2007 2008 Corso di Fisica La lezione di oggi I magneti Il campo magnetico Il ciclotrone Fisica a.a. 2007/8 2 I magneti

Dettagli

Magnetismo. Prof. Mario Angelo Giordano

Magnetismo. Prof. Mario Angelo Giordano Magnetismo Prof. Mario Angelo Giordano Fenomeni magnetici Il magnete ha sempre due estremità magnetizzate, il polo nord e il polo sud. Avvicinando i poli, si possono respingere oppure attrarre. Il magnete

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

Flusso del campo magnetico

Flusso del campo magnetico Lezione 19 Flusso del campo magnetico Il flusso magnetico o flusso di B attraverso una superficie aperta delimitata da un contorno chiuso e dato da Se il contorno chiuso e un circuito, il flusso in questione

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

Magnetismo. pag. 1. P. Maestro Magnetismo

Magnetismo. pag. 1. P. Maestro Magnetismo Magnetismo Fatti sperimentali Forza di Lorentz Applicazioni: ciclotrone,spettrometro di massa, tubo catodico Campo magnetico di un filo percorso da corrente Campo magnetico di spira e solenoide Forza magnetica

Dettagli

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte;

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte; Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte; Obiettivi generali. Macchine Elettriche, HOEPLI di Gaetano Conte; Laboratorio di Macchine Elettriche, HOEPLI di Gaetano Conte;

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

Potenza elettrica nei circuiti in regime sinusoidale

Potenza elettrica nei circuiti in regime sinusoidale Per gli Istituti Tecnici Industriali e Professionali Potenza elettrica nei circuiti in regime sinusoidale A cura del Prof. Chirizzi Marco www.elettrone.altervista.org 2010/2011 POTENZA ELETTRICA NEI CIRCUITI

Dettagli

Corrente elettrica. Daniel Gessuti

Corrente elettrica. Daniel Gessuti Corrente elettrica Daniel Gessuti indice 1 Definizioni 1 Definizione di corrente 1 Definizione di resistenza 2 2 Effetto Joule 3 Circuiti in parallelo 4 3 Circuiti in serie 5 4 Il campo magnetico 5 Fenomeni

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato

Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato 1 Fisica Generale II Facoltà di Ingegneria. a.a. 2013/2014 Prof. Luigi Renna Programma dettagliato Libro di testo: P. Mazzoldi M. Nigro C. Voci: Elementi di FISICA Elettromagnetismo Onde II edizione (EdiSES,

Dettagli

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO CORRENTE CONTINUA: FENOMENI FISICI E PRINCIPI FONDAMENTALI - Richiami sulle unità di misura e sui sistemi di unità di misura. - Cenni sulla struttura e sulle proprietà elettriche della materia. - Le cariche

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzione elettromagnetica 1. Induzione elettromagnetica 2. Esperienze di Faraday 3. Legge di Faraday Neumann Lenz Induzione elettromagnetica (1) La rivoluzione determinata dall'utilizzo dell'energia elettrica

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 3 Campi magnetici e forza

Dettagli

La corrente elettrica

La corrente elettrica Lampadina Ferro da stiro Altoparlante Moto di cariche elettrice Nei metalli i portatori di carica sono gli elettroni Agitazione termica - moto caotico velocità media 10 5 m/s Non costituiscono una corrente

Dettagli

Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo si complica

Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo si complica Elettromagnetismo prima di Faraday: campi elettrici e campi magnetici Correnti elettriche creano campi magnetici Cariche elettriche creano campi elettrici Con gli esperimenti di Faraday ( 1831 ) l'elettromagnetismo

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

- semplicità delle macchine generatrici (alternatori) - possibilità di utilizzare semplicemente i trasformatori

- semplicità delle macchine generatrici (alternatori) - possibilità di utilizzare semplicemente i trasformatori ITCG CATTANEO CON LICEO DALL AGLIO - via M. di Canossa - Castelnovo ne Monti (RE) SEZIONE I.T.I. Le Correnti Alternate Come vedremo è piuttosto semplice produrre tensioni, e di conseguenza correnti, che

Dettagli

Il magnetismo. Il campo magnetico

Il magnetismo. Il campo magnetico Il magnetismo Un magnete (o calamita) è un corpo che genera intorno a sé un campo di forza che attrae il ferro Un magnete naturale è un minerale contenente magnetite, il cui nome deriva dal greco "pietra

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

IL TRASFORMATORE REALE

IL TRASFORMATORE REALE Il trasformatore ideale è tale poiché: IL TRASFORMATORE REALE si ritengono nulle le resistenze R 1 e R 2 degli avvolgimenti; il flusso magnetico è interamente concatenato con i due avvolgimenti (non vi

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Appello di FISICA GENERALE 2 del 27/01/15 Esercizio 1 (9 punti): Una distribuzione di carica è costituita da un guscio sferico

Dettagli

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono.

Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa si attraggono. 2012 11 08 pagina 1 Carica elettrica Esistono cariche elettriche di due tipi: positiva e negativa. Due cariche positive si respingono, due cariche negative si respingono, una carica positiva e una negativa

Dettagli

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche

CdL Professioni Sanitarie A.A. 2012/2013. Unità 7: Forze elettriche e magnetiche L. Zampieri Fisica per CdL Professioni Sanitarie A.A. 12/13 CdL Professioni Sanitarie A.A. 2012/2013 Unità 7: Forze elettriche e magnetiche Forza elettrica e corrente Carica elettrica e legge di Coulomb

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

FISICA E LABORATORIO

FISICA E LABORATORIO Programma di FISICA E LABORATORIO Anno Scolastico 2014-2015 Classe V P indirizzo OTTICO Docente Giuseppe CORSINO Programma di FISICA E LABORATORIO Anno Scolastico 2013-2014 Classe V P indirizzo OTTICO

Dettagli

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1

Legge di Faraday. x x x x x x x x x x E B. x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 B ds Legge di Faraday E x x x x x x x x x x E B x x x x x x x x x x R x x x x x x x x x x B 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di una carica q in un campo

Dettagli

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto:

27/05/2013. essendo μ 0 la permeabilità magnetica nel vuoto: 7/05/013 L unità i carica magnetica nel S.I. è il Weber (Wb). L espressione qualitativa elle interazioni magnetiche è ata alla legge i Coulomb per il magnetismo: F K 0 1 1 4 0 1 esseno μ 0 la permeabilità

Dettagli

Generazione campo magnetico

Generazione campo magnetico ELETTRO-MAGNETISMO Fra magnetismo ed elettricità esistono stretti rapporti: La corrente elettrica genera un campo magnetico; Un campo magnetico può generare elettricità. Generazione campo magnetico Corrente

Dettagli

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZANINELLO LORIS

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZANINELLO LORIS ISTITUTO VERONESE MARCONI Sede di Cavarzere (VE) PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni Docente: VARAGNOLO GIAMPAOLO Insegnante Tecnico Pratico: ZANINELLO LORIS Classe

Dettagli

FAM. Serie 34: Elettrodinamica IX. Esercizio 1 Legge di Faraday e legge di Lenz. C. Ferrari. Considera una spira come nella figura qui sotto

FAM. Serie 34: Elettrodinamica IX. Esercizio 1 Legge di Faraday e legge di Lenz. C. Ferrari. Considera una spira come nella figura qui sotto Serie 34: Elettrodinamica IX FAM C. Ferrari Esercizio 1 Legge di Faraday e legge di Lenz Considera una spira come nella figura qui sotto n C S 1. Disegna la corrente indotta nella spira se il campo magnetico

Dettagli

LICEO STATALE TERESA CICERI COMO 11 settembre 2012 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013

LICEO STATALE TERESA CICERI COMO 11 settembre 2012 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013 PROGRAMMAZIONE DISCIPLINARE DI FISICA A. S. 2012/2013 TRIENNIO BROCCA LICEO SOCIO PSICO - PEDAGOGICO TRIENNIO BROCCA LICEO LINGUISTICO FINALITA GENERALI Il Progetto Brocca individua le seguenti finalità

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

Questa proprietà, posseduta da alcuni corpi, viene definita MAGNETISMO.

Questa proprietà, posseduta da alcuni corpi, viene definita MAGNETISMO. MAGNETISMO Cos è il MAGNETISMO Sin dall'antichità era noto che un minerale di ferro, la magnetite, ha la proprietà di attirare il ferro. Questa proprietà, posseduta da alcuni corpi, viene definita MAGNETISMO.

Dettagli

I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2013/14

I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2013/14 I.S.I.S. Zenale e Butinone di Treviglio Dipartimento di Scienze integrate anno scolastico 2013/14 KIT RECUPERO SCIENZE INTEGRATE FISICA CLASSI SECONDE TECNICO GRAFICO SUPPORTO DIDATTICO PER ALUNNI CON

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

PROGRAMMA SVOLTO. a.s. 2012/2013

PROGRAMMA SVOLTO. a.s. 2012/2013 Liceo Scientifico Statale LEONARDO DA VINCI Via Cavour, 6 Casalecchio di Reno (BO) - Tel. 051/591868 051/574124 - Fax 051/6130834 C. F. 92022940370 E-mail: LSLVINCI@IPERBOLE.BOLOGNA.IT PROGRAMMA SVOLTO

Dettagli

Induzione Magnetica Legge di Faraday

Induzione Magnetica Legge di Faraday nduzione Magnetica egge di Faraday ezione 8 (oltre i campi elettrostatico, magnetostatico, e le correnti stazionarie) Variazione nel tempo del campo : Muovendo un magnete vicino a una spira connessa ad

Dettagli

E 0 = E 1 2 + E 0. 2 = E h. = 3.2kV / m. 2 1 x. κ 1. κ 2 κ 1 E 1 = κ 2 E 2. = κ 1 E 1 x ε 0 = 8

E 0 = E 1 2 + E 0. 2 = E h. = 3.2kV / m. 2 1 x. κ 1. κ 2 κ 1 E 1 = κ 2 E 2. = κ 1 E 1 x ε 0 = 8 Solo Ingegneria dell Informazione e Ingegneria dell Energia (Canale 2 e DM 59) Problema Due condensatori piani C e C, uguali ad armature quadrate separate dalla distanza, sono connessi in parallelo. Lo

Dettagli

Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW. Tratto dal sito web WWW.IT9UMH.ALTERVISTA.ORG

Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW. Tratto dal sito web WWW.IT9UMH.ALTERVISTA.ORG Principi costruttivi e progettazione di Gioacchino Minafò IW9 DQW Le antenne a quadro (o telaio) Il principio di funzionamento di un'antenna a quadro è differente da quello delle comuni antenne filari

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

11. Macchine a corrente continua. unità. 11.1 Principio di funzionamento

11. Macchine a corrente continua. unità. 11.1 Principio di funzionamento 11. Macchine a corrente continua unità 11.1 Principio di funzionamento Si consideri una spira rotante con velocità angolare costante e immersa in un campo magnetico costante come in figura 11.1. I lati

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

Dipartimento di Fisica Programmazione classi seconde Anno scolastico2010-2011

Dipartimento di Fisica Programmazione classi seconde Anno scolastico2010-2011 Liceo Tecnico Chimica Industriale Meccanica Elettrotecnica e Automazione Elettronica e Telecomunicazioni Istituto Tecnico Industriale Statale Alessandro Volta Via Assisana, 40/E - loc. Piscille - 06087

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini

Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Strane anomalie di un motore omopolare Di Valerio Rizzi e Giorgio Giurini Gli scriventi, in qualità di studiosi del generatore omopolare hanno deciso di costruire questo motore per cercare di capire le

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche Alla metà del XIX secolo Maxwell prevede teoricamente le onde e.m. Sono scoperte sperimentalmente da Hertz Danno la possibilità di comunicare a distanza (radio, televisione, telecomandi

Dettagli

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE

LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE LEZIONE DI ELETTRONICA per la classe 5 TIM/TSE MODULO : Analisi dei circuiti lineari in regime sinusoidale PREMESSA L analisi dei sistemi elettrici lineari, in regime sinusoidale, consente di determinare

Dettagli

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing.

APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA. Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. APPUNTI DI ELETTROMAGNETISMO E RADIOTECNICA Coordinatore del Progetto prof. Vito Potente Stesura a cura del docente ing. Marcello Surace 1 Si richiamano le definizioni delle leggi fondamentali, invitando

Dettagli

Elettronica I Circuiti nel dominio del tempo

Elettronica I Circuiti nel dominio del tempo Elettronica I Circuiti nel dominio del tempo Valentino Liberali Dipartimento di ecnologie dell Informazione Università di Milano, 2613 Crema e-mail: liberali@i.unimi.it http://www.i.unimi.it/ liberali

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

Prova intercorso di Fisica 2 dott. Esposito 27/11/2009

Prova intercorso di Fisica 2 dott. Esposito 27/11/2009 Prova intercorso di Fisica 2 dott. Esposito 27/11/2009 Anno di corso: 1) Una carica puntiforme q=-8.5 10-6 C è posta a distanza R=12 cm da un piano uniformemente carico condensità di carica superficiale

Dettagli

Lezione 16. Motori elettrici: introduzione

Lezione 16. Motori elettrici: introduzione Lezione 16. Motori elettrici: introduzione 1 0. Premessa Un azionamento è un sistema che trasforma potenza elettrica in potenza meccanica in modo controllato. Esso è costituito, nella sua forma usuale,

Dettagli

20) Ricalcolare la resistenza ad una temperatura di 70 C.

20) Ricalcolare la resistenza ad una temperatura di 70 C. ISTITUTO TECNICO AERONAUTICO G.P. CHIRONI NUORO Anno Sc. 2010/2011 Docente: Fadda Andrea Antonio RACCOLTA DI TEST ED ESERCIZI CLASSE 3^ 1) Quali particelle compongono un atomo? A) elettroni, protoni, neutroni

Dettagli

MISURE DI GRANDEZZE ELETTRICHE

MISURE DI GRANDEZZE ELETTRICHE MISURE DI GRANDEZZE ELETTRICHE La tecnologia oggi permette di effettuare misure di grandezze elettriche molto accurate: precisioni dell ordine dello 0,1 0,2% sono piuttosto facilmente raggiungibili. corrente:

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli

CONDUTTORI, CAPACITA' E DIELETTRICI

CONDUTTORI, CAPACITA' E DIELETTRICI CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia

Dettagli

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo. Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento

Dettagli

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte.

Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte. Libri di testo adottati: Elettrotecnica generale HOEPLI di Gaetano Conte. Obiettivi generali. L insegnamento di Elettrotecnica, formativo del profilo professionale e propedeutico, deve fornire agli allievi

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI

T3 CIRCUITI RISONANTI E AMPLIFICATORI SELETTIVI T3 CICUITI ISONANTI E AMPLIFICATOI SELETTIVI T3. Il fattore di merito di una bobina è misurato in: [a] henry. [b] ohm... [c] è adimensionale.. T3. Il fattore di perdita di un condensatore è misurato in:

Dettagli

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro:

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: Fenomeni magnetici VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: proprietà non uniforme nel materiale; si manifesta in determinate parti. campioni cilindrici (magneti) nei quali tale

Dettagli

ENERGIA ELETTRICA: Generatori e tipi di collegamento. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 -

ENERGIA ELETTRICA: Generatori e tipi di collegamento. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 - ENERGIA ELETTRICA: Generatori e tipi di collegamento Quando un conduttore in movimento attraversa le linee di forza di un campo magnetico, nel conduttore si genera una forza elettromotrice indotta in grado

Dettagli