Quesiti di fisica. per la preparazione dell esame di stato. Mauro Saita Versione (molto) provvisoria.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Quesiti di fisica. per la preparazione dell esame di stato. Mauro Saita Versione (molto) provvisoria."

Transcript

1 Quesiti di fisica per la preparazione dell esame di stato. Mauro Saita Versione (molto) provvisoria. Giugno 2016 In queste note si riporta un elenco di quesiti che possono essere utili per la prepararazione di una eventuale terza prova e della prova orale. I quesiti proposti riguardano argomenti trattati durante il quinto anno. L elenco non è esaustivo. Di alcuni quesiti, nella sezione Suggerimenti è stata indicata una possibile risposta oppure qualche indicazione per costruirla. Si tenga presente che nella maggior parte dei casi non esiste un unico modo di rispondere: compito dello studente è fare le scelte necessarie per cercare la risposta più consona alle proprie conoscenze e competenze. 1 Indice 1 Elettromagnetismo 2 2 Onde elettromagnetiche 3 3 Relatività ristretta 3 4 Fisica moderna 4 5 Struttura della materia. Nuclei e particelle. 5 6 Suggerimenti 6 1 File tex:quesiti preparazione maturita 2016 nuovo.tex 1

2 1 Elettromagnetismo Quesito 1.1. Che cosa si intende per corrente elettrica? Come si definisce l intensità di corrente? Qual è l unità di misura della corrente elettrica nel Sistema Internazionale? Quesito 1.2. Quali sono le sorgenti di campi magnetici? Quesito 1.3. Quali sono le proprietà che contraddistinguono le linee di campo? In particolare, quali sono quelle che contraddistinguono le linee di campo magnetico? Quesito 1.4. Quali condizioni permettono di distinguere le linee di campo elettrico da quelle di campo magnetico? Quesito 1.5. Descrivere l esperimento di Oersted. È possibile spiegare l esistenza del campo magnetico mediante un unica causa? In caso affermativo fornire una breve descrizione. Quesito 1.6. Enunciare la legge di Biot-Savart e spiegarne il significato in termini infinitesimali. Quesito 1.7. Descrivere il campo magnetico generato da un filo rettilineo percorso da corrente elettrica. Quesito 1.8. Descrivere il campo magnetico generato da un solenoide percorso da corrente elettrica. Quesito 1.9. Una carica elettrica q si trova vicino a un filo rettilineo percorso da corrente di intensità i. Se la carica è in quiete rispetto al filo si dica se sulla carica agiscono forze e, in caso affermativo, si descriva l eventuale traiettoria descritta dalla carica. Quesito Il campo magnetico è conservativo? Spiegare. Quesito I due fili mostrati in figura sono paralleli. Nel filo 1 scorre corrente di intensità i 1 = 2, 0 A mentre nel filo 2 i 2 = 5, 2 A. I versi delle correnti sono i medesimi (da sinistra verso destra). Determinare intensità direzione e verso del campo magnetico nel punto P e nel punto Q. P 2, 0 cm 3, 5 cm Q 1, 0 cm i 1 i 2 F ilo 1 F ilo 2 Figura 1: Fili rettilinei paralleli percorsi da corrente con lo stesso verso. 2

3 Quesito Enunciare e spiegare il teorema di Gauss per il campo magnetico. Quesito Enunciare e spiegare la legge di Ampere. Quesito Quali valori può assumere la permeabilità magnetica relativa? distingue i materiali paramagnetici, diamagnetici e ferromagnetici? Che cosa Quesito Enunciare e commentare le equazioni di Maxwell per campi elettrici e magnetici stazionari. Quesito Quali ragioni spinsero Maxwell a modificare la legge di Ampère? Enunciare e spiegare la quarta legge di Maxwell. Quesito Scrivere le leggi di Maxwell in termini differenziali e commentarle sinteticamente. Quesito Qual è la forza che agisce su una carica q che si trova immersa in un campo elettromagnetico? 2 Onde elettromagnetiche Quesito 2.1. In che modo si possono produrre onde elettromagnetiche? 3 Relatività ristretta Quesito 3.1. Commentare la seguente affermazione: ogni asserzione riguardante il tempo è un asserzione di simultaneità tra due eventi. Quesito 3.2. Quali sono gli assiomi della relatività ristretta? Quesito 3.3. Scrivere e commentare le trasformazioni di Galileo e quelle di Lorentz. Quesito 3.4. In che modo Einstein deduce le trasformazioni di Lorentz nel suo libro Relatività. Esposizione divulgativa? Quesito 3.5. Cosa si intende per contrazione delle lunghezze? 3

4 Quesito 3.6. Cosa si intende per dilatazione dei tempi? Quesito 3.7. In che modo Einstein modifica il concetto di massa? Scrivere e commentare la quantità di moto di un elettrone che si muove con velocità v = 0, 9 c. Quesito 3.8. Descrivere brevemente la relazione esistente, secondo Einstein, tra massa e energia. 4 Fisica moderna Quesito 4.1. Descrivere l esperimento della doppia fenditura di Thomas Young ( ) e spiegarne l importanza. Quesito 4.2. Che cosa si intende e quali sono le principali grandezze fisiche quantizzate? Quesito 4.3. Che cosa si intende per catastrofe ultravioletta? In che modo Planck spiegò il fenomeno? Quesito 4.4. Per quali ragioni l effetto fotoelettrico suscita un così grande interesse tra i fisici del primo novecento? Quesito 4.5. Da che cosa dipende il contenuto di energia di un quanto di luce? Quesito 4.6. Descrivere e spiegare l effetto Compton? Quesito 4.7. Perchè l effetto Compton non si manifesta con la luce visibile? Quesito 4.8. È possibile effettuare l esperimento della doppia fenditura con gli elettroni? In caso affermativo quali sono le principali conseguenze che si possono trarre? Quesito 4.9. Descrivere il modello atomico di Thomson e quello di Ruthherford. Quesito Perchè il modello atomico di Ruthherford risulta insoddisfacente? In che modo Niel Bohr ( ) risolve le contraddizioni? Descrivere il modello di Bhor per l atomo di idrogeno. Quesito Che cos è il raggio di Bohr? Che cosa sono i livelli energetici di un atomo?. Quesito Che cosa afferma il principio di indeterminazione di Heisenberg? 4

5 5 Struttura della materia. Nuclei e particelle. Quesito 5.1. Che cosa si intende per legami molecolari? principali. Spiegare e descriverne i tipi Quesito 5.2. Spiegare sinteticamente il fenomeno della radioattività e scrivere l equazione differenziale che ne costituisce il modello matematico. Quesito 5.3. I decadimenti nucleari sono di tre tipi: il decadimento α, il decadimento β e quello γ. Spiegare. Quesito 5.4. Cos è il tempo di dimezzamento di una sostanza radiattiva? Quesito 5.5. In quale modo è possibile datare sostanze organiche con il carbonio 14 C? Spiegare. Quesito 5.6. Descrivere il fenomeno di fissione e quello di fusione nucleare. 5

6 6 Suggerimenti Quesito 1.1 Si è in presenza di corrente elettrica tutte le volte che vi sono cariche elettriche in moto. L intensità di corrente è i = dq e si misura in Ampere. dt Quesito 1.2 Le sorgenti di campi magnetici sono i magneti naturali (una carica elettrica in moto nelle vicinanze di un magnete è soggetta a una forza magnetica) e le correnti. Quesito 1.3 Quesito 1.4 Quesito 1.5 Oersted scoprì che un filo rettilineo percorso da corrente genera un campo magnetico. Secondo l interpretazione di Ampère tutte le manifestazioni macroscopiche del magnetismo nella materia sono riconducibili a un gran numero di piccoli magneti presenti a livello atomico (per esempio, l atomo di idrogeno si comporta come una piccola spira percorsa da corrente elettrica). Quindi il magnetismo è dovuto alla presenza di correnti. Quesito 1.6 Quesito 1.7 Quesito 1.8 Quesito 1.9 La carica non subisce interazioni elettriche perchè il filo è globalmente neutro anche se in esso scorre una corrente di intensità i. Il filo genera un campo magnetico B ma esso esercita forza solamente su cariche in moto. Più precisamente, se v è la velocità della carica e B è il campo magnetico, la forza esercitata sulla carica è F = qv B (6.1) Se la carica è ferma la sua velocità v è zero e, di conseguenza, la carica rimane nello stato di quiete. Quesito 1.10 Un campo vettoriale F è conservativo se e solo se la sua circuitazione lungo qualsiasi linea chiusa è nulla. In altri termini F è conservativo se e solo se F dl = 0 (6.2) Nel caso del campo magnetico B esistono cammini chiusi lungo cui la circuitazione di B è diversa da zero. Si consideri per esempio, il caso di un filo rettilineo percorso da corrente di intensità i. Il campo magnetico in un punto P che si trova a distanza r dal filo ha intensità B = µ 0i, mentre direzione e verso sono quelli mostrati in figura. 2πr 6

7 γ r B dl Figura 2: Il filo è perpendicolare al foglio, l intensità del campo magnetico è B = µ0 i 2πr corrente è entrante nel foglio. e il verso della Lungo la circonferenza γ la circuitazione di B vale B dl = µ0 i 2πr dl = µ 0 i 2πr dl = µ 0 i 2πr 2πr = µ 0 i (6.3) Segue che B non è conservativo. Quesito Campo magnetico nel punto Q. Il campo magnetico in Q è la somma dei campi magnetici B 1 e B 2 generati dai due fili percorsi da corrente B = B 1 + B 2 (6.4) I vettori B 1 e B 2 risultano entrambi perpendicolari e uscenti dal foglio. Pertanto, indicate con r 1 e r 2 le distanze del punto Q dal filo 1 e 2, l intensità del campo magnetico risultante nel punto Q è B = B 1 + B 2 = µ ( 0 i1 + i ) 1 4 π r 1 r 1 La direzione e il verso di B coincidono con le direzioni e il verso di B 1 e B 2. Si ottiene (6.5) B = 5, T (6.6) 2. Campo magnetico nel punto P. L intensità del campo magnetico B 1, generato dal filo 1, è B 1 = µ 0 i 1 4 π r 1 = 4π 10 7 Tm/A 2, 0 A 2π 0, 02 m = T (6.7) La direzione di B 1 è perpendicolare al foglio, il verso entrante (nel foglio). L intensità del campo magnetico B 2, generato dal filo 2, è B 2 = µ 0 i 2 4 π r 2 = 4π 10 7 Tm/A 5, 2 A 2π 0, 035 m = 2, T (6.8) 7

8 La direzione di B 2 è perpendicolare al foglio, il verso uscente (dal foglio). Poichè B 1 e B 2 hanno stessa direzione e versi opposti, l intensità del campo magnetico risultante in P è B = B 2 B 1 = 2, T A = 0, T (6.9) Quesito 1.12 Le linee di campo magnetico sono sempre linee chiuse perchè non esistono singoli poli magnetici (la situazione del campo elettrico è differente: le linee di campo escono dalle cariche positive, le sorgenti, e entrano in quelle negative, i pozzi.) Pertanto, indicata con S una superficie orientata chiusa, le linee di campo magnetico che entrano in S devono anche uscire da S. Ciò significa che il flusso Φ S (B) del campo B attraverso S è sempre uguale a zero Φ S (B) = S B n ds = 0 (6.10) per qualunque superficie orientata chiusa S. L uguaglianza (6.10) è vera in magnetostatica (la magnetostatica è quella parte dell elettromagnetismo che studia campi magnetici statici ovvero invarianti nel tempo. Corrispondentemente mentre nell elettrostatica sono le cariche elettriche, generatrici del campo elettrostatico, ad essere approssimativamente stazionarie, nella magnetostatica sono le correnti elettriche, generatrici dei campi magnetici statici, ad essere approssimativamente stazionarie ovvero costanti o invarianti nel tempo. Citazione tratta da Wikipedia). Quesito 1.13 Quesito 1.14 Quesito 1.15 Quesito 1.16 Quesito 1.17 Quesito 1.18 Quesito 2.1 Tutte le volte che una carica elettrica viene accelelerata si producono onde elettromagnetiche. In altri termini, una carica elettrica accelerata, per esempio che oscilla, genera un campo elettrico variabile il quale provoca un campo magnetico variabile che, a sua volta, genera un nuovo campo elettrico e così via. In linea di principio, per produrre un onda elettromagnetica è sufficiente mettere in moto una carica ferma o fermare una carica in moto. I due campi, elettrico e magnetico, si propagano mantenendo direzioni di oscillazione perpendicolari uno rispetto all altro; entrambi si mantengono perpendicolari alla direzione di propagazione. Nella maggioranza dei casi per la produzione di onde elettromagnetiche si utilizzano opportuni circuiti oscillanti. Quesito 4.2 Una grandezza fisica si dice quantizzata se può assumere soltanto un certo insieme discreto di valori, più precisamente i valori assumibili da una grandezza quantizzata 8

9 sono un multiplo di una certa grandezza minima, detta grandezza elementare. Per esempio, le cariche elettriche sono quantizzate infatti, secondo la teoria atomica classica, la carica dell elettrone è la più piccola carica elettrica esistente in natura (1, C). Anche l energia della luce è quantizzata: un quanto di luce è il pacchetto di energia di cui è dotato il fotone. Esso vale E = h f. (Si veda anche la risposta al quesito...) Quesito 4.3 Planck ipotizzò che sia l emissione che l assorbimento di radiazione elettromagnetica all interno del corpo nero fossero quantizzate. In altre parole il corpo nero assorbe o cede energia termica sempre attraverso piccoli pacchetti di energia (i quanti) la cui energia è E = h f, dove h è una costante (in seguito denominata costante di Planck ) e f la frequenza della radiazione elettromagnetica. Quesito 4.5 Un quanto di luce è un pacchetto di energia il cui valore è E = h f (6.11) dove h è la costante di Planck e f la frequenza della luce. Per ogni onda la velocità di propagazione è data dal prodotto della sua frequenza per la lunghezza d onda: c = λ f. Quindi un altro modo di esprimere l energia di un quanto di luce è E = hc λ (6.12) Un altra interessante relazione per l energia di un quanto utilizza la costante (si legge: h tagliato) che indica la più piccola unità dello spin, una sorta di momento di un oggetto quantistico che vale Da (6.13), sostituendo in (6.11) si ottiene: = h 2π 1, Js (6.13) E = 2πf (6.14) La velocità angolare ω di un moto circolare uniforme è il prodotto di 2π per la frequenza f, ossia: ω = 2π f (6.15) Infine sostituendo (6.15) in (6.14) si ottiene una terza importante espressione per l energia di un quanto di luce E = ω (6.16) 9

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Il presente documento individua le conoscenze, abilità e competenze che lo studente dovrà aver acquisito al termine

Dettagli

Unità 9. Il campo magnetico

Unità 9. Il campo magnetico Unità 9 Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico;

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

LICEO SCIENTIFICO STATALE "G.B.QUADRI" VICENZA DOCUMENTO DEL CONSIGLIO DI CLASSE (Regolamento, art.5; O. M. 38 art.6) Anno scolastico

LICEO SCIENTIFICO STATALE G.B.QUADRI VICENZA DOCUMENTO DEL CONSIGLIO DI CLASSE (Regolamento, art.5; O. M. 38 art.6) Anno scolastico LICEO SCIENTIFICO STATALE "G.B.QUADRI" VICENZA DOCUMENTO DEL CONSIGLIO DI CLASSE (Regolamento, art.5; O. M. 38 art.6) Anno scolastico 2015-2016 RELAZIONE FINALE DEL DOCENTE All. A Classe: 5ESC Indirizzo:

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI Fisica Classe VB Anno Scolastico 2014-2015 Insegnante: Prof.ssa La Salandra Incoronata 1 FORZA E CAMPI ELETTRICI (Richiami) Teoria sui vettori I

Dettagli

Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400)

Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400) Istituto Villa Flaminia 27 Aprile 2015 IV Scientifico Simulazione Prova di Fisica (400) 1 Teoria In questa prima parte le domande teoriche; in una seconda parte troverete un paio di esempi di esercizi.

Dettagli

Interazioni di tipo magnetico II

Interazioni di tipo magnetico II INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu Interazioni di tipo magnetico II 1 Forza magnetica su una carica in moto Una particella di carica q in moto risente di una forza magnetica

Dettagli

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO

PROGRAMMAZIONE DEL GRUPPO DISCIPLINARE A.S. 2015/2016 INDIRIZZO SCOLASTICO: LICEO SCIENTIFICO ISTITUTO D ISTRUZIONE SUPERIORE Enrico Mattei ISTITUTO TECNICO COMMERCIALE LICEO SCIENTIFICO LICEO dellescienze UMANE Via delle Rimembranze, 26 40068 San Lazzaro di Savena BO Tel. 051 464510 464545 fax

Dettagli

4.Semplificare e modellizzare con strumenti matematici e disciplinari situazioni reali al fine della risoluzione di semplici problemi

4.Semplificare e modellizzare con strumenti matematici e disciplinari situazioni reali al fine della risoluzione di semplici problemi MODULO : CONTINUITA 12 ore COMPETENZE: 1.Osservare, identificare ed esplorare fenomeni; 2.Formulare ipotesi esplicative utilizzando modelli, analogie e leggi 3.Costruire il linguaggio della fisica classica

Dettagli

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio).

MAGNETISMO. Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). MAGNETISMO Alcuni materiali (calamite o magneti) hanno la proprietà di attirare pezzetti di ferro (o cobalto, nickel e gadolinio). Le proprietà magnetiche si manifestano alle estremità del magnete, chiamate

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

PROFILO IN USCITA PER IL PRIM0 ANNO FISICA Sezioni internazionale ad opzione Inglese (L,M,N,O,P,Q)

PROFILO IN USCITA PER IL PRIM0 ANNO FISICA Sezioni internazionale ad opzione Inglese (L,M,N,O,P,Q) PROFILO IN USCITA PER IL PRIM0 ANNO Premessa Come stabilito dal Collegio dei docenti e conformemente con gli obiettivi della attuale sperimentazione, la programmazione seguirà, principalmente, la scansione

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

isolanti e conduttori

isolanti e conduttori 1. ELETTROMAGNETISMO 1.1. Carica elettrica 1.1.1. Storia: Franklin Thomson Rutherford Millikan 1.1.2. L atomo: struttura elettroni di valenza (legame metallico) isolanti e conduttori ATOMO legge di conservazione

Dettagli

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico:

1. La forza di Lorentz. Se un fascio catodico è in un campo magnetico: Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico; l'importante

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI

Magnete. Campo magnetico. Fenomeni magnetici. Esempio. Esempio. Che cos è un magnete? FENOMENI MAGNETICI Magnete FENOMENI MAGNETICI Che cos è un magnete? Un magnete è un materiale in grado di attrarre pezzi di ferro Prof. Crosetto Silvio 2 Prof. Crosetto Silvio Quando si avvicina ad un pezzo di magnetite

Dettagli

2. Si pone una carica elettrica in prossimità di un filo percorso da corrente; cosa accadrà?

2. Si pone una carica elettrica in prossimità di un filo percorso da corrente; cosa accadrà? 1. Dei principali fenomeni dell elettromagnetismo può essere data una descrizione a diversi livelli ; in quale dei seguenti elenchi essi sono messi in ordine, dal più intuitivo al più astratto? (a) Forza,

Dettagli

Teoria Atomica di Dalton

Teoria Atomica di Dalton Teoria Atomica di Dalton Il concetto moderno della materia si origina nel 1806 con la teoria atomica di John Dalton: Ogni elementoè composto di atomi. Gli atomi di un dato elemento sono uguali. Gli atomi

Dettagli

ISTITUTO MAGISTRALE DI RIETI ELENA PRINCIPESSA DI NAPOLI. Liceo: Linguistico Scienze Umane Economico Sociale Musicale

ISTITUTO MAGISTRALE DI RIETI ELENA PRINCIPESSA DI NAPOLI. Liceo: Linguistico Scienze Umane Economico Sociale Musicale ISTITUTO MAGISTRALE DI RIETI ELENA PRINCIPESSA DI NAPOLI Dipartimento: Matematica e Fisica Disciplina: Fisica A.S: 2017-2018 Liceo: Linguistico Scienze Umane Economico Sociale Musicale Classe: Prima Seconda

Dettagli

PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA. CLASSE V Scienze Applicate SEZ. A A.S.2016 /2017 OBIETTIVI E COMPETENZE

PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA. CLASSE V Scienze Applicate SEZ. A A.S.2016 /2017 OBIETTIVI E COMPETENZE PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: Fisica DOCENTE: Dora Pastore CLASSE V Scienze Applicate SEZ. A A.S.2016 /2017 OBIETTIVI E COMPETENZE OBIETTIVI COMPORTAMENTALI Acquisizione della

Dettagli

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo.

Indice. Elettrostatica in presenza di dielettrici Costante dielettrica Interpretazione microscopica 119. capitolo. capitolo. Indice Elettrostatica nel vuoto. Campo elettrico e potenziale 1 1. Azioni elettriche 1 2. Carica elettrica e legge di Coulomb 5 3. Campo elettrico 8 4. Campo elettrostatico generato da sistemi di cariche

Dettagli

Elettricità e Magnetismo. M. Cobal, Università di Udine

Elettricità e Magnetismo. M. Cobal, Università di Udine Elettricità e Magnetismo M. Cobal, Università di Udine Forza di Coulomb Principio di Sovrapposizione Lineare Campo Ele8rico Linee di campo Flusso, teorema di Gauss e applicazioni Condu8ori Energia potenziale

Dettagli

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

Capitolo 8 La struttura dell atomo

Capitolo 8 La struttura dell atomo Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. La «luce» degli atomi 3. L atomo di Bohr 4. La doppia natura dell elettrone 5. L elettrone e la meccanica quantistica 6. L equazione

Dettagli

1.11.3 Distribuzione di carica piana ed uniforme... 32

1.11.3 Distribuzione di carica piana ed uniforme... 32 Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo

Dettagli

EQUAZIONI DI MAXWELL

EQUAZIONI DI MAXWELL EQUAZIONI DI MAXWELL CAMPO ELETTRICO INDOTTO Per la legge di Faraday-Neumann-Lenz, in una spira conduttrice dove c è una variazione di Φ(B) concatenato si osserva una corrente indotta. Ricordando che una

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

FISICA. Prof. Angelo Angeletti

FISICA. Prof. Angelo Angeletti FISICA Prof. Angelo Angeletti Premessa L insegnamento della Fisica nel quinto anno del Liceo Scientifico Opzione Scienze Applicate, si innesta su due bienni dove man mano gli studenti sono stati guidati

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1 Chimica Fisica Biotecnologie sanitarie Lezione n. 13 Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo di idrogeno Antonino Polimeno 1 Radiazione elettromagnetica (1) - Rappresentazione

Dettagli

Sulla nascita di questo libro. Introduzione 1

Sulla nascita di questo libro. Introduzione 1 Indice Sulla nascita di questo libro V Introduzione 1 1 Luce e materia 7 Che cos è veramente la luce? 7 Ma qui che cosa oscilla? 9 Che cosa sono la frequenza e la lunghezza d onda della luce? 11 Che cos

Dettagli

CAMPO MAGNETICO E FORZA DI LORENTZ

CAMPO MAGNETICO E FORZA DI LORENTZ QUESITI 1 CAMPO MAGNETICO E FORZA DI LORENTZ 1. (Da Medicina e Odontoiatria 2013) Un cavo percorso da corrente in un campo magnetico può subire una forza dovuta al campo. Perché tale forza non sia nulla

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI IOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

DE MAGNETE. 1. Fino al 1820

DE MAGNETE. 1. Fino al 1820 DE MAGNETE 1. Fino al 1820 Che i magneti esistano lo sanno anche i sassi fin dai tempi dei greci. In particolare è assodato che: come accade per l elettricità, esistono anche due tipi di magnetismo; ciò

Dettagli

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici

Quadro di Riferimento della II prova di Fisica dell esame di Stato per i Licei Scientifici Premessa Il presente documento individua le conoscenze, abilità e competenze dello studente nella disciplina Fisica, che potranno essere oggetto di verifica durante l esame di Stato degli indirizzi e opzioni

Dettagli

PROFILO IN USCITA PER IL TERZO ANNO FISICA Sezioni internazionale Francese-Tedesca ad indirizzo scientifico

PROFILO IN USCITA PER IL TERZO ANNO FISICA Sezioni internazionale Francese-Tedesca ad indirizzo scientifico PROFILO IN USCITA PER IL TERZO ANNO I vettori: componenti cartesiane, algebra dei vettori Il moto nel piano Moto circolare uniforme ed uniformemente accelerato Moto parabolico Il vettore forza Equilibrio

Dettagli

Riassunto lezione 11

Riassunto lezione 11 Riassunto lezione 11 Forza di Coloumb attrattiva o repulsiva F A B = 1 4 π ϵ 0 q A q B r 2 Consideriamo effetto di una carica sola campo elettrico: E Q = F Qq q = 1 4 π ϵ 0 Q r 2 ^u A B Come si rappresenta?

Dettagli

Esercizi di magnetismo

Esercizi di magnetismo Esercizi di magnetismo Fisica II a.a. 2003-2004 Lezione 16 Giugno 2004 1 Un riassunto sulle dimensioni fisiche e unità di misura l unità di misura di B è il Tesla : definisce le dimensioni [ B ] = [m]

Dettagli

Corrente di spostamento ed equazioni di Maxwell

Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento ed equazioni di Maxwell n Corrente di spostamento n Modifica della legge di Ampere n Equazioni di Maxwell n Onde elettromagnetiche Corrente di spostamento n La legge di Ampere e`

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

INTRODUZIONE 11 INDICAZIONI PER I PARTECIPANTI AI CORSI ALPHA TEST 19

INTRODUZIONE 11 INDICAZIONI PER I PARTECIPANTI AI CORSI ALPHA TEST 19 INDICE INTRODUZIONE 11 SUGGERIMENTI PER AFFRONTARE LA PROVA A TEST 13 Bando di concorso e informazioni sulla selezione...13 Regolamento e istruzioni per lo svolgimento della prova...13 Domande a risposta

Dettagli

Il campo magnetico. Le prime osservazioni dei fenomeni magnetici

Il campo magnetico. Le prime osservazioni dei fenomeni magnetici Il campo magnetico Le prime osservazioni dei fenomeni magnetici la magnetite (Fe 3 O 4 ) attira la limatura di ferro un ago magnetico libero di ruotare intorno ad un asse verticale si orienta con una delle

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Generalità delle onde elettromagnetiche

Generalità delle onde elettromagnetiche Generalità delle onde elettromagnetiche Ampiezza massima: E max (B max ) Lunghezza d onda: (m) E max (B max ) Periodo: (s) Frequenza: = 1 (s-1 ) Numero d onda: = 1 (m-1 ) = v Velocità della luce nel vuoto

Dettagli

Magnetismo. Fisica x Biologi 2017 Fabio Bernardini

Magnetismo. Fisica x Biologi 2017 Fabio Bernardini Magnetismo Il magnetismo entra nella nostra esperiemza a partire dalla bussola. Si può verificare che lʼorientamento dellʼago della bussola può essere modificato in due modi: avvicinando un magnete alla

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU FORZA DI LORENTZ E LEGGE DI BIOT SAVART Docente: Claudio Melis 1) 2) 3) 4) Due correnti rispettivamente di intensità pari a 5 A e 4 A percorrono due fili conduttori

Dettagli

LICEO STATALE "DON. G. FOGAZZARO" Anno sc DISCIPLINA: FISICA CLASSE: 5ª Liceo Scientifico opzione Scienze Applicate

LICEO STATALE DON. G. FOGAZZARO Anno sc DISCIPLINA: FISICA CLASSE: 5ª Liceo Scientifico opzione Scienze Applicate LICEO STATALE "DON. G. FOGAZZARO" Anno sc. 2014-2015 DISCIPLINA: FISICA CLASSE: 5ª Liceo Scientifico opzione Scienze Applicate OBIETTIVI SPECIFICI DI APPRENDIMENTO Con riferimento al profilo educativo,

Dettagli

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2

Formulario. (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q 1Q 2 r 2 = 1 Q 1 Q 2 Formulario (ε = ε 0 nel vuoto, ε 0 ε r nei mezzi; µ = µ 0 nel vuoto, µ 0 µ r nei mezzi) Forza di Coulomb: F = k Q Q 2 r 2 = Q Q 2 4πε r 2 Campo elettrico: E F q Campo coulombiano generato da una carica

Dettagli

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Classico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Classico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz LEZIONE

Dettagli

Lez. 20 Magnetismo. Prof. Giovanni Mettivier

Lez. 20 Magnetismo. Prof. Giovanni Mettivier Lez. 20 Magnetismo Prof. Giovanni Mettivier 1 Dott. Giovanni Mettivier, PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it

Dettagli

La nascita della fisica moderna. (un racconto di inizio 900)

La nascita della fisica moderna. (un racconto di inizio 900) La nascita della fisica moderna (un racconto di inizio 900) Sviluppo storico della fisica tra fine 800 e il 1927 Fisica sperimentale fine 800 Fisica teorica fine 800 1900 1905 1911 1913 1916 1924 1925-1927

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 8 La struttura dell atomo 1. La doppia natura della luce 2. L atomo di Bohr 3. Il modello atomico

Dettagli

(adattamento da Bergamaschini-Marazzini-Mazzoni- Fisica 3 Carlo Signorelli Editore)

(adattamento da Bergamaschini-Marazzini-Mazzoni- Fisica 3 Carlo Signorelli Editore) Interpretazione relativistica del Campo Magnetico (adattamento da Bergamaschini-Marazzini-Mazzoni- Fisica 3 Carlo Signorelli Editore) Obiettivi Osservare, mediante un esempio, che è possibile che in un

Dettagli

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in cui si evidenzia tale proprietà Proprietà magnetiche possono

Dettagli

Fisica Main Training Lorenzo Manganaro

Fisica Main Training Lorenzo Manganaro Fisica Main Training 2016-2017 Lorenzo Manganaro 18 lezioni: 3 blocchi 5+1 Programma: Meccanica (Cinematica Dinamica Energia e lavoro) Termodinamica Elettricità Magnetismo Elettromagnetismo Ottica geometrica

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Conservazione della carica elettrica

Conservazione della carica elettrica Elettrostatica La forza elettromagnetica è una delle interazioni fondamentali dell universo L elettrostatica studia le interazioni fra le cariche elettriche non in movimento Da esperimenti di elettrizzazione

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Meccanica quantistica Mathesis 2016 Prof. S. Savarino

Meccanica quantistica Mathesis 2016 Prof. S. Savarino Meccanica quantistica Mathesis 2016 Prof. S. Savarino Quanti Corpo nero: è un oggetto che assorbe tutta la radiazione senza rifletterla. Come una corda legata agli estremi può produrre onde stazionarie

Dettagli

Scuola statale Italiana di Madrid Liceo Scientifico E. Fermi Programmazione di Fisica Classe IV A Anno scolastico 2016/2017. Prof.

Scuola statale Italiana di Madrid Liceo Scientifico E. Fermi Programmazione di Fisica Classe IV A Anno scolastico 2016/2017. Prof. Scuola statale Italiana di Madrid Liceo Scientifico E. Fermi Programmazione di Fisica Classe IV A Anno scolastico 2016/2017 Prof. Marco Zelada Metodologia Lo svolgimento del programma sarà distribuito

Dettagli

Fisica Main Training Lorenzo Manganaro

Fisica Main Training Lorenzo Manganaro Fisica Main Training 2016-2017 Lorenzo Manganaro 1. Lavoro di una forza 2. Energia meccanica e legge di conservazione 3. Forze dissipative 4. Potenza 30 25 20 15 1. Conservazione dell energia 2. Potenza

Dettagli

Campo magnetico e forza di Lorentz (I)

Campo magnetico e forza di Lorentz (I) Campo magnetico e forza di Lorentz (I) Fatti sperimentali (Oersted e Ampere) Legge di Gauss per il campo magnetico Forza di Lorentz Definizione del campo magnetico Magnetismo Noto fin dall antichita` (VI

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Faraday 2. Estensione della legge di Ampere 3. Equazioni di Maxwell 4. Onde elettromagnetiche VI - 0 Legge di Faraday Campo elettrico Campo di induzione

Dettagli

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA

LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA LE ONDE E I FONDAMENTI DELLA TEORIA QUANTISTICA I PROBLEMI DEL MODELLO PLANETARIO F Secondo Rutherford l elettrone si muoverebbe sulla sua orbita in equilibrio tra la forza elettrica di attrazione del

Dettagli

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton

Indice. Fisica: una introduzione. Il moto in due dimensioni. Moto rettilineo. Le leggi del moto di Newton Indice 1 Fisica: una introduzione 1.1 Parlare il linguaggio della fisica 2 1.2 Grandezze fisiche e unità di misura 3 1.3 Prefissi per le potenze di dieci e conversioni 7 1.4 Cifre significative 10 1.5

Dettagli

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti

LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio Campo magnetico e suoi effetti LICEO SCIENTIFICO STATALE A. VALLISNERI Classe 5A 2 o periodo/ 1 a verifica scritta 6 febbraio 2012 Campo magnetico e suoi effetti Alunno:................................................ Domande a risposta

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

2. L unità di misura della costante k che compare nella legge di Coulomb è:

2. L unità di misura della costante k che compare nella legge di Coulomb è: Fatti sperimentali e loro descrizione fenomenologica 1 Vero o falso 2 Quesiti a risposta multipla 1. Si considerino due cariche elettriche, q 1 = +2 10 4 C e q 2 = 3 10 5 C, poste alla distanza d = 1,

Dettagli

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene

FAM. T 1) α ν. (e α ν T 1) 2. (con l ipotesi ν > 0) si ottiene Serie 42: Soluzioni FAM C. Ferrari Esercizio 1 Corpo nero 1. Abbiamo: Sole λ max = 500nm - spettro visibile (giallo); Sirio B λ max = 290nm - ultravioletto; corpo umano λ max = 9300nm - infrarosso. 2.

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO

APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO APPENDICE 1 CAMPI CONSERVATIVI CIRCUITAZIONE DI UN VETTORE LUNGO UNA LINEA CHIUSA CORRENTE DI SPOSTAMENTO Quando un punto materiale P si sposta di un tratto s per effetto di una forza F costante applicata

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI

Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI La materia ordinaria contiene, fra altre, particelle di due tipi, elettroni e protoni, che interagiscono scambiando fra loro particelle

Dettagli

Questionario di FISICA LS-OSA - Analisi preliminare e Report

Questionario di FISICA LS-OSA - Analisi preliminare e Report Questionario di FICA LS-OSA - Analisi preliminare e Report Comitato Scientifico: Alberto Conte presidente Accademia delle Scienze Torino Settimio Mobilio Direttore Dipartimento di Fisica ROMATRE predisposizione

Dettagli

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2

Teoria Atomica Moderna. Chimica generale ed Inorganica: Chimica Generale. sorgenti di emissione di luce. E = hν. νλ = c. E = mc 2 sorgenti di emissione di luce E = hν νλ = c E = mc 2 FIGURA 9-9 Spettro atomico, o a righe, dell elio Spettri Atomici: emissione, assorbimento FIGURA 9-10 La serie di Balmer per gli atomi di idrogeno

Dettagli

Cose da sapere - elettromagnetismo

Cose da sapere - elettromagnetismo Cose da sapere - elettromagnetismo In queste pagine c e` un riassunto di relazioni e risultati che abbiamo discusso e che devono essere conosciuti. Forza di Lorentz agente su una carica q in moto con velocita`

Dettagli

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb

ELETTROTECNICA. Elettromagnetismo. Livello 13. Andrea Ros sdb ELETTROTECNICA Livello 13 Elettromagnetismo Andrea Ros sdb Livello 13 Elettromagnetismo Sezione 1 Campi magnetici e correnti elettriche Nel 1820 il fisico Oersted scoprì che il passaggio di una corrente

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

CONTENUTI DISCIPLINARI E PLURIDISCIPLINARI

CONTENUTI DISCIPLINARI E PLURIDISCIPLINARI MATEMATICA OBIETTIVI FORMATIVI Comprensione dei procedimenti caratteristici dell indagine scientifica, che si articolano in un continuo rapporto tra costruzione teorica e attività sperimentale ed acquisizione

Dettagli

La Natura della Luce: dalle Scoperte alle Applicazioni

La Natura della Luce: dalle Scoperte alle Applicazioni La Natura della Luce: dalle Scoperte alle Applicazioni Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Padova, 27 Maggio 2013 Sommario L ottica geometrica

Dettagli

SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE

SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE SCIENZE INTEGRATE (FISICA) - settore tecnologico COMPETENZE DISCIPLINARI CLASSI SECONDE Saper analizzare un fenomeno o un problema riuscendo ad individuare gli elementi significativi e le relazioni coinvolte,

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHSIS _ ROMA CORSO di AGGIORNAMNTO di FISICA LTTRROMAGNTISMO RLATIVITA Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 16 marzo 2016 Conseguenze del passaggio dalle trasformazioni di Galileo alle trasformazioni

Dettagli

Il flusso del campo magnetico

Il flusso del campo magnetico Il flusso del campo magnetico Il flusso del campo magnetico attraverso una superficie si definisce in modo analogo al flusso del campo elettrico. ( B) BScos Con α angolo compreso tra B e S. L unità di

Dettagli

LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s Contratto formativo

LICEO SCIENTIFICO STATALE G. GALILEI - MACERATA a.s Contratto formativo LICEO SCIENTIFICO STATALE "G. GALILEI" - MACERATA a.s. 2014-2015 Prof.: ANGELO ANGELETTI Disciplina: FISICA Classe: 5G Contratto formativo 1. Analisi della classe Non sono state fatte prove d ingresso,

Dettagli

PIANO DI LAVORO ANNUALE

PIANO DI LAVORO ANNUALE PIANO DI LAVORO ANNUALE Classe 2 B Disciplina: FISICA A.S. 2016/2017 Docente: prof. Vidhi Meri Ore settimanali: 3 Analisi della situazione di partenza della classe In generale i comportamento degli gli

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

PROGRAMMA SVOLTO DI MATEMATICA CLASSE: 5 INDIRIZZO LICEO SCIENTIFICO A.S. 2015/2016 DOCENTE: ANTONELLA PREVIATI

PROGRAMMA SVOLTO DI MATEMATICA CLASSE: 5 INDIRIZZO LICEO SCIENTIFICO A.S. 2015/2016 DOCENTE: ANTONELLA PREVIATI PROGRAMMA SVOLTO DI MATEMATICA CLASSE: 5 INDIRIZZO LICEO SCIENTIFICO A.S. 2015/2016 DOCENTE: ANTONELLA PREVIATI LIBRO DI TESTO ADOTTATO: Bergamini, Trifone, Barozzi Matematica.blu 2.0 Ed. Zanichelli CONTENUTI

Dettagli

Campo magnetico e forza di Lorentz (I)

Campo magnetico e forza di Lorentz (I) Campo magnetico e forza di Lorentz (I) Fatti sperimentali (Oersted e Ampere) Legge di Gauss per il campo magnetico Forza di Lorentz Definizione del campo magnetico Magnetismo Noto fin dall antichita` (VI

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

FISICA II OBIETTIVI FORMATIVI PREREQUISITI RICHIESTI FREQUENZA LEZIONI CONTENUTI DEL CORSO

FISICA II OBIETTIVI FORMATIVI PREREQUISITI RICHIESTI FREQUENZA LEZIONI CONTENUTI DEL CORSO DIPARTIMENTO DI INGEGNERIA CIVILE E ARCHITETTURA (DICAR) Corso di laurea in Ingegneria civile e ambientale Anno accademico 2016/2017-2 anno FISICA II 9 CFU - 1 semestre Docente titolare dell'insegnamento

Dettagli

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A,

1. Tre fili conduttori rettilinei, paralleli e giacenti sullo stesso piano, A, B e C, sono percorsi da correnti di intensità ia = 2 A, ebbraio 1. L intensità di corrente elettrica che attraversa un circuito in cui è presente una resistenza R è di 4 A. Se nel circuito si inserisce una ulteriore resistenza di 2 Ω la corrente diventa di

Dettagli

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA SECONDO BIENNIO

LICEO ARTISTICO PROGRAMMAZIONE DIDATTICA RIFERITA ALLA SECONDO BIENNIO Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli