1 Richiami di logica matematica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1 Richiami di logica matematica"

Transcript

1 Geometria e Topologia I 7 marzo Richiami di logica matematica Definire cos è un enunciato, una proposizione (elemento primitivo della logica delle proposizioni). La definizione è data in termini di una proprietà dell enunciato: l essere vero o falso (logica bivalente). Dunque si assume che ogni proposizione abbia un solo valore di verità scelto tra i due: vero oppure falso. Sistemi logici più completi possono averne altri (indeterminato, per esempio). Variabili: Lettere dell alfabeto (maiuscole o minuscole), se serve con sottoscritte (con apici o pedici): A, x, B 1, j,... Assegnamento di valore alle variabili. Connettivi logici: : (Operazioni binarie, unarie tra proposizioni). Si formano nuove proposizioni a partire da proposizioni date. negazione: p. congiunzione (AND): p q. disgiunzione (OR, p vel q): p q. disgiunzione esclusiva (p XOR q, aut p aut q) : p q. implicazione (materiale) (se p allora q, p implica q): p = q. doppia implicazione (se e solo se): p q. Valori di verità: Vero (1) e Falso (0). Dato che gli enunciati p, q,... assumo valori di verità 0/1, è possibile definire i connettivi logici scrivendo le corrispondenti tabelle di verità. D.L. Ferrario 7 marzo

2 Geometria e Topologia I 7 marzo p p p q p = q p q p q p q p q p q p q p q p XOR q Simboli primitivi ed espressioni logiche: A partire da proposizioni date p, q, r,... si costruiscono espressioni composte (dette anche forme o espressioni, nel calcolo delle proposizioni), utilizzando le parentesi per esplicitare la precedenza tra le operazioni. Alcune espressioni sono sempre vere (cioè assumono valore di verità 1 per ogni possibile scelta dei valori delle variabili), e si chiamano tautologie. Altre, invece, sono sempre false (cioè assumono valore di verità 0 per ogni possibile scelta dei valori delle variabili): si chiamano contraddizioni. Quando due espressioni hanno le medesime tavole di verità si dicono equivalenti. A e B sono equivalenti se e solo se A B è una tautologia. Le seguenti sono tautologie: (i) A A (terzo escluso); (ii) (A A) (non contraddizione); (iii) ( A) A (doppia negazione); D.L. Ferrario 7 marzo

3 Geometria e Topologia I 7 marzo (iv) A A A, A A A; (v) A B B A, A B B A (commutatività); (vi) associatività: (A B) C A (B C); (A B) C A (B C); (vii) Leggi distributive: A (B C) (A B) (A C); A (B C) (A B) (A C); (viii) Leggi di de Morgan: (A B) A B; (A B) B A; Le seguenti tautologie sono uno schema del ragionamento logico formale. Sono esempi di sillogismi, riscritti nei termini della logica matematica delle proposizioni. (i) (A B) = A; (ii) (A = B) ( B = A) (contronominale, contrapposizione, per assurdo); (iii) (A = B) A = B (modus ponens); (iv) (A = B) B = A (modus tollens); (v) (A = B) (B = C) = (A = C) (modus barbara, sillogismo ipotetico); D.L. Ferrario 7 marzo

4 Geometria e Topologia I 7 marzo (vi) ((A B) A) = B (sillogismo disgiuntivo). Predicati Quando una espressione p(x) contiene delle variabili (x) che non sono state assegnate (variabili libere) si dice predicato, proprietà, funzione proposizionale o anche enunciato aperto. Quantificatori: I quantificatori trasformano enunciati aperti in proposizioni (vere o false). Se ci sono più variabili libere, si possono usare più quantificatori. Le variabili con un valore assegnate oppure quantificate da un quantificatore si dicono vincolate. Quantificatore universale: (per ogni, per tutti). Uso: x, p(x). Significato: Per ogni x (nell universo U), la proprietà p(x) è vera (cioè x gode della proprietà p). Anche: x U, p(x). Quantificatore esistenziale: (esiste, esiste almeno un x). Uso: x : p(x). Significato: Esiste almeno un x (nell universo U) per cui la proprietà p(x) è vera (cioè x gode della proprietà p). Anche: x U : p(x). ( x, p(x)) x : p(x) (principio di negazione). ( x : p(x)) x, p(x) (principio di negazione). x, y, p(x, y) y,, xp(x, y) (principio di scambio). x : y : p(x, y) y : : xp(x, y) (principio di scambio). x : y, p(x, y) = y, x : p(x, y) (principio di scambio). D.L. Ferrario 7 marzo

5 Geometria e Topologia I 7 marzo Richiami di teoria degli insiemi Concetti primitivi (non definiti): Insieme di oggetti/elementi (anche: collezione, famiglia). Relazione di appartenenza: x X, x X. In altri termini, in questa teoria intuitiva (naive) degli insiemi 1 si definisce un insieme come collezione di oggetti definiti e distinguibili (cioè si deve essere in grado di stabilire se x = y oppure x y). Si assumono anche i seguenti principi: (i) Principio di estensione: Due insiemi sono uguali se e solo se hanno gli stessi elementi. (ii) Principio di astrazione: Una proprietà p(x) definisce un insieme A con la convenzione che gli elementi di A sono esattamente gli oggetti x per cui P (x) è vera: (iii) Assioma della... Estensioni di questa notazione: A = {x : p(x)}. {x A : p(x)} Esempio: {x R : x 4} {f(x) : p(x)} Esempio: {x 2 : x Z} {1, 2, 3}, {1, 2} 1 G. Cantor ( ). Il termine intuitiva è usato anche poiché l intuizione dovrebbe il criterio per stabilire cosa è un insieme e cosa no; conseguenze di questo approccio sono famosi paradossi (contraddizioni), come il paradosso di Russell (1901): sia X l insieme di tutti gli insiemi che non appartengono a se stessi, cioè che non hanno se stessi come elementi (x x); se X appartiene a se stesso, X X, allora per definizione X X, cioè X non appartiene a se stesso. Viceversa... D.L. Ferrario 7 marzo

6 Geometria e Topologia I 7 marzo Insieme vuoto:. 2 Relazioni tra insiemi: (Inclusione) A B (anche A B): se x A implica x B. A è un sottoinsieme di B. A B: se B A. A = B se e solo se (A B) e (B A). Operazioni con gli insiemi: Unione A B = {x : x A x B}. Intersezione A B = {x : x A x B} (due insiemi sono disgiunti quando A B = ). Prodotto cartesiano (insieme delle coppie ordinate) A B = {(a, b) : a A, b B} = {(a, b) : a A b B}. Complemento di A in B A (differenza tra insiemi): A (= A c = B A) = {x B : x A}. Insieme delle parti: P(X) = 2 X = l insieme dei sottoinsiemi di X (cioè l insieme delle funzioni f : X {0, 1}). Operazioni per collezioni/famiglie di insiemi: come il simbolo di sommatoria può essere usato per definire la somma di una serie di numeri, così i simboli di unione e intersezione possono essere usati per famiglie di insiemi. Siano J e U due insiemi non vuoti e f : J 2 U 2 Il concetto complementare di insieme vuoto è quello di insieme universo. S intende che questo viene scelto e sottinteso in dipendenza dal contesto. Per esempio: numeri naturali, numeri reali,... D.L. Ferrario 7 marzo

7 Geometria e Topologia I 7 marzo una funzione. Per ogni i J, il sottoinsieme f(i) 2 U può anche essere denotato con X i, per esempio (cf. successioni x i vs. funzioni x = f(i)). i J X i := {x U : ( i I : x X i )}, o equivalentemente 3 i J X i := {x U : x X i per qualche i I}. i J X i := {x U : ( i J, x X i )}, o equivalentemente i J X i := {x U : x X i per tutti gli i J}. In ultimo, si ricordi che una funzione f : X Y si dice iniettiva se..., suriettiva se..., bijettiva (biunivoca) se... (2.1) Definizione. Sia f : X Y una funzione. Se B Y è un sottoinsieme di Y, la controimmagine di B è f 1 (B) = {x X : f(x) B}. 3 Si noti l uso del simbolo := usato per le definizioni o gli assegnamenti. D.L. Ferrario 7 marzo

8 Geometria e Topologia I 9 marzo Spazi metrici e continuità: topologia degli spazi metrici Ricordiamo alcuni fatti elementari sugli spazi metrici. (3.1) Definizione. Uno spazio metrico è un insieme X munito di una funzione d: X X R tale che per ogni x 1, x 2,x 3 X: (i) x 1, x 2, d(x 1, x 2 ) 0 e d(x 1, x 2 ) = 0 se e solo se x 1 = x 2. (ii) Simmetria: d(x 1, x 2 ) = d(x 2, x 1 ). (iii) Disuguaglianza triangolare: d(x 1, x 3 ) d(x 1, x 2 ) + d(x 2, x 3 ). La funzione d viene chiamata metrica su X. Gli elementi di X vengono anche chiamati punti. (3.2) Esempio. Metrica su R: d: R R R, d(x, y) = x y, ha le proprietà che per ogni x, y R (i) x y 0 e x y = 0 x = y. (ii) x y = y x. (iii) x z x y + y z. Importante concetto associato al concetto di metrica/distanza: (3.3) Definizione. Palla aperta (intorno circolare) di raggio r e centro in x 0 X (X spazio metrico): (Anche più esplicitamente B r (x 0, X)) B r (x 0 ) = {x X : d(x, x 0 ) < r}. D.L. Ferrario 9 marzo

9 Geometria e Topologia I 9 marzo (3.4) Nota. Una funzione f : A R R è continua nel punto x A se per ogni ɛ > 0 esiste un δ > 0 tale che x y < δ = f(x) f(y) < ɛ. Cioè, equivalentemente, f è continua in x R se per ogni ɛ > 0 esiste δ > 0 tale che y B δ (x) = f(y) B ɛ (f(x)), cioè f (B δ (x)) B ɛ (f(x)). In generale, f : A R è continua in A R se è continua per ogni x A, cioè se per ogni ɛ > 0 e per ogni x A esiste δ (dipendente da ɛ e x) tale che f (B δ (x)) B ɛ (f(x)). Dal momento che f(a) B A f 1 B (esercizio?? a pagina??), la funzione f è continua in A se e solo se per ogni ɛ > 0 e per ogni x A esiste δ (dipendente da ɛ e x) tale che B δ (x) f 1 (B ɛ (f(x))). (3.5) Definizione. 4 Un sottoinsieme U di uno spazio metrico X si dice intorno di un punto x U se contiene un intorno circolare di x, cioè se esiste δ > 0 tale che B δ (x) U Se U è un intorno di x, si dice che x è interno ad U. (3.6) Nota. Se U è un intorno di x e U V, allora V è un intorno di V. Con questo linguaggio, la definizione di continuità in x diventa: la controimmagine f 1 (B ɛ (f(x))) di ogni intorno circolare di f(x) è un intorno di x. Notiamo che una palla è intorno di ogni suo punto (esercizio?? a pagina??). (3.7) Se f : A R R è continua in A, allora la controimmagine di ogni palla B r (y) in R (intervallo!) è intorno di ogni suo punto. 4 U può non essere aperto... D.L. Ferrario 9 marzo

10 Geometria e Topologia I 9 marzo Dimostrazione. Se x f 1 B ɛ (y), cioè f(x) B ɛ (y), allora esiste r abbastanza piccolo per cui B r (f(x)) B ɛ (y). Dal momento che f è continua in x, f 1 (B r (f(x))) è intorno di x. Ma B r (f(x)) B ɛ (y) = f 1 (B r (f(x))) f 1 (B ɛ (y)) e quindi f 1 (B ɛ (y)) è un intorno di x. q.e.d. (3.8) Definizione. Un sottoinsieme A X di uno spazio metrico si dice aperto se è intorno di ogni suo punto (equivalentemente, ogni punto di A ha un intorno circolare tutto contenuto in A, o, equivalentemente, ogni punto di A ha un intorno tutto contenuto in A). (3.9) Una palla aperta B r (x) è un aperto. Dimostrazione. (Esercizio?? di pagina??) q.e.d. (3.10) Una funzione f : A R R è continua in A se e soltanto se la controimmagine di ogni palla B r (y) in A è un aperto. Dimostrazione. Per la proposizione precedente se una funzione è continua allora la controimmagine di ogni palla è un aperto. Viceversa, assumiamo che la controimmagine di ogni palla B r (y) è un aperto. Allora, per ogni x A e per ogni ɛ > 0 f 1 (B ɛ (f(x))) è un aperto, ed in particolare è un intorno di x; per definizione di intorno, quindi per ogni x e ɛ esiste δ > 0 tale che B δ (x) f 1 (B ɛ (f(x))), cioè f è continua. q.e.d. D.L. Ferrario 9 marzo

11 Geometria e Topologia I 9 marzo Proprietà dei sottoinsiemi aperti Se A X è aperto, allora per ogni x A esiste r = r(x) > 0 tale che B r(x) A, e quindi A è unione di (anche infinite) palle aperte A = x A B r(x) (x). Viceversa, si può mostrare che l unione di una famiglia di palle aperte è un aperto. Quindi vale: (3.11) Un sottoinsieme A X è aperto se e solo se è unione di intorni circolari (palle). (3.12) Corollario. L unione di una famiglia qualsiasi di aperti è un aperto. (3.13) Nota. Osserviamo che le dimostrazioni appena viste per funzioni reali non utilizzano null altro che proprietà degli intorni circolari in R. Dato che queste proprietà valgono in generale per spazi metrici, le medesime proposizioni valgono per spazi metrici. Si possono riassumere tutti i fatti visti nel seguente teorema. (3.14) Teorema. Una funzione f : X Y (spazi metrici) è continua se e solo se la controimmagine di ogni aperto di Y è un aperto di X. Dimostrazione. Sia V un aperto di Y. Allora è unione di intorni circolari B j := B rj (y j ) V = j J B j e dunque la sua controimmagine f 1 V = f 1 B j = f 1 B j j J j J D.L. Ferrario 9 marzo

12 Geometria e Topologia I 9 marzo è unione di aperti, e quindi è un aperto. Viceversa, se la controimmagine di ogni aperto in Y è un aperto di X, allora in particolare la controimmagine di ogni intorno circolare di Y è un aperto di X, e quindi f è continua. q.e.d. La continuità di una funzione quindi dipende solo dal comportamento di f sulle famiglie di aperti degli spazi in considerazione, e non dal valore della metrica. (3.15) Sia X uno spazio metrico. Allora l insieme vuoto e X sono aperti. (3.16) Siano A e B due aperti di X spazio metrico. Allora l intersezione A B è un aperto. Dimostrazione. Sia x A B. Dato che A e B sono aperti, esistono r A e r B > 0 tali che B ra (x) A e B rb (x) B. Sia r il minimo tra r A e r B : B r B ra, B r B rb, e quindi B r A B r B( B r A B). Quindi A B è intorno di x e la tesi segue dall arbitrarietà di x. q.e.d. Riassumiamo le proprietà degli aperti: consideriamo il sottoinsieme dell insieme delle parti A 2 X che consiste di tutti i sottoinsiemi aperti di X. (3.17) L insieme A di tutti gli aperti (secondo la definizione (3.8 ) di pagina 10) di uno spazio metrico X verifica le seguenti proprietà: (i) A, X A, (ii) B A = B B B A, (iii) B A, B è finito, allora B B B A. D.L. Ferrario 9 marzo

13 Geometria e Topologia I 9 marzo (3.18) Possiamo riassumere le proprietà degli intorni circolari di uno spazio metrico X: (i) Ogni elemento x X ha almeno un intorno (aperto) B x. (ii) L intersezione di due intorni circolari B 1 B 2 è un aperto, e quindi per ogni x B 1 B 2 esiste un terzo intorno circolare B di x per cui x B B 1 B 2. (3.19) Definizione. La topologia di uno spazio metrico X è la famiglia A di tutti gli spazi aperti definita poco sopra. Si dice anche che è A è la topologia di X generata dagli intorni circolari (definiti a partire dalla metrica). (X, d) (X, d, A) Dal momento che funzioni continue... consideriamo equivalenti metriche che inducono la stessa topologia. (3.20) Definizione. Si dice che due metriche sullo stesso insieme X sono equivalenti se inducono la stessa topologia su X. (3.21) Due metriche d e d su X sono equivalenti se e solo se la seguente proprietà è vera: per ogni x X e per ogni palla Br(x) d (nella metrica d) esiste r > 0 tale che Br d (x) Br(x) d (dove Br d (x) è la palla nella metrica d ) e, viceversa, per ogni r e x esiste r tale che Br(x) d Br d (x). Dimostrazione. Supponiamo che le due metriche d e d siano equivalenti e siano x e r > 0 dati. Per (3.9) la palla B d r(x) è aperta nella topologia indotta da d e quindi anche nella topologia indotta da d : pertanto esiste r tale che B d r (x) B d r(x). Analogamente se si scambia il ruolo D.L. Ferrario 9 marzo

14 Geometria e Topologia I 9 marzo di d e d. Viceversa, supponiamo A aperto secondo la topologia indotta da d. Per ogni x A esiste, per definizione, r = r(x) > 0 tale che ed un corrispondente r > 0 tale che B d r(x) A, B d r (x) B d r(x). Cioè, per ogni x esiste r = r (x) > 0 tale che B d r (x) A, e quindi A è aperto nella topologia indotta da d. Analogamente, ogni aperto nella topologia indotta da d è anche aperto nella topologia indotta da d e quindi le due topologie coincidono. q.e.d. (3.22) Esempio. Esempi di metriche su R 2 : (i) d(x, y) = (x 1 y 1 ) 2 (x 2 y 2 ) 2 = x y (metrica euclidea). { 0 se x = y (ii) d(x, y) = (metrica discreta). 1 altrimenti (iii) d(x, y) = x 1 y 1 + x 2 y 2. (iv) d(x, y) = max i=1,2 x i y i. (v) d(x, y) = min i=1,2 x i y i. (vi) d(x, y) = (x 1 y 1 ) 2 + (x 2 y 2 ) 2. D.L. Ferrario 9 marzo

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica A.A.

Matematica e-learning - Corso Zero di Matematica. Gli Insiemi. Prof. Erasmo Modica  A.A. Matematica e-learning - Gli Insiemi Prof. Erasmo Modica http://www.galois.it erasmo@galois.it A.A. 2009/2010 1 Simboli Matematici Poiché in queste pagine verranno utilizzati differenti simboli matematici,

Dettagli

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI

M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI M.P. Cavaliere ELEMENTI DI MATEMATICA E LOGICA MATEMATICA DISCRETA INSIEMI Assumiamo come primitivo il concetto di insieme e quello di appartenenza di un elemento a un insieme. La notazione x A indica

Dettagli

Un insieme si dice finito quando l operazione consistente nel contare i suoi elementi ha termine.

Un insieme si dice finito quando l operazione consistente nel contare i suoi elementi ha termine. INSIEMI Insieme Le nozioni di insieme e di elemento di un insieme sono considerati come concetti primitivi, cioè non definibili mediante concetti più semplici, né riconducibili ad altri concetti definiti

Dettagli

1 IL LINGUAGGIO MATEMATICO

1 IL LINGUAGGIO MATEMATICO 1 IL LINGUAGGIO MATEMATICO Il linguaggio matematico moderno è basato su due concetti fondamentali: la teoria degli insiemi e la logica delle proposizioni. La teoria degli insiemi ci assicura che gli oggetti

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni.

Elementi di logica. SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Elementi di logica SCOPO: introdurre nozioni di logica & vocabolario per una corretta interpretazione delle dimostrazioni. Quantificatori: elementi fondamentali del linguaggio matematico. quantificatore

Dettagli

L'algebra Booleana. Generalità. Definizioni

L'algebra Booleana. Generalità. Definizioni L'algebra Booleana Generalità L algebra booleana è stata sviluppata da George Boole nel 1854, ed è diventata famosa intorno al 1938 poiché permette l analisi delle reti di commutazione, i cui soli stati

Dettagli

Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco».

Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco». Ripasso Scheda per il recupero Il metodo assiomatico-deduttivo OMNE he cos è un assioma? he cos è un concetto primitivo? he cos è un teorema? he cosa significa affrontare lo studio della geometria secondo

Dettagli

Precorso di Matematica. Parte I : Fondamenti di Matematica

Precorso di Matematica. Parte I : Fondamenti di Matematica Facoltà di Ingegneria Precorso di Matematica Parte I : Fondamenti di Matematica 1. Teoria degli insiemi e cenni di logica Il concetto di insieme costituisce l elemento fondante di gran parte delle esposizioni

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Geometria Superiore Esercizi 1 (da consegnare entro... )

Geometria Superiore Esercizi 1 (da consegnare entro... ) Geometria Superiore Esercizi 1 (da consegnare entro... ) In questi esercizi analizziamo il concetto di paracompattezza per uno spazio topologico e vediamo come questo implichi l esistenza di partizioni

Dettagli

Completezza e compattezza

Completezza e compattezza 1 Completezza e compattezza Spazi metrici completi Data una successione x : N X, j x j, una sua sottosuccessione è la composizione x ν, ove ν : N N è strettamente crescente. Data una successione (x j )

Dettagli

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto.

In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. Attività In una palazzina abitata da 20 famiglie, 10 di esse hanno il cane, 2 non hanno n è cane n è gatto mentre 12 famiglie hanno il gatto. È possibile che si realizzi la situazione descritta? Motiviamo...

Dettagli

LE REGOLE DI DEDUZIONE

LE REGOLE DI DEDUZIONE LE REGOLE DI DEDUZIONE II concetto di regola di deduzione Ci proponiamo di formulare alcune regole, dette regole di deduzione o ragionamento, in virtù delle quali, a partire da certe P1, P2,..., Pn, sia

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

LOGICA. Definizione: una proposizione semplice è una frase della quale si possa dire se è

LOGICA. Definizione: una proposizione semplice è una frase della quale si possa dire se è LOGICA La logica nasce nell antica Grecia ed in particolare possiamo far risalire il suo inizio al grande filosofo Aristotele (384 a.c. 322 a.c.) che la tratta principalmente negli Analitici I e Analitici

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

istituto superiore g. terragni olgiate comasco

istituto superiore g. terragni olgiate comasco Disciplina 1 MATEMATICA Classe I A Indirizzo Liceo Scientifico Anno scolastico 2015-2016 Docente Cecilia Moschioni TESTI IN ADOZIONE Bergamini, Trifone, Barozzi, Matematica multimediale.blu vol.1, Zanichelli

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

Dispense del corso di ALGEBRA 1 a.a. 2007 2008. Parte 1: NOZIONI DI BASE

Dispense del corso di ALGEBRA 1 a.a. 2007 2008. Parte 1: NOZIONI DI BASE Dispense del corso di ALGEBRA 1 a.a. 2007 2008 Parte 1: NOZIONI DI BASE 1 Indice 1 Nozioni introduttive 3 1.1 Insiemi..................................... 3 1.2 Operazioni tra insiemi.............................

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: ISTITUTO TECNICO AMMINISTRAZIONE FINANZA MARKETING MATERIA: MATEMATICA APPLICATA ANNO

Dettagli

Il linguaggio della Matematica: Insiemi e operazioni

Il linguaggio della Matematica: Insiemi e operazioni LCEO CLSSCO L.END CERVNR l linguaggio della Matematica: nsiemi e operazioni Prof. Roberto Capone 1 l concetto di insieme è un CONCETTO PRMTVO proprio come i concetti di punto, retta e piano introdotti

Dettagli

Dispense del corso di ALGEBRA 1 a.a. 2008 2009

Dispense del corso di ALGEBRA 1 a.a. 2008 2009 Dispense del corso di ALGEBRA 1 a.a. 2008 2009 2 Indice I INSIEMI E NUMERI 5 1 Insiemi e applicazioni 7 1.1 Insiemi..................................... 7 1.2 Operazioni tra insiemi.............................

Dettagli

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010.

Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI. Corso di Analisi Matematica A.A. 2009 / 2010. Università degli Studi Di Salerno FACOLTÀ DI SCIENZE MATEMATICHE E FISICHE NATURALI Corso di Analisi Matematica A.A. 009 / 00 Le Funzioni Fabio Memoli indice Il Concetto di Funzione Funzioni Reali Di Variabile

Dettagli

Introduzione alla TEORIA DEI NUMERI

Introduzione alla TEORIA DEI NUMERI Renato Migliorato Introduzione alla teoria dei numeri Introduzione alla TEORIA DEI NUMERI Avvertenza: questo è l inizio di un testo pensato come supporto al corso di Matematiche Complementari I ed ancora

Dettagli

LEZIONE 4. { x + y + z = 1 x y + 2z = 3

LEZIONE 4. { x + y + z = 1 x y + 2z = 3 LEZIONE 4 4.. Operazioni elementari di riga. Abbiamo visto, nella precedente lezione, quanto sia semplice risolvere sistemi di equazioni lineari aventi matrice incompleta fortemente ridotta per righe.

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

8. Topologia degli spazi metrici, II

8. Topologia degli spazi metrici, II 8. Topologia degli spazi metrici, II Compattezza Cominciamo con un esempio Sia E un sottoinsieme di R 2. Esisterà in E un punto x 0 che abbia massima distanza dall origine? Ovviamente E dovrà essere limitato,

Dettagli

MODULI CLASSE PRIMA TEMA ARITMETICA E ALGEBRA

MODULI CLASSE PRIMA TEMA ARITMETICA E ALGEBRA MODULI CLASSE PRIMA TEMA ARITMETICA E ALGEBRA Modulo1 : Insiemi numerici N;Z;Q 18 ore COMPETENZE: Utilizzare le tecniche e le procedure nei vari insiemi numerici e saperli applicare in contesti reali.

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Introduzione alla probabilità

Introduzione alla probabilità Introduzione alla probabilità Osservazione e studio dei fenomeni naturali: a. Caso deterministico: l osservazione fornisce sempre lo stesso risultato. b. Caso stocastico o aleatorio: l osservazione fornisce

Dettagli

Cap. 1 Elementi di teoria degli insiemi

Cap. 1 Elementi di teoria degli insiemi Cap lementi di teoria degli insiemi Simboli logici Nel linguaggio matematico sono presenti alcuni simboli logici che servono a formulare, in modo inequivocabile, le cosiddette proposizioni o enunciati

Dettagli

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore

Giovanna Carnovale. October 18, Divisibilità e massimo comun divisore MCD in N e Polinomi Giovanna Carnovale October 18, 2011 1 Divisibilità e massimo comun divisore 1.1 Divisibilità in N In questa sezione introdurremo il concetto di divisibilità e di massimo comun divisore

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Percorso 2010: Introduzione alla Logica Proposizionale

Percorso 2010: Introduzione alla Logica Proposizionale Percorso 2010: Introduzione alla Logica Proposizionale Francesca Poggiolesi Facoltà di Medicina e Chirurgia 26 Agosto 2010, Firenze Dal test alla logica Alcuni esempi di test 1 Dal test alla logica Alcuni

Dettagli

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo ISTITUTO TECNICO Amministrazione Finanza e Marketing MATERIA: MATEMATICA APPLICATA ANNO

Dettagli

1 Calcolo dei predicati del I ordine. Semantica

1 Calcolo dei predicati del I ordine. Semantica 1 Calcolo dei predicati del I ordine. Semantica Ricordiamo la sintassi del calcolo dei predicati. 1.1 Sintassi. Sintassi. Un linguaggio del calcolo dei predicati L = (Pred, Fun, Const) consiste di (1)

Dettagli

Proposizione logica Argomento/i Predicato Roma è la capitale d Italia Roma è la capitale d Italia 2>3 2 e 3 è maggiore di

Proposizione logica Argomento/i Predicato Roma è la capitale d Italia Roma è la capitale d Italia 2>3 2 e 3 è maggiore di 1. Un pò di storia Logica Il primo studioso che si occupò di logica fu il filosofo greco Aristotele (384-322 a.c.). Fino al Cinquecento la logica restò sostanzialmente entro i confini tracciati da Aristotele;

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Riconoscere e formalizzare le dipendenze funzionali

Riconoscere e formalizzare le dipendenze funzionali Riconoscere e formalizzare le dipendenze funzionali Giorgio Ghelli 25 ottobre 2007 1 Riconoscere e formalizzare le dipendenze funzionali Non sempre è facile indiduare le dipendenze funzionali espresse

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

A Simone piacciono tutti i giochi di squadra. Il basket è un gioco di squadra. A Simone non piace giocare a basket.

A Simone piacciono tutti i giochi di squadra. Il basket è un gioco di squadra. A Simone non piace giocare a basket. Logica La logica si occupa della correttezza del ragionamento, un ragionamento è formato da un insieme di proposizioni (enunciati di cui è possibile stabilire se sono veri o falsi) Carlo è un alunno di

Dettagli

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015

Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Programma di Matematica Classe 1^ C/L Anno scolastico 2014/2015 Capitolo 1- I numeri naturali e i numeri interi Che cosa sono i numeri naturali La rappresentazione dei numeri naturali Le quattro operazioni

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA I

Corso di Laurea in Matematica. Dispense del corso di ALGEBRA I Corso di Laurea in Matematica Dispense del corso di ALGEBRA I a.a. 2012 2013 2 Cos è l anima?. Al negativo è facile da definire: per l appunto ciò che si affretta a rintanarsi quando sente parlare di serie

Dettagli

Programma di Algebra 1

Programma di Algebra 1 Programma di Algebra 1 A. A. 2015/2016 Docenti: Alberto Canonaco e Gian Pietro Pirola Richiami su relazioni di equivalenza: definizione, classe di equivalenza di un elemento, insieme quoziente e proiezione

Dettagli

Algebra di Boole ed Elementi di Logica

Algebra di Boole ed Elementi di Logica Algebra di Boole ed Elementi di Logica 53 Cenni all algebra di Boole L algebra di Boole (inventata da G. Boole, britannico, seconda metà 8), o algebra della logica, si basa su operazioni logiche Le operazioni

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

Il concetto di calcolatore e di algoritmo

Il concetto di calcolatore e di algoritmo Il concetto di calcolatore e di algoritmo Elementi di Informatica e Programmazione Percorso di Preparazione agli Studi di Ingegneria Università degli Studi di Brescia Docente: Massimiliano Giacomin Informatica

Dettagli

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni

Note per il corso di Geometria e algebra lineare 2009-10 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Note per il corso di Geometria e algebra lineare 009-0 Corso di laurea in Ing. Elettronica e delle Telecomunicazioni Spazi di n-uple e matrici. I prodotti cartesiani RR R e RRR R 3, costituiti dalle coppie

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Probabilità. Ing. Ivano Coccorullo

Probabilità. Ing. Ivano Coccorullo Ing. Ivano Coccorullo PROBABILITA Teoria della Eventi certi, impossibili e casuali Nella scienza e nella tecnologia è fondamentale il principio secondo il quale ogni volta che si realizza un insieme di

Dettagli

TOPOLOGIA ALBERTO SARACCO

TOPOLOGIA ALBERTO SARACCO TOPOLOGIA ALBERTO SARACCO Abstract. Le presenti note saranno il più fedeli possibile a quanto detto a lezione. I testi consigliati sono Jänich [1], Kosniowski [2] e Singer- Thorpe [3]. Un ottimo libro

Dettagli

La logica modale e la dimostrazione dell esistenza di Dio di Gödel. LOGICA MODALE

La logica modale e la dimostrazione dell esistenza di Dio di Gödel. LOGICA MODALE La logica modale e la dimostrazione dell esistenza di Dio di Gödel. In alcuni giornali ho letto che di recente ci sono stati diversi studi che hanno riportato alla ribalta la dimostrazione dell esistenza

Dettagli

Analisi Matematica 1 A.A. 2015/16

Analisi Matematica 1 A.A. 2015/16 Analisi Matematica 1 A.A. 2015/16 Ingegneria Informatica Ingegneria Elettronica e delle Telecomunicazioni Paola Gervasio orario di ricevimento: MER. 11:30-12:30, VEN 10:30 11:30 Edificio di via Valotti,

Dettagli

Introduzione alla logica matematica

Introduzione alla logica matematica Introduzione alla logica matematica 1 PROPOSIZIONE LOGICA Ogni discorso è fatto mediante espressioni di vario tipo che sono dette: proposizioni. Nel linguaggio ordinario, si chiama proposizione qualunque

Dettagli

Corso di Analisi Matematica. L insieme dei numeri reali

Corso di Analisi Matematica. L insieme dei numeri reali a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica L insieme dei numeri reali Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

1 Insiemi e terminologia

1 Insiemi e terminologia 1 Insiemi e terminologia Assumeremo come intuitiva la nozione di insieme e ne utilizzeremo il linguaggio come strumento per studiare collezioni di oggetti. Gli Insiemi sono generalmente indicati con le

Dettagli

TEORIA DEGLI INSIEMI

TEORIA DEGLI INSIEMI TEORIA DEGLI INSIEMI Il concetto di insieme è relativamente recente nella storia della matematica. La formulazione moderna di insieme si deve al matematico tedesco Georg Cantor (1845-1918) verso la fine

Dettagli

f: AxB f(x)=y, f={<x,y> per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3

f: AxB f(x)=y, f={<x,y> per ogni x in A esiste unica y in B f(x)=y} f={<1,2>, <2,3>, <3,3>} : {1,2,3} {1,2,3} f(1)=2, f(2)=3, f(3)=3 Insieme delle parti di A : Funzione : insieme i cui elementi sono TUTTI i sottoinsiemi di A f: AxB f(x)=y, f={ per ogni x in A esiste unica y in B f(x)=y} f={, , } : {1,2,3} {1,2,3}

Dettagli

Corso di Elementi di Informatica Anno accademico 2015/16

Corso di Elementi di Informatica Anno accademico 2015/16 Corso di Laurea triennale in Ingegneria Navale in condivisione con Corso di Laurea triennale in Ingegneria Chimica (matr. P-Z) Corso di Elementi di Informatica Anno accademico 2015/16 Docente: Ing. Alessandra

Dettagli

Esercizi sui sistemi di equazioni lineari.

Esercizi sui sistemi di equazioni lineari. Esercizi sui sistemi di equazioni lineari Risolvere il sistema di equazioni lineari x y + z 6 x + y z x y z Si tratta di un sistema di tre equazioni lineari nelle tre incognite x, y e z Poichè m n, la

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

Numeri cardinali. Definizione 1.1 Due insiemi A e B, non vuoti, si dicono equipotenti, e si scrive A B, se esiste un applicazione f : A B biunivoca.

Numeri cardinali. Definizione 1.1 Due insiemi A e B, non vuoti, si dicono equipotenti, e si scrive A B, se esiste un applicazione f : A B biunivoca. Numeri cardinali 1 Insiemi equipotenti e cardinalità Partiamo da un semplice esempio. Sia A = {a, b, c, d, e, f} l insieme delle prime sei lettere dell alfabeto. Che tipo di operazione facciamo per concludere

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it

LOGICA PER LA PROGRAMMAZIONE. Franco Turini turini@di.unipi.it LOGICA PER LA PROGRAMMAZIONE Franco Turini turini@di.unipi.it IPSE DIXIT Si consideri la frase: in un dato campione di pazienti, chi ha fatto uso di droghe pesanti ha utilizzato anche droghe leggere. Quali

Dettagli

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi

algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA

Dettagli

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2)

Algebra e Geometria. Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Algebra e Geometria Ingegneria Meccanica e dei Materiali Sez (2) Ingegneria dell Automazione Industriale Sez (2) Traccia delle lezioni che saranno svolte nell anno accademico 2012/13 I seguenti appunti

Dettagli

LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI. Corso di Logica per la Programmazione A.A Andrea Corradini

LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI. Corso di Logica per la Programmazione A.A Andrea Corradini LOGICA DEL PRIMO ORDINE: MOTIVAZIONI, SINTASSI E INTERPRETAZIONI Corso di Logica per la Programmazione A.A. 2013 Andrea Corradini LIMITI DEL CALCOLO PROPOSIZIONALE Nella formalizzazione di enunciati dichiarativi,

Dettagli

Precorsi: Introduzione naïve alla logica ed alla teoria degli insiemi. Carlo Collari, Lapo Dini, Daniele Angella

Precorsi: Introduzione naïve alla logica ed alla teoria degli insiemi. Carlo Collari, Lapo Dini, Daniele Angella Precorsi: Introduzione naïve alla logica ed alla teoria degli insiemi. Carlo Collari, Lapo Dini, Daniele Angella CAPITOLO 1 Introduzione Per poter seguire un corso universitario di matematica, uno studente,

Dettagli

Prodotti scalari e matrici

Prodotti scalari e matrici Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

TEOREMA DEL RESTO E REGOLA DI RUFFINI

TEOREMA DEL RESTO E REGOLA DI RUFFINI TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente

Dettagli

7 Settimana 7-11 novembre

7 Settimana 7-11 novembre 7 Settimana 7-11 novembre 7.1 Topologia di R Definizione 7.1 Sia x R. Un insieme U R si die intorno di x se ontiene un intervallo aperto ontenente x. Equivalentemente, se esiste ɛ > 0 tale he ]x ɛ, x +

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali

Anno 2. Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali Anno 2 Poligoni inscritti e circoscritti: proprietà e teoremi sui poligoni principali 1 Introduzione In questa lezione tratteremo i poligoni inscritti e circoscritti a una circonferenza, descrivendone

Dettagli

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5

Liceo Scientifico G. Galilei Trebisacce Anno Scolastico A= x x=2n n 5 n N B= x N 2 x<8 C= x x=4n n<5 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2012-2013 Prova di Matematica : Insiemi e logica Alunno: Classe: 1C 22.11.2012 prof. Mimmo Corrado 1. Dato l insieme universo U= x N x

Dettagli

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G.

FUNZIONI E LORO PROPRIETÀ. V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. FUNZIONI E LORO PROPRIETÀ 1 V CLASSICO a. s. 2015-2016 prof. ssadelfino M. G. A1 DEFINIZIONE DI FUNZIONE 2 Diapositiva 2 A1 Autore; 08/09/2015 DEFINIZIONE DI FUNZIONE X Y E una funzione! g a b c d e f.1.2.3.4

Dettagli

Programmazione Dichiarativa. Programmazione Logica. SICStus PROLOG PROLOG. http://www.sics.se/sicstus/ Bob Kowalski: "Algoritmo = Logica + Controllo"

Programmazione Dichiarativa. Programmazione Logica. SICStus PROLOG PROLOG. http://www.sics.se/sicstus/ Bob Kowalski: Algoritmo = Logica + Controllo Programmazione Logica Bob Kowalski: "Algoritmo = Logica + Controllo" nella programmazione tradizionale: il programmatore deve occuparsi di entrambi gli aspetti nella programmazione dichiarativa: il programmatore

Dettagli

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici

TOPOLOGIE. Capitolo 2. 2.1 Spazi topologici Capitolo 2 TOPOLOGIE Ogni spazio che si considera in gran parte della matematica e delle sue applicazioni è uno spazio topologico di qualche tipo: qui introduciamo in generale le nozioni di base della

Dettagli

Prof.ssa Raffaella De Rosa

Prof.ssa Raffaella De Rosa Prof.ssa Raffaella De Rosa Le conoscenze e le competenze matematiche a conclusione del triennio della scuola secondaria di II grado DEFICIT DI FORMAZIONE SCOLASTICA - DEFICIT DI FORMAZIONE MATEMATICA '

Dettagli

IL LINGUAGGIO DEGLI INSIEMI Conoscenze

IL LINGUAGGIO DEGLI INSIEMI Conoscenze IL LINGUAGGIO DEGLI INSIEMI Conoscenze 1 Completa correttamente ciascuna definizione: Un insieme in senso matematico è un raggruppamento di elementi che possono essere individuati con assoluta certezza

Dettagli

1 1+e ξ, (1) P A (ξ) = P B (ξ) = 1 1+e ξ (3) In figura (1) riportiamo l andamento delle probabilità P A (ξ) e P B (ξ). P A,P B

1 1+e ξ, (1) P A (ξ) = P B (ξ) = 1 1+e ξ (3) In figura (1) riportiamo l andamento delle probabilità P A (ξ) e P B (ξ). P A,P B Algoritmo di Elo generalizzato AEg Marcello Colozzo Siano A e B due giocatori che eseguono un gioco a somma zero G. La probabilità di vittoria per A è: dove P A ξ = +e ξ ξ = βr A R B 2 In questa equazione

Dettagli

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate

Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Programma di Matematica svolto nella 1 liceo Scientifico opzione Scienze Applicate Anno scolastico 2014/15 Numeri naturali e numeri interi relativi L'insieme dei numeri naturali I numeri naturali e il

Dettagli

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara

Dettagli

1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali?

1) Quali dei seguenti sottoinsiemi del campo dei numeri reali ℝ sono sottospazi vettoriali? Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali ℕ, gli interi ℤ, i numeri

Dettagli

FUNZIONI QUADRATICHE

FUNZIONI QUADRATICHE f: R R si dice funzione quadratica se è del tipo f(x) =ax 2 +bx+c, dove a,b,c sono costanti Il grafico di una funzione quadratica è una curva detta parabola Abbiamo incontrato funzioni di questo tipo quando

Dettagli

0.1 Esercizi calcolo combinatorio

0.1 Esercizi calcolo combinatorio 0.1 Esercizi calcolo combinatorio Esercizio 1. Sia T l insieme dei primi 100 numeri naturali. Calcolare: 1. Il numero di sottoinsiemi A di T che contengono esattamente 8 pari.. Il numero di coppie (A,

Dettagli

DISPENSE DI PROGRAMMAZIONE

DISPENSE DI PROGRAMMAZIONE DISPENSE DI PROGRAMMAZIONE Modulo 1 Risolvere problemi con l elaboratore: dal problema all algoritmo (Parte II) I Linguaggi di descrizione degli algoritmi - Notazioni grafiche (parte 1) Il linguaggio dei

Dettagli