Massa volumica. Esempio 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Massa volumica. Esempio 1"

Transcript

1

2 Fluidi Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. In base a tale definizione, sia i gas che i liquidi sono dei fluidi. Una distinzione fra liquidi e gas puo essere basata sulla osservazione che una certa quantita di liquido ha un volume definito, mentre un gas si espande fino a riempire completamente il recipiente in cui e posto. Questo differente comportamento macroscopico dipende dalle differenti proprieta delle forze di coesione fra le molecole. Pressione Immaginiamo di immergere in un fluido un sensore molto piccolo, come quello schematizzato in figura. Un pistone avente area A e massa trascurabile puo scorrere, vincolato ad una molla, in un cilindro all interno del quale e fatto il vuoto. Quando lo strumento viene immerso, il fluido esercita sul pistone una forza di modulo F, perpendicolare al pistone stesso, spingendolo verso l interno. Il pistone raggiungera la posizione in cui la forza esercitata dalla molla su di esso bilancia quella esercitata dal fluido. Definiamo pressione P del fluido nel punto in cui si trova il sensore lo scalare dato dal rapporto P= F/A Si trova sperimentalmente che la pressione P cosi definita non dipende dall orientamento del sensore. La unita di misura della pressione nel S.I. e il Pascal (Pa) 1 Pa = 1 N/m 2 Altre unita di misura della pressione ancora utilizzate sono: l atmosfera (atm)equivalente alla pressione media della atmosfera a livello del mare; il torrequivalente alla pressione esercitata da una colonna di 1 mm di mercurio ed il barequivalente a 10 5 Pa 1Atm= Pa = 1.01 bar = 760 torr

3 Massa volumica La massa volumica ρ(o densita ) di una sostanza e definita come la massa per unita di volume della sostanza considerata. Poiche come osservato i gas non hanno un volume definito, la loro massa volumica dipendera fortemente dalla pressione e dalla temperatura. Tale dipendenza e invece solitamente trascurabile o molto debole per i liquidi ed i solidi Esempio 1 Una stanza ha un pavimento di dimensioni 3.5 m per 4.5 m ed altezza di 3.2 m. Calcolare la massa m ed il peso mg dell aria contenuta nella stanza a pressione atmosferica e temperatura di 0 o C ed il modulo F della forza esercitata dall aria sul pavimento della stanza. m = ρ V = 1.29 (3.5 x 4.5 x 3.2) = 65 kg mg = N F = PA= x (3.5 x4.5) = N Tale enorme forza e equivalente al peso di una massa di kg!!

4 Legge di Stevino Ci proponiamo di capire in che modo varia con la profondita la pressione di un fluido in quiete avente densita ρ costante. Consideriamo un contenitore contenente un liquido in quiete avente densita ρ come schematizzato in figura. y Consideriamo la quantita di liquido contenuta dentro un cilindro immaginario avente base di area A e che si estende dalla superficie fino alla profondita h. Sia P la pressione esercitata dal liquido esterno al cilindro sulla base del cilindro a profondita h. La pressione esercitata dall aria sulla superficie del cilindro e la pressione atmosferica P 0. Poiche il cilindro di liquido e in quiete, la componente rispetto all asse y della risultante delle forze agenti sul cilindro deve essere nulla. Quindi si ha: +P 0 A +Mg PA = 0 + P 0 A +(A h ρ)g PA = 0 P= P 0 + ρg h Cioe la pressione ad una profondita y=h e maggiore della pressione atmosferica di una quantita ρg h Tale legge prende il nome di legge di Stevino.

5 Esempio 2: il barometro a mercurio Evangelista Torricelli ( ), al quale e dedicato il nome di una delle unita di misura della pressione, il torr, invento un semplice strumento che consente di misurare la pressione atmosferica: il barometro a mercurio. y Il barometro e costituito da un tubo, chiuso ad una estremita, riempito di mercurio. Il tubo viene rovesciato in un contenitore aperto, anch esso pieno di mercurio, avendo cura di non fare entrare aria nel tubo stesso durante la operazione. Alla estremita chiusa del tubo si crea una zona di vuoto dove la pressione puo essere considerata nulla. La altezza della colonna di mercurio osservata eseguendo l esperimento al livello del mare e di 76 cm. Dalla legge di Stevino abbiamo che P 0 = P+ ρgh = 0 + ρgh = ρgh = Pa = 1 atm La pressione atmosferica e quindi equivalente a quella generata da una colonna di mercurio di altezza h=76 cm Principio di Pascal Come abbiamo visto, la pressione in un fluido in quiete dipende solo dalla profondita. Pertanto, ad esempio, un aumento della pressione P 0 sulla superficie sara trasmesso in qualsiasi altro punto del fluido. Il primo a comprendere cio fu Blaise Pascal ( ), al quale e dedicato il nome della unita di pressione del S.I., che enuncio la legge oggi nota come principio di Pascal: Una variazione di pressione applicata ad un fluido viene trasmessa invariata ad ogni punto del fluido e alle pareti del contenitore.

6 Esempio 3: un sollevatore per auto Una importante applicazione del principio di Pascal e il martinetto idraulico la cui logica di funzionamento e la seguente. Una forza F 1 viene applicata ad un piccolo pistone di area A 1. La pressione viene trasmessa attraverso un fluido ad un pistone di area A 2 >A 1, sul quale sara quindi esercitata una forza F 2. Poiche la pressione e la stessa su entrambi i pistoni si ha: P = F 1 /A 1 = F 2 / A 2 F 2 = F 1 (A 2 /A 1 ) > F 1 Su tale principio si basa il funzionamento di freni idraulici, sollevatori idraulici, carrelli elevatori e simili. y Un elevatore tiene sollevata una automobile di massa M= kg. Per fare funzionare l elevatore si utilizza dell aria compressa per comprimere un pistoncino di raggio R 1 =5.0 cm, mentre il raggio del secondo pistone e R 2 =15 cm. Quale forza F 1 deve esercitare l aria compressa per tenere sollevata l auto? Quale sara la pressione dell aria compressa necessaria? Mg+ F 2 = ma= 0 -Mg + F 2 = 0 -Mg + F 1 (A 2 /A 1 ) =0 F 1 = Mg (A 1 /A 2 ) = Mg (R 1 /R 2 ) 2 = (1/9) Mg= N P = F 1 /A 1 = F 1 /(πr 12 ) = Pa = 1.8 atm

7 Principio di Archimede Archimede, piu di 2000 anni addietro, enuncio quello che e oggi noto come principio di Archimede: un corpo immerso in un fluido riceve una spinta dal basso verso l alto pari al peso del fluido spostato. Ci proponiamo di capire, alla luce delle nostre conoscenze attuali, quale e l origine di tale spinta. y Dato un contenitore contenente un fluido in quiete avente densita ρ, consideriamo la quantita di fluido contenuta dentro un cubo immaginario di lato L come schematizzato in figura. Poiche il cubo di fluido e in quiete, la componente lungo l asse y della risultante delle forze agenti sul cubo di fluido deve essere nulla. Quindi: -Fg + B = 0 B = Fg = mg Quindi la spinta B verso l alto agente sul cubetto di fluido e uguale, in modulo, al peso del cubetto di fluido stesso. Ora se il cubetto di fluido venisse sostituito da da un cubetto di un altra sostanza,avente le stesse dimensioni, il fluido circostante si comporterebbe allo stesso modo e la spinta rimarrebbe uguale al peso del fluido spostato. Notiamo che la spinta di Archimede e originata dalla differenza di pressione P = Pdown - Pup fra la faccia inferiore (down) e superiore (up) del cubo. B = Fdown Fup = L2 Pdown - L2 Pup = L2 (Pdown - Pup ) = L2 (ρ gl) = (L3 ρ) g = mg

8 Condizione di galleggiamento Cosa succede ad un corpo di densita ρ c quando viene immerso in un fluido di densita ρ f? Come conseguenza del principio di Archimede si ha che: se ρ c < ρ f il corpo sara soggetto ad una forza risultante rivolta verso l alto e galleggera nel fluido, se ρ c > ρ f il corpo sara soggetto ad una forza risultante rivolta verso il basso ed affondera nel fluido. Infatti, detto V c il volume del corpo considerato, la componente della forza risultante F rispetto ad un asse verticale rivolto verso l alto sara : F y =-mg + V c ρ f g =-V c ρ c g + V c ρ f g =V c g(ρ f -ρ c ) Essa sara quindi positiva se ρ c < ρ f e negativa se ρ c > ρ f. Esempio 4: il galleggiamento di un iceberg Dato un iceberg, che galleggia in mare aperto, ci proponiamo di calcolare quale e la frazione del suo volume che rimane immersa sapendo che: la densita del ghiaccio costituente l iceberg e ρ 3 i = 917 kg/m e la densita dell acqua dove esso e immerso e ρ f = 1030 kg/m 3. La parte immersa dell iceberg deve generare una spinta di Archimede Bpari in modulo al peso P i dell iceberg stesso. Pertanto, detti V i il volume totale dell iceberg e V il volume della sua parte immersa si ha: P i = B V i ρ i g = V ρ f g V/ V i = ρ i / ρ f = 0.89 = 89 % Da cui il modo di dire e solo la punta di un iceberg!

9 Introduzione alla dinamica dei fluidi: moto di un fluido ideale Finora ci siamo limitati allo studio di un fluido in quiete. Lo studio del moto di un fluido reale e molto complesso, pertanto ci limiteremo ad introdurre alcune nozioni basilari riguardanti lo studio del moto di un fluido ideale. Lo studio del moto di un fluido ideale e basato sulle seguenti ipotesi. Il fluido non e viscoso La viscosita e per i fluidi l analogo dell attrito per i solidi. Essa rappresenta una sorta di attrito interno fra le varie particelle del fluido e fra il fluido e le pareti della condotta. Ad esempio, dalla definizione data, segue che un oggetto in moto all interno di un fluido non viscoso non sarebbe soggetto ad alcuna forza che si oppone al suo moto. Analogamente all effetto delle forze di attrito nel moto dei solidi, nel moto di un fluido viscoso della energia meccanica viene trasformata in energia termica. Il fluido e incomprimibile. Assumiamo cioe che la massa volumica (densita ) del fluido sia costante. Essa sara quindi la stessa in qualsiasi punto all interno della condotta. Il moto e stazionario. Il moto e stazionario quando, considerato un punto generico all interno della condotta, la il vettore velocita delle particelle di fluido che transitano in quel punto non cambia col tempo. Il moto e irrotazionale. Il moto di un fluido e irrotazionale se nessuna delle sue particelle ruota attorno ad un asse passante per il suo centro di massa. Ad esempio immaginiamo di far muovere un piccolo granello di polvere in un fluido. Se il moto e irrotazionale, il granello di polvere non ruoterebbe attorno ad un asse passante per il suo centro di massa anche se dovesse muoversi lungo un camino circolare.

10 Equazione di continuita Consideriamo un fluido ideale che si muova lungo una condotta di sezione variabile come schematizzato in figura. La massa m 1 di fluido che attraversa la sezione A 1 in un intervallo di tempo t deve essere uguale alla massa m 2 che attraversa la sezione A 2 nello stesso intervallo di tempo. Pertanto: m 1 = m 2 ρ 1 (A 1 x 1 ) = ρ 2 (A 2 x 2 ) ρ 1 (A 1 v 1 t) = ρ 2 (A 2 v 2 t) ρ 1 A 1 v 1 = ρ 2 A 2 v 2 (se la densita e costante) A 1 v 1 = A 2 v 2 Tale equazione prende il nome di equazione di continuita e mostra che la velocita del fluido e maggiore dove il tubo e piu stretto e minore dove il tubo e piu largo. Il prodotto AV,che ha le dimensioni di un volume diviso un tempo, e chiamato portata. A 1 Esempio 5 Osservando un flusso di acqua che esce da un rubinetto, notiamo che la sua sezione si restringe (A 2 < A 1 ) man mano che l acqua cade acquistando velocita. Cio e una diretta conseguenza della equazione di continuita. Infatti: A 1 v 1 = A 2 v 2 ma v 2 >v 1 quindi A 2 A 2 <A 1

11 Equazione di Bernoulli Daniel Bernoulli ricavo per primo la seguente equazione che, per il moto di un fluido ideale di densita ρ, lega la pressione P, la velocita v e la quota y del fluido dentro la condotta dove esso scorre: P 1 + 1/2 ρv 12 + ρgy 1 = P 2 + 1/2 ρv 22 + ρgy 2 = costante Tale equazione, ricavata tramite considerazioni di tipo energetico, e oggi nota come equazione di Bernoulli. Ci proponiamo ora di dimostrare la suddetta equazione. Prendiamo in considerazione la quantita di fluido (avente volume V e massa m = V ρ) che in un tempo t attraversa le sezioni 1 e 2 della condotta. Poiche stiamo ipotizzando che il moto del fluido sia ideale (e quindi stazionario), la porzione di fluido compresa fra x 1 e x 2 non subisce alcuna variazione nel tempo t. Quindi, dal punto di vista energetico, e come se nel tempo t la massa m di fluido considerata si spostasse dal tratto x 1 al tratto x 2. Il fluido a sinistra della sezione 1 effettua sulla massa m di fluido considerata un lavoro L 1 L 1 = F 1 x 1 = P 1 A 1 x 1 = P 1 V Analogamente il fluido a destra della sezione 2 effettua su m un lavoro L 2 = -F 2 x 2 = -P 2 A 2 x 2 = -P 2 V Imponendo che lavoro totale sia uguale alla variazione di energia meccanica totale della massa m di fluido considerata, otteniamo la equazione di Bernoulli L tot = L 1 + L 2 = (P 1 -P 2 ) V L tot = K + U (P 1 -P 2 ) V = (1/2mv 2 2-1/2 m v 12 ) + (mgy 2 -mgy 1 ) (P 1 -P 2 ) = (1/2 ρv 2 2-1/2 ρv 12 ) + (ρgy 2 -ρgy 1 ) P 1 + 1/2 ρv 12 + ρgy 1 = P 2 + 1/2 ρv 22 + ρgy 2

12 Esempio 6 Un serbatoio di acqua ha su una parete un forellino di diametro trascurabile rispetto al diametro del serbatoio stesso. Il foro si trova ad una quota h al di sotto del livello dell acqua nel serbatoio. Con quale velocita l acqua esce dal forellino? Siano A ed a le sezioni del serbatoio e del forellino; V e v le velocita dell acqua alla superficie del serbatoio e all uscita dal forellino. Siano inoltre P 0 la pressione atmosferica e ρ f la densita dell acqua. Dalla equazione di continuita si ha: A V = a v V= v (a/a) Ma a<<a V<<v Applicando l equazione di Bernoulli si ottiene: P 0 + ½ ρ f V 2 + ρ f gh = P 0 + ½ ρ f v ½ v 2 = ½ V 2 + gh Poiche V<<v il termine 1/2 V 2 sara trascurabile rispetto ½ v 2 e si avra + ½ v 2 = gh v = [2gh] 1/2 L acqua avra quindi la stessa velocita che avrebbe un corpo cadendo da una quota h

13 Esempio 7: il tubo di venturi Il tubo di venturi e uno strumento che puo misurare la velocita di un fluido in una conduttura, se inserito nella conduttura stessa. Esso e essenzialmente un tubo avente gli estremi della stessa sezione A della conduttura in cui e inserito e il centro di sezione a minore. Un manometro consente di misurare la differenza di pressione P 1 -P 2 >0 fra un estremo dello strumento ed il centro. Abbiamo che: 1) Equazione di Bernoulli P 1 + 1/2ρv 12 =P 2 +1/2 ρv 2 2 2) Legge di Stevino P 1 -P 2 = ρgh misurabile 3)Equazione di continuita Av 1 =av 2 Utilizzando le 3 equazioni suddette e possibile esprimere la velocita v 1 del fluido in funzione della differenza di pressione ρgh misurata. Esempio 8: cosa genera la portanza negli aerei? La spinta che agisce sulle ali degli aerei e, in parte, una diretta conseguenza della equazione di Bernoulli. La forma dell ala e tale che la velocita dell aria che scorre sulla parte superiore dell ala sia maggiore di quella dell aria che scorre lungo la parte inferiore. Pertanto, come predetto dalla equazione di Bernoulli, la pressione sara inferiore sopra l ala e la forza risultante agente sara rivolta verso l alto. Un altro effetto che contribuisce a generare la portanza e il seguente. L ala ha una lieve angolazione verso l alto, per cui le molecole d aria che colpiscono la parte inferiore vengono deviate verso il basso. Cio significa che: l ala esercita sulle molecole d aria una forza diretta verso il basso, quindi, per la III legge di Newton, l aria esercitera una forza sull ala diretta verso l alto.

14 Fluidi Reali Il moto del fluido in un condotto cilindrico si può assimilare a quello di un fluido distribuito in cilindri concentrici che scorrono coassialmente l uno dentro l altro con velocità decrescente dal centro verso la periferia (regime laminare) Lalegge distokesesprime laforzadiattrito viscosoa cui è soggetta unasferain moto laminare rispetto ad un fluido F d = 6πηrv F d è la forza di attrito viscoso, η è il coefficiente di viscosità, r è il raggio della sfera e vè la velocità relativa tra fluido e sfera.

15 Fluidi Reali Velocità limite per una sfera: possiamo calcolare la velocità limite per una sfera di massa me raggio rche cade in un fluido con coefficiente di viscosità η. F T = F p F S F V A regime: F p F S F V =0 x F s mg ρfvg 6 πηrv=0 F T = F p F S F V v = mg ρ Vg F 6πηr = 2 ( ρ ρ ) S 9η F gr 2 Velocità di sedimentazione Esercizio: Una sfera di polistirolo con un raggio di 0,50 mm e densità 35 kg/m 3 cade in aria. Calcolare la velocità limite di caduta della sfera.

16 Fluidi Reali L attrito interno di un fluido produce una caduta di pressione secondo la legge di Hagen-Poiseuille. Quindi per far scorrere un fluido reale in un condotto orizzontale e necessario applicare ai suoi estremi una differenza di pressione. La variazionedi pressione tra due punti situati rispettivamente all'ingresso ed all'uscita di un condotto in regime laminare è data da: Dove Rè la resistenza idraulica e Qla portata. Nel caso di un condotto cilindrico: Gli sforzi di taglio tra strati adiacenti di fluido, nel flusso laminare, sono causati in parte dalle forze molecolari di coesione e in parte da scambi di quantità di moto dovuti al passaggio (per diffusione) di molecole tra strati a differenti velocità. Nel flusso turbolento, invece, gli sforzi di taglio sono causati dallo scambio di quantità di moto associato ad intere porzioni di fluido che si spostano. Si osserva sperimentalmente cheun flusso laminare, al variare di certe condizioni, può diventare turbolento.

17 Fluidi Reali Regime turbolento Con l aumento della velocita del fluido nel condotto la formula di Hagen Poiseuillecessa di valere e si ha il passaggio dal regime di moto laminare al regime di moto vorticoso o turbolento. Reynolds, nel 1883, studiò sperimentalmente e teoricamente la natura di queste condizioni: attraverso esperimenti nei quali il regime di un flusso d'acqua di velocità regolabile era reso osservabile iniettandovi dei coloranti, egli ricavò la formula di un parametro adimensionale che caratterizza il tipo di moto del fluido: N R = ρvd η Questo numero è dettonumero di Reynolds. Nella formulavè la velocità media del fluido rispetto al solido con cui viene a contatto,ρ è la sua densità, ηè il suo coefficiente di viscosità eduna lunghezza caratteristica del solido (per una condotta cilindrica, ad esempio, quest'ultima può essere identificata con il diametro).

18 Sistema circolatorio Il cuore è una doppia pompa che alimenta la circolazione sistemica e la circolazione polmonare (con uguale portata) Parte attiva (ventricoli) polmonare sistemica Compatibili con l equazione di continuità Sv=cost

19 La pressione arteriosa Per la misura si utilizza lo sfigmomanometro, costituito da una fascia, in cui si pompa aria, il circuito è connesso ad un manometro. In una arteria il flusso sanguigno è normalmente laminare (silenzioso) q N R = = vπr ρv2r η 2 cost Il restringimento della sezione dell arteria determina una transizione a flusso turbolento (rumoroso) La fascia viene applicata al braccio in modo da comprimere l arteria sottostante applicando una pressione maggiore di quella sistolica. L arresto delle pulsazioni viene rivelato con uno stetoscopio. Aprendo la valvola si fa uscire l aria lentamente fino a sentire la ripresa delle pulsazioni, che avviene al raggiungimento della pressione sistolica (massima). Con l ulteriore diminuzione della pressione nella fascia le pulsazioni sentite con lo stetoscopio cessano al raggiungimento della pressione diastolica (minima), poiche l arteria e completamente aperta ed il flusso e laminare e quindi silenzioso. P Fase sistolica Fase diastolica

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido.

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. Fluidi Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. In base a tale definizione, sia i gas che i liquidi

Dettagli

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido.

Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. Fluidi Una sostanza che non ha delle dimensioni definite, ma che prende la forma del contenitore entro la quale e confinata, prende il nome di fluido. In base a tale definizione, sia i gas che i liquidi

Dettagli

STATICA E DINAMICA DEI FLUIDI

STATICA E DINAMICA DEI FLUIDI STATICA E DINAMICA DEI FLUIDI Pressione Principio di Pascal Legge di Stevino Spinta di Archimede Conservazione della portata Teorema di Bernoulli Legge di Hagen-Poiseuille Moto laminare e turbolento Stati

Dettagli

I fluidi Approfondimento I

I fluidi Approfondimento I I fluidi Approfondimento I statica dei fluidi Legge di Stevino, Principio di Pascal, Principio di Archimede e applicazioni dinamica dei fluidi ideali Flusso di un fluido e continuità Equazione di Bernoulli

Dettagli

Meccanica dei Fluidi: statica e dinamica

Meccanica dei Fluidi: statica e dinamica Meccanica dei Fluidi: statica e dinamica Stati della materia (classificazione assai approssimativa!) Solido: ha una forma propria, poco compressibile, alta densità Liquido: non ha una forma propria, poco

Dettagli

Densita. FLUIDI : liquidi o gas. macroscop.:

Densita. FLUIDI : liquidi o gas. macroscop.: 6-SBAC Fisica 1/10 FLUIDI : liquidi o gas macroscop.: microscop.: sostanza che prende la forma del contenitore che la occupa insieme di molecole tenute insieme da deboli forze di coesione (primi vicini)

Dettagli

Lezione 9. Statica dei fluidi

Lezione 9. Statica dei fluidi Lezione 9 Statica dei fluidi Meccanica dei fluidi Un fluido e un corpo che non ha una forma definita, ma che, se e contenuto da un contenitore solido, tende a occupare (riempire) una parte o tutto il volume

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Serway, Jewett Principi di Fisica IV Ed. Capitolo 15 Un fluido è un insieme di molecole tenute insieme da deboli forze di coesione e da forze esercitate dalla parete del contenitore (possono essere sia

Dettagli

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia

Protezione Civile - Regione Friuli Venezia Giulia. Protezione Civile - Regione Friuli Venezia Giulia 1 Principi di idraulica Definizioni MECCANICA DEI FLUIDI È il ramo della fisica che studia le proprietà dei fluidi, cioè liquidi, vapori e gas. Idrostatica Studia i fluidi in quiete Idrodinamica Studia

Dettagli

Fluidodinamica. Q=V/Δt=costante

Fluidodinamica. Q=V/Δt=costante Liquido perfetto o ideale: Fluidodinamica Incomprimibile (densità costante sia nel tempo che nello spazio) Assenza di attrito interno (in un liquido reale si conserva la caratteristica dell incompressibilità

Dettagli

Cap Fluidi

Cap Fluidi N.Giglietto A.A. 2005/06-15.4 - Legge di Stevino, fluidi a riposo - 1 Cap 15.1-15.2 - Fluidi Un fluido è una sostanza in grado di scorrere: i fluidi prendono la forma dei contenitori nei quali sono confinati.

Dettagli

Stati di aggregazione della materia:

Stati di aggregazione della materia: .d.l. Scienze orestali e Ambientali, A.A. 2012/2013, isica Stati di aggregazione della materia: Stato solido: tendono a conservare la loro forma. luidi non mantengono la loro forma. Liquidi Gas - scorrono

Dettagli

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 4. Quarta unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 4 Fisica dei fluidi Stati della materia 2 Condizione di riposo di un liquido 3 La pressione idrostatica. 4 Principio di Pascal. 5 Esercizio 7 Variazione di pressione con la profondità..

Dettagli

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli).

Meccanica dei fluidi. ! definizioni; ! statica dei fluidi (principio di Archimede); ! dinamica dei fluidi (teorema di Bernoulli). Meccanica dei fluidi! definizioni;! statica dei fluidi (principio di Archimede);! dinamica dei fluidi (teorema di Bernoulli). [importanti applicazioni in biologia / farmacia : ex. circolazione del sangue]

Dettagli

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore

Meccanica dei Fluidi. stati di aggregazione della materia: solidi liquidi gas. fluidi assumono la forma del contenitore Meccanica dei luidi stati di aggregazione della materia: solidi liquidi gas fluidi assumono la forma del contenitore Caratteristiche di un fluido LUIDO sostanza senza forma propria (assume la forma del

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento

IDROSTATICA leggi dell'equilibrio. IDRODINAMICA leggi del movimento IDROSTATICA leggi dell'equilibrio IDRODINAMICA leggi del movimento La materia esite in tre stati: SOLIDO volume e forma propri LIQUIDO volume proprio ma non una forma propria (forma del contenitore) AERIFORME

Dettagli

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore

Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Statica dei fluidi & Termodinamica: I principio, gas perfetti e trasformazioni, calore Legge di Stevino La pressione in un liquido a densità costante cresce linearmente con la profondità Il principio di

Dettagli

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi)

Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) In un fluido Fluidi (FMLP: Cap. 11 Meccanica dei fluidi) le molecole non sono vincolate a posizioni fisse a differenza di quello che avviene nei solidi ed in particolare nei cristalli Il numero di molecole

Dettagli

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI

CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI CORSO DI FISICA dispensa n.2 MECCANICA DEI FLUIDI Meccanica dei fluidi La meccanica dei fluidi si occupa sia della statica (idrostatica) sia del movimento (idrodinamica) dei fluidi. Per fluidi si intendono

Dettagli

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare

Dettagli

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5

Stati di aggregazione della materia. Luca Stanco - Fisica 2015/16 Corso di Laurea in Igiene Dentale - Lezione 5 Fluidi 1 Stati di aggregazione della materia 2 Densità (II) n La densità assoluta è definita dal rapporto tra la massa M di una sostanza omogenea ed il suo volume V: d = M / V n Nel sistema internazionale

Dettagli

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica

La lezione di oggi. I fluidi reali La viscosità Flussi laminare e turbolento. La resistenza idrodinamica 1 La lezione di oggi I fluidi reali La viscosità Flussi laminare e turbolento La resistenza idrodinamica 2 La lezione di oggi Forze di trascinamento nei fluidi La legge di Stokes La centrifuga 3 ! Viscosità!

Dettagli

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio

IL MOTO DEI FLUIDI. con applicazione al sistema circolatorio IL MOTO DEI FLUIDI con applicazione al sistema circolatorio Portata Pressione Moto stazionario: equazione di continuità Applicazione al sistema circolatorio: pressione e velocità del sangue Moto laminare

Dettagli

Meccanica dei fluidi

Meccanica dei fluidi Meccanica dei fluidi Si definiscono fluidi I sistemi che si deformano continuamente sotto l'azione di una forza tangenziale, tendente a far scorrere uno strato del sistema sull'altro, indipendentemente

Dettagli

La corrente di un fluido

La corrente di un fluido La corrente di un fluido 0 La corrente di un fluido è il movimento ordinato di un liquido o di un gas. 0 La portata q è il rapporto tra il volume di fluido V che attraversa una sezione in un tempo t ed

Dettagli

I FLUIDI. Archimede Pascal Stevino Torricelli

I FLUIDI. Archimede Pascal Stevino Torricelli I FLUIDI Archimede Pascal Stevino Torricelli Galleggiamento F = g V A fluido i La forza di Archimede deve essere uguale al peso del corpo immerso nel fluido. Archimede Spinta di Archimede in aria e in

Dettagli

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica

Fluidi I. Stati della materia Densità e pressione Idrostatica Idrodinamica Fluidi I Stati della materia Densità e pressione Idrostatica Idrodinamica Stati della materia 1. Solido: indeformabile e incomprimibile 2. Liquido: deformabile e incomprimibile 3. Gassoso: deformabile

Dettagli

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta INTRODUZIONE ALLA TERMODINAMICA Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta in un recipiente, ad esempio 5g di ossigeno. Dato l elevato numero di molecole

Dettagli

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione:

Solidi, liquidi e gas. 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Solidi, liquidi e gas 0 In natura le sostanze possono trovarsi in tre stati di aggregazione: Caratteristiche di un fluido FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene)

Dettagli

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000.

1 bar = 10 Pa = 10 barie PRESSIONE PRESSIONE. N 10 dyn dyn. m 10 cm cm. Solido. Liquido. Gassoso. (pascal) m. kg 1000. STATI DI AGGREGAZIONE DELLA MATERIA Solido Liquido Gassoso Il coro ha volume e forma ben definiti Il coro ha volume ben definito, ma assume la forma del reciiente che lo contiene Il coro occua tutto lo

Dettagli

è completamente immerso in acqua. La sua

è completamente immerso in acqua. La sua In un tubo scorre in regime stazionario un liquido ideale con densità 1.00 10 3 kg/m 3 ; in un punto A il tubo ha raggio R A = 2.00 cm, la velocità di scorrimento è v A = 5.00 m/se la pressione è P A =

Dettagli

I fluidi. 2 La densità di un olio è 0,08 g/cm 3. L altezza h della colonna di olio nella figura è: A 2 cm. B 4,6 cm. C 8 cm. D 10 cm. E 11,8.

I fluidi. 2 La densità di un olio è 0,08 g/cm 3. L altezza h della colonna di olio nella figura è: A 2 cm. B 4,6 cm. C 8 cm. D 10 cm. E 11,8. I fluidi 1 Per misurare pressioni relativamente basse, in un barometro anziché mercurio è utilizzato olio di densità 8,5 10 2 kg/m 3. Un cambiamento di pressione di 1,0 Pa produce una variazione nell altezza

Dettagli

Fisica Applicata, Area Infermieristica, M. Ruspa MECCANICA DEI FLUIDI. Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto

Fisica Applicata, Area Infermieristica, M. Ruspa MECCANICA DEI FLUIDI. Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto MECCANICA DEI FLUIDI Fluidostatica: fluidi in quiete Fluidodinamica: fluidi in moto I diversi stati di aggregazione della materia dipendono dalle forze di legame interatomiche o intermolecolari. SOLIDI

Dettagli

y h=10m v 1 A 1 v 2 0 p A 2 p 1 =1, Pa p 2

y h=10m v 1 A 1 v 2 0 p A 2 p 1 =1, Pa p 2 HLLIDY - capitolo 4 problema 33 In un tubo di sezione =4.0 cm scorre acqua con velocità v =5.0 m/s. Il tubo poi scende lentamente di 0 m mentre l area della sua sezione diventa pian piano di 8.0 cm. )

Dettagli

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone.

Applicando al pistone una forza esterna, si esercita una pressione p ext sul fluido immediatamente sottostante al pistone. IL PRINCIPIO DI PASCAL Consideriamo un fluido incomprimibile come in figura contenuto in un cilindro chiuso superiormente da un pistone. Applicando al pistone una forza esterna, si esercita una pressione

Dettagli

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera

Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 1 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

LA PRESSIONE. Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa.

LA PRESSIONE. Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa. LA PRESSIONE Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa. p= Forza Area [ N m² ] = [Pa ] (Pa=Pascàl) Un Pascàl quindi è la pressione

Dettagli

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013

Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 2013 Prova scritta di Fisica Generale I Corso di studio in Astronomia 16 luglio 013 Problema 1 Un cubo di legno di densità ρ = 800 kg/m 3 e lato a = 50 cm è inizialmente in quiete, appoggiato su un piano orizzontale.

Dettagli

F > mg Il cubo galleggia

F > mg Il cubo galleggia LA LEGGE DI ARCHIMEDE Un corpo immerso in un liquido riceve una spinta dal basso verso l'alto pari al peso del liquido spostato Cubo di legno di pioppo V = 1 dm³ mg = 5N (forza peso) Legge di Archimede:

Dettagli

a) Calcolare il modulo di F.

a) Calcolare il modulo di F. 1. (1-2-2011, 3-10-2011, 23-7-2013) Un getto d acqua che cade da un rubinetto si restringe verso il basso. Se l area di una sezione del flusso di acqua è A 1 =1.2 cm 2 e diventa A 2 = 0.35 cm 2 45 mm più

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica 1 Dall idrostatica alla idrodinamica Fisica con Elementi di Matematica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo

Dettagli

Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria)

Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria) Applicazione equazione di Bernoulli: stenosi arteriosa(restringimento arteria) Applicazione equazione di Bernoulli: Aneurisma (dilatazione arteria) Liquidi reali attrito interno-viscosita' la velocita'

Dettagli

Legge di Stevino ( d.c.)

Legge di Stevino ( d.c.) Legge di Stevino (1548-1620 d.c.) PA =F A /A= (Ah)g/A= hg conosciuta come legge di Stevino che quindi afferma che la pressione esercitata dal liquido su una superficie interna e' proporzionale alla densita'

Dettagli

Meccanica dei Fluidi - Fluidostatica -

Meccanica dei Fluidi - Fluidostatica - Meccanica dei Fluidi - Fluidostatica - STATI DI AGGREGAZIONE DELLA MATERIA Stato Solido: La sostanza ha volume e forma ben definiti. Stato Liquido: La sostanza ha volume ben definito, ma assume la forma

Dettagli

STATICA EQUILIBRIO DEI FLUIDI

STATICA EQUILIBRIO DEI FLUIDI CONCETTO DI PRESSIONE CI SONO FENOMENI FISICI PER I QUALI UNA DESCRIZIONE IN TERMINI DI FORZA, MASSA ED ACCELERAZIONE NON È LA PIÙ ADEGUATA. Pensiamo, ad esempio ad una persona che cammina su un terreno

Dettagli

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO

IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO A - IDRAULICA IDRAULICA STUDIA I FLUIDI, IL LORO EQUILIBRIO E IL LORO MOVIMENTO FLUIDO CORPO MATERIALE CHE, A CAUSA DELLA ELEVATA MOBILITA' DELLE PARTICELLE CHE LO COMPONGONO, PUO' SUBIRE RILEVANTI VARIAZIONI

Dettagli

1. Statica dei fluidi

1. Statica dei fluidi Di cosa parleremo Statica dei fluidi In questo capitolo ci occuperemo della statica dei fluidi (idrostatica) e nel capitolo successivo della dinamica dei fluidi (idrodinamica) e tratteremo principalmente

Dettagli

Meccanica dei fluidi. Fluidostatica (fluidi in quiete) Fluidodinamica (fluidi in movimento) Trasporto in regime viscoso

Meccanica dei fluidi. Fluidostatica (fluidi in quiete) Fluidodinamica (fluidi in movimento) Trasporto in regime viscoso Meccanica dei fluidi Fluidostatica (fluidi in quiete) Fluidodinamica (fluidi in movimento) Trasporto in regime viscoso Densità m Unità di misura (S.I.): kg/m d = 3 V Funzione scalare di ogni punto del

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1

Dinamica dei fluidi. Marina Cobal - Dipt.di Fisica - Universita' di Udine 1 Dinamica dei fluidi Universita' di Udine 1 Caratteristiche di un fluido In generale: FLUIDO sostanza senza forma propria (assume la forma del recipiente che la contiene) liquido volume limitato dalla superficie

Dettagli

Caratteristiche energetiche di un onda

Caratteristiche energetiche di un onda Caratteristiche energetiche di un onda Potenza P di una sorgente [W] È l energia emessa da una sorgente nell unità di tempo. Intensità di un onda I [W/m 2 ] Rappresenta l'energia trasportata dall onda

Dettagli

La circolazione del sangue

La circolazione del sangue La circolazione del sangue elemento caratteristica approssimazione sangue fluido reale e non omogeneo fluido reale omogeneo moto pulsatile (valvola aortica) stazionario condotti distensibili rigidi Fisica

Dettagli

Forze di adesione. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico

Forze di adesione. Marcello Borromeo corso di Fisica per Farmacia - Anno Accademico Forze di adesione Vicino alle pareti di un recipente sono attive interazioni tra le molecole del recipiente e quelle del liquido (adesione) oltre a quelle tra le molecole del liquido (coesione) Se le forze

Dettagli

LA PRESSIONE. Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa.

LA PRESSIONE. Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa. LA PRESSIONE Si definisce 'pressione' il rapporto (=divisione) tra una forza ed una superficie perpendicolare alla forza stessa. p= Forza Area [ N m² ] = [Pa ] (Pa=Pascàl) Un Pascàl quindi è la pressione

Dettagli

I D R O S T A T I C A

I D R O S T A T I C A I D R O S T A T I C A Caratteristiche stato liquido (descr.) FLUIDI Massa volumica (def. + formula) Volume massico (def. + formula) Peso volumico (def. + formula) Legame massa volumica - peso volumico

Dettagli

Meccanica dei FLUIDI

Meccanica dei FLUIDI Meccanica dei FLUIDI Densità Portata Pressione Moto stazionario: equazione di continuità Legge di Stevino Pressione idrostatica Spinta di Archimede Teorema di Bernoulli Viscosità Moto laminare: equazione

Dettagli

Alcuni valori della densita'

Alcuni valori della densita' Fluidi Comprendono liquidi e gas La distanza tra le particelle non è fissata Il liquido non è facilmente comprimibile Il gas si può comprimere facilmente e non ha forma propria Solidi, liquidi e gas sono

Dettagli

ESPERIENZA DELLA BURETTA

ESPERIENZA DELLA BURETTA ESPERIENZA DELLA BURETTA SCOPO: Misura del coefficiente di viscosità di un fluido Alcune considerazioni teoriche: consideriamo un fluido incomprimibile, cioè a densità costante in ogni suo punto, e viscoso

Dettagli

Lezione 11. Fluido dinamica

Lezione 11. Fluido dinamica Lezione 11 Fluido dinamica Equazione di Bernoulli per un fluido ideale L equazione di Bernoulli esprime la legge di conservazione dell energia totale di un fluido ideale che si muove in un condotto: Le

Dettagli

In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue

In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue Esercizio In un vaso sanguigno si forma un aneurisma dove la sezione aumenta del 15%. Si calcoli la conseguente variazione percentuale della velocita del sangue 1 MOTO DI FLUIDI REALI 2 MOTO DI UN FLUIDO

Dettagli

PRESSIONE ATMOSFERICA

PRESSIONE ATMOSFERICA PRESSIONE ATMOSFERICA Peso della colonna di aria che ci sovrasta di altezza quindi pari all altezza dell atmosfera p atm = d g h con d densita aria h altezza atmosfera 197 MISURA DELLA PRESSIONE ATMOSFERICA:

Dettagli

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013

Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI. Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 Sussidi didattici per il corso di PROGETTAZIONE, COSTRUZIONI E IMPIANTI Prof. Ing. Francesco Zanghì ELEMENTI DI IDRAULICA AGGIORNAMENTO 26/11/2013 L'idraulica è la scienza che studia l'utilizzazione dei

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro

Corso di MECCANICA DEL VOLO Modulo Prestazioni. Lezione n.2. Prof. D. P. Coiro Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione n.2 Prof. D. P. Coiro coiro@unina.it www.dias.unina.it/adag/ Corso di Meccanica del Volo - Mod. Prestazioni - Prof. D. Corio - Intro Il Velivolo 1

Dettagli

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi

Modulo B Unità 3 Equilibrio dei fluidi Pagina 1. Solidi, liquidi, aeriformi Modulo B Unità 3 Equilibrio dei fluidi Pagina Solidi, liquidi, aeriformi I solidi hanno forma e volume propri, i liquidi hanno volume proprio e forma del recipiente che li contiene, gli aeriformi hanno

Dettagli

MODULO 3. La pressione

MODULO 3. La pressione MODULO 3 La pressione La pressione L obiettivo del modulo è comprendere gli effetti delle forze che dipendono dalla superficie su cui esse vengono applicate. Il grado di concentrazione di una forza sulla

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

1) Che cos é la pressione? Qual è la sua unità di misura nel S.I.?

1) Che cos é la pressione? Qual è la sua unità di misura nel S.I.? 1) Che cos é la pressione? Qual è la sua unità di misura nel S.I.? 2) Da che cosa dipende la pressione esercitata da un oggetto di massa m poggiato su di una superficie? 3) Che cos è un fluido? 4) Come

Dettagli

ELEMENTI DI STATICA DEI FLUIDI

ELEMENTI DI STATICA DEI FLUIDI Corso di Fisica tecnica e ambientale a.a. 2011/2012 - Docente: Prof. Carlo Isetti ELEMENTI DI STATICA DEI FLUIDI 4.1 GENERALITÀ In generale si parla di materia allo stato fluido quando le forze di coesione

Dettagli

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica

PER ESERCITARSI Parte 2. Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica PER ESERCITARSI Parte 2 Esercizi su Corpo rigido, variabili angolari, momenti, fluidi, termodinamica ESERCIZIO n.1 Due forze uguali ed opposte sono applicate ad un oggetto lungo rette di azione tra loro

Dettagli

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato

Applicazioni. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato Applicazioni Legge di Archimede. Ogni corpo immerso in un fluido riceve da questo una spinta dal basso verso l'alto pari al peso del volume di fluido spostato Prima del posizionamento del corpo: volume

Dettagli

ATTRITO VISCOSO NEI FLUIDI

ATTRITO VISCOSO NEI FLUIDI ATTRITO VISCOSO NEI FLUIDI DOWNLOAD Il pdf di questa lezione (0319a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 19/03/2012 VISCOSITÀ La viscosità è un fenomeno che si manifesta in

Dettagli

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da:

La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: Statica Distribuzione delle pressioni La distribuzione delle pressioni all interno di un fluido in quiete, pesante e incomprimibile, è governata da: z+p/γ= cost LEE DI STEVIN Il valore della costante è

Dettagli

Lezione 9. Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille.

Lezione 9. Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille. Lezione 9 Fluidi in moto. Definizione di portata. Legge di Bernoulli. Effetto Venturi. Viscosità. Legge di Hagen Poiseuille. Moto dei fluidi Studiare il moto di un fluido è un problema complicato, soprattutto

Dettagli

Esempi di esercizi per la preparazione al primo compito di esonero

Esempi di esercizi per la preparazione al primo compito di esonero Esempi di esercizi per la preparazione al primo compito di esonero 1. Quanto sangue è approssimativamente presente in un essere umano? Esprimere il risultato in ml. 2. La densità dell etanolo e pare a

Dettagli

Meccanica dei Fluidi

Meccanica dei Fluidi Meccanica dei Fluidi Siamo immersi in una grande massa di fluido, l'atmosfera terrestre; l'acqua degli oceani, dei mari e dei fiumi, ricopre più della metà della superficie terrestre. Sia in termini biologici

Dettagli

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE

Corso di Componenti e Impianti Termotecnici RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE RETI DI DISTRIBUZIONE PERDITE DI CARICO CONTINUE 1 PERDITE DI CARICO CONTINUE Sono le perdite di carico (o di pressione) che un fluido, in moto attraverso un condotto, subisce a causa delle resistenze

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

Lezione 10 Moto dei fluidi

Lezione 10 Moto dei fluidi Lezione 10 Moto dei fluidi Caratterizzazione del moto Consideriamo soltanto il caso di liquidi in moto nei condotti. Parametri descrittivi del moto: Portata Q di un condotto: è il volume di liquido che

Dettagli

Fisica applicata Lezione 7

Fisica applicata Lezione 7 Fisica applicata Lezione 7 Maurizio Tomasi maurizio.tomasi@unimi.it Dipartimento di Fisica Università degli studi di Milano 14 Novembre 2016 Parte I Fluidostatica (conclusione) Il tubo di Torricelli Un

Dettagli

FISICA DEL SISTEMA CARDIOCIRCOLATORIO

FISICA DEL SISTEMA CARDIOCIRCOLATORIO FISICA DEL SISTEMA CARDIOCIRCOLATORIO Conferenza organizzata dalla Fondazione Livia Tonolini e dalla Sezione Mathesis di Bergamo, a cura di F. Tonolini il 22 aprile 2005 A. Fondamenti di reologia B. Il

Dettagli

Equilibrio dei corpi rigidi e dei fluidi 1

Equilibrio dei corpi rigidi e dei fluidi 1 Equilibrio dei corpi rigidi e dei fluidi 1 2 Modulo 4 Modulo 4 Equilibrio dei corpi rigidi e dei fluidi 4.1. Momento di una forza 4.2. Equilibrio dei corpi rigidi 4.3. La pressione 4.4. Equilibrio dei

Dettagli

ESAME DI AERODINAMICA 11/02/2015

ESAME DI AERODINAMICA 11/02/2015 ESAME DI AERODINAMICA 11/02/2015 In un profilo alare non simmetrico, al diminuire dell angolo di incidenza, la coordinata del centro di pressione: (a) tende verso il bordo di attacco (b) tende verso il

Dettagli

I fluidi. Alberto Barbisan - Meccanica ITIS FERMI

I fluidi. Alberto Barbisan - Meccanica ITIS FERMI I fluidi Esercizio Una stanza ha dimensioni: 3.5 m (larghezza) e 4. m (lunghezza) ed una altezza di.4 m. (a) Quanto pesa l aria nella stanza se la pressione e.0 atm? SOLUZIONE: mg ( ρv)g (. kg / 48 N m

Dettagli

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI

DOMANDE ED ESERCIZI SULLA PRESSIONE E IN GENERALE SUI FLUIDI 1) Che cos è la pressione? Qual è la sua unità di misura nel S.I.? 2) Da che cosa dipende la pressione esercitata da un oggetto di massa m poggiato su di una superficie? 3) Che cos è un fluido? 4) Come

Dettagli

Applicazione delle leggi dell'idrodinamica alla circolazione del sangue. Idrodinamica a Emodinamica. complicazioni

Applicazione delle leggi dell'idrodinamica alla circolazione del sangue. Idrodinamica a Emodinamica. complicazioni Lezione 1 IDROTATICA-UNITA' DI MIURA È grazie a sistemi fluidi che gli organismi riescono a trasportare, scambiare e assimilare ossigeno e sostanze nutritive. La conoscenza della meccanica dei fluidi è

Dettagli

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl

Prima verifica A. v.limite o di sedimentazione : v sed = 2 9 gr2 d gl d pl Prima verifica F1) Un corpo di massa 200 g si muove lungo l asse x sotto l azione di una forza, parallela all asse x, la cui intensità in funzione di x è data nel grafico B Per quali valori di x l accelerazione

Dettagli

Alcuni utili principi di conservazione

Alcuni utili principi di conservazione Alcuni utili principi di conservazione Portata massica e volumetrica A ds Portata massica: massa di fluido che attraversa la sezione A di una tubazione nell unità di tempo [kg/s] ρ = densità (massa/volume)

Dettagli

La meccanica dei fluidi

La meccanica dei fluidi La meccanica dei fluidi Un video: clic Un altro video: clic Le prime misure della pressione (I) II liquidi e i gas, a differenza dei solidi, non resistono a sforzi di taglio. Il modo in cui la sostanza

Dettagli

CENNI DI FLUIDODINAMICA

CENNI DI FLUIDODINAMICA CENNI DI FLUIDODINAMICA DOWNLOAD Il pdf di questa lezione (0509a.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/scamb/ 09/05/2012 MOTO DEI FLUIDI PERFETTI Il comportamento dei fluidi reali

Dettagli

FENOMENI DI TRASPORTO DELLA MATERIA

FENOMENI DI TRASPORTO DELLA MATERIA FENOMENI DI TRASPORTO DELLA MATERIA MOTI BROWNIANI Gli atomi e le molecole che costituiscono la materia non sono mai fermi, se non alla temperatura dello zero assoluto (T 0 K -273 C) In particolare, mentre

Dettagli

Statica ed equilibrio dei corpi

Statica ed equilibrio dei corpi Statica ed equilibrio dei corpi Avendo stabilito le leggi che regolano il moto dei corpi è possibile dedurre le leggi che regolano il loro equilibrio in condizioni statiche, cioè in assenza di movimento.

Dettagli

Densità La densità di una sostanza o di un corpo, è pari al rapporto tra la massa del corpo e il volume che il corpo occupa.

Densità La densità di una sostanza o di un corpo, è pari al rapporto tra la massa del corpo e il volume che il corpo occupa. Idrostatica L idrostatica è una branca della fisica che studia le caratteristiche dei liquidi e per estensione, dei fluidi in quiete, immersi in un campo gravitazionale. Pone principalmente l interesse

Dettagli

STATICA DEI FLUIDI. 3 ) fino ad una distanza di 5 cm dall orlo. Nei due rami del

STATICA DEI FLUIDI. 3 ) fino ad una distanza di 5 cm dall orlo. Nei due rami del SCHEDA PER IL RECUPERO DI FISICA DEL PRIMO PERIODO anno scolastico 2014-15 STATICA DEI FLUIDI Pressione Leggi il libro di testo (vol. 1) al cap. 11, prova a rispondere alle domande della scheda di verifica

Dettagli

EQUILIBRIO DEI FLUIDI

EQUILIBRIO DEI FLUIDI EQUILIBRIO DEI FLUIDI Pressione atmosferica, spinta di Archimede 1 Pressione atmosferica Bicchiere e cartoncino Cannuccia Uova Ventosa Emisferi di Magdeburgo 1 Emisferi di Magdeburgo 2 Unità D-Lez.2 Par

Dettagli

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati

Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a Emanuele Biolcati Esercitazione 5 Dr. Monica Casale Chimica e Tecnologia Farmaceutiche Esercitazioni di Fisica a.a. 2010-2011 Emanuele Biolcati Ringraziamenti speciali a Monica Casale per la preparazione delle slides Fluidi

Dettagli

la Riccia Donatella (232315) - Ricciotti Stefania (232401) 23/04/2014 alle ore 9:30-12:30

la Riccia Donatella (232315) - Ricciotti Stefania (232401) 23/04/2014 alle ore 9:30-12:30 la Riccia Donatella (232315) - Ricciotti Stefania (232401) 23/04/2014 alle ore 9:30-12:30 IDRAULICA Branchia della scienza che studia il moto di fluidi incomprimibili a densità costante, come l'acqua,

Dettagli

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica

Dall idrostatica alla idrodinamica. Fisica con Elementi di Matematica Dall idrostatica alla idrodinamica 1 Concetto di Campo Insieme dei valori che una certa grandezza fisica assume in ogni punto di una regione di spazio. Esempio: Consideriamo il valore della pressione atmosferica

Dettagli

Forze di contatto. Forze. Sistemi in moto relativo. Forze apparenti

Forze di contatto. Forze. Sistemi in moto relativo. Forze apparenti di contatto Le forze di contatto o reazioni vincolari sono forze efficaci che descrivono l interazione tra corpi estesi (dotati di una superficie!) con un modello fenomenologico. La validità della descrizione

Dettagli

Studente... Matricola...

Studente... Matricola... Studente... Matricola... Data... 1) Un corpo di massa m=2kg si muove come in figura. Determinare l intervallo di tempo in cui è stato sottoposto ad una forza costante, il modulo della forza e il lavoro

Dettagli