1.1 Struttura dell atomo

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "1.1 Struttura dell atomo"

Transcript

1 CAPITOLO I Richiami di fisica generale e descrizione delle radiazioni ionizzanti. Struttura dell atomo L atomo è la più piccola porzione di un elemento chimico, che conserva le proprietà dell elemento stesso. Figura.- La struttura dell atomo Il primo modello atomico è stato elaborato da Rutheford, nel 9; in esso è possibile paragonare la struttura dell atomo a quella del Sistema Solare, in quanto il nucleo si trova al centro e le particelle, chiamate elettroni, ruotano intorno ad esso a distanze diverse. Su queste ultime agiscono due forze opposte: la forza centrifuga, che le spinge verso l esterno, e l attrazione elettrostatica da parte del nucleo. Nell ultimo secolo sono state elaborate diverse teorie e vari modelli sugli elettroni. Inizialmente si attribuiva ad essi un orbita ben precisa; in seguito si è passati a definire un campo di

2 probabilità in cui può trovarsi l elettrone. Rispetto alla natura dell elettrone, le prime teorie vi attribuivano le caratteristiche di un corpuscolo, mentre quelle più recenti descrivono questa particella con la duplice natura corpuscolare ed ondulatoria. Basandosi sulla teoria atomica elaborata da Bohr, nel 93, gli elettroni possono trovarsi soltanto su particolari orbite, ellittiche o circolari, di dimensioni lineari molto maggiori del nucleo. Ad esse corrispondono livelli energetici (o quantici) ben definiti, che vengono indicati in due modi, o per mezzo di lettere (K, L, M, N, O, P, Q), oppure per mezzo di numeri (,,3,4,5,6,7). Per descrivere in modo completo lo stato energetico di un elettrone sono necessari quattro numeri quantici, indicati come n, l, m ed s. Secondo il principio di Pauli in un atomo non possono coesistere elettroni identici, cioè con i quattro numeri quantici uguali. Di conseguenza, il numero massimo di elettroni, che può trovarsi su ogni livello energetico, è dato dall espressione: N e = n dove n è il numero quantico principale del livello energetico considerato. Nel nucleo è concentrata praticamente tutta la massa dell atomo; è costituito da due tipi di particelle: i protoni ed i neutroni. I protoni sono dotati di carica elettrica positiva, con la quale attraggono, intorno al nucleo, gli elettroni, che invece hanno carica elettrica negativa; in un atomo ogni protone è compensato da un elettrone, così da ottenere una struttura con carica totale nulla ed elettricamente stabile.

3 I neutroni non hanno carica elettrica e contribuiscono unicamente a far aumentare la quantità di materia presente nel nucleo. Figura.- Rappresentazione dell atomo simbolo La struttura di un atomo viene indicata, di consueto, con il A Z X, in cui X è il simbolo chimico dell elemento considerato, A è il suo numero di massa, cioè il numero totale di protoni e neutroni del nucleo, e Z è il numero atomico dell elemento, cioè il numero dei protoni del nucleo oppure il numero di elettroni che circondano il nucleo. Conseguentemente, la differenza nucleo. A Z esprime il numero di neutroni che si trovano nel 3

4 .. Gli isotopi e la radioattività A tutt oggi sono noti più di cento elementi, ognuno dei quali è caratterizzato dal suo numero atomico Z. Esistono, però, elementi che possiedono lo stesso numero atomico, ma diversi numeri di massa A ; questi vengono denominati isotopi. Gli isotopi di un dato elemento, che possono essere uno o più di uno, hanno lo stesso numero di protoni e differiscono tra loro per il numero dei neutroni contenuti nel nucleo; conseguentemente hanno masse atomiche differenti. Poiché gli isotopi di un elemento hanno lo stesso numero atomico Z, possiedono le stesse proprietà chimiche; per questo motivo non è possibile separarli mediante reazioni chimiche. Le proprietà fisiche sono invece differenti perché diversa è la loro massa. Gli isotopi sono instabili quando possiedono un eccesso di energia, che viene liberata sotto forma di particelle e di radiazioni elettromagnetiche, emesse separatamente o contemporaneamente. Questo processo di decadimento, o di disintegrazione, che porta il nucleo in uno stato energetico più stabile, prende il nome di radioattività. Tra le particelle esistenti all interno del nucleo, si esercitano forze di diversa natura, quali le forze repulsive tra i protoni e le forze attrattive tra protoni e neutroni. Le prime tendono ad allontanare i protoni l uno dall altro, le seconde a tenere uniti nel nucleo i protoni ed i neutroni; è dalla loro risultante che si determina se una certa composizione del rapporto neutroni-protoni è da considerarsi stabile, oppure no. Sperimentalmente è stato riscontrato che per gli elementi più leggeri, nei quali i protoni ed i neutroni sono all incirca in numero uguale, si ha una grande stabilità; negli elementi con un numero atomico maggiore di venti, 4

5 invece, per avere un nuclide stabile è necessario che ci sia un eccesso di neutroni... Il processo di ionizzazione La ionizzazione è il processo con cui un atomo o una molecola possono perdere o acquistare elettroni, dando luogo alla formazione di particelle che prendono il nome di ioni, i quali si pongono in movimento quando sono sottoposti all azione di un campo elettrico. Uno ione è elettricamente carico e la sua carica è determinata dal numero di elettroni persi o acquistati nel processo di ionizzazione. Quando un atomo o una molecola perdono un elettrone si ha la formazione di una coppia di ioni: l elettrone libero ed il residuo atomico, che è carico positivamente.. Elementi di radioattività La radioattività naturale fu osservata per la prima volta, nel 896, da Henri Becquerel, il quale, casualmente, si accorse che i suoi campioni emettevano una radiazione penetrante simile a quella descritta un anno prima da Röntgen nei suoi lavori sulle scariche nei gas. Ulteriori studi mostrarono che le radiazioni emesse erano caratteristiche dell elemento e che era possibile stabilire delle relazioni quantitative. Si chiarì, inoltre, che gli atomi che emettevano radiazioni erano instabili e decadevano con formazione di nuovi atomi. L impiego dei campi magnetici ha permesso di stabilire che esistono tre tipi di radiazioni naturali, indicate come radiazioni α, β e γ. Le prime due sono costituite da particelle cariche, mentre la radiazione gamma è di natura elettromagnetica. Come mostrato nella Figura.3, le particelle α e β subiscono una deflessione, in 5

6 direzioni opposte, quando vengono sottoposte all azione di un campo magnetico, mentre le radiazioni γ non subiscono deflessioni. Figura.3- Radiazioni α, β e γ sottoposte all azione di un campo magnetico Le radiazioni α, β e γ sono emesse dal nucleo degli atomi radioattivi ed i fenomeni di decadimento sono legati alle proprietà nucleari delle singole specie di nuclei instabili, indicati come nuclidi radioattivi o radionuclidi. L instabilità dei nuclei è dovuta alla presenza in essi di neutroni in eccesso o in difetto rispetto alle condizioni di stabilità; questi, di conseguenza, tendono a trasformarsi in nuclei di altri elementi, con un numero atomico minore, oppure in isotopi dei nuclei di partenza, mantenendo lo stesso numero atomico. Possono essere emesse anche radiazioni di origine atomica, anziché nucleare, dovute a fenomeni che coinvolgono gli elettroni orbitali; un esempio è costituito dai raggi X. 6

7 .. Tipi di decadimento radioattivo Sono stati osservati diverse tipologie di decadimento radioattivo di nuclidi instabili, come viene mostrato nello schema seguente: a) Decadimento α: il nucleo emette una particella α ed il suo numero atomico diminuisce di due, mentre il numero di massa diminuisce di quattro; le particelle α, infatti, sono 4 costituite da nuclei di elio He. Il decadimento α può essere schematizzato come segue: A Z A 4 4 X Y He. Z + b) Decadimento β: il nucleo emette una particella β. Si può distinguere tra due tipi di particelle: la particella β -, nel caso si tratti di un elettrone, e la particella β + nel caso esclusivo dei radionuclidi artificiali, che emettono un elettrone 7

8 positivo o positrone. In questo tipo di decadimento, quindi, il numero di massa rimane invariato, mentre il numero atomico diminuisce o aumenta di una unità a seconda del processo, secondo lo schema seguente: A A Z X Z + Y + A A Z X Z Y + β β + c) Cattura elettronica: il nucleo cattura un elettrone orbitale, dei livelli K o L, trasformandosi nel nucleo di numero di massa uguale e di numero atomico minore di un unità, in quanto l elettrone ed un protone del nucleo formano un neutrone; tale processo equivale al decadimento β +. d) Decadimento γ e transizione isomera: l emissione dei raggi γ costituisce la modalità più semplice, per un nucleo eccitato, di perdere energia. Nel decadimento γ un nucleo nello stato eccitato passa in uno stato energetico più basso, senza modificare il numero atomico ed il numero di massa. Un nucleo nello stato eccitato può essere il risultato di diversi processi: decadimento α e decadimento β; reazioni nucleari; eccitazione dallo stato fondamentale; transizione γ dagli stati eccitati superiori. Generalmente un nucleo fortemente eccitato torna allo stato fondamentale emettendo raggi γ in tempi dell ordine 8

9 di 0-3 secondi. Può accadere che l emissione avvenga in tempi più lunghi, spesso dell ordine di ore; in questo caso lo stato eccitato del nucleo è detto metastabile ed il nucleo, godendo di una stabilità temporanea, è detto isomero del corrispondente nucleo nello stato fondamentale. È in questo caso che si può parlare di transizione isomera. Durante il decadimento, oltre alle particelle ed alle radiazioni emesse dal nucleo, si può avere emissione anche in seguito al verificarsi di fenomeni che coinvolgono gli elettroni orbitali: a) Emissione di elettroni di conversione interna: avviene quando si ha l emissione di un fotone γ che, attraversando la nuvola elettronica, interagisce con un elettrone degli strati K, L, M, trasferendo ad esso la sua energia. Di conseguenza, dall atomo viene emesso un elettrone di energia pari alla differenza tra quella del fotone incidente e l energia di legame dell elettrone. Questi elettroni sono chiamati raggi β di conversione interna. b) Emissione di raggi X ed elettroni di Auger: si tratta di fotoni e di elettroni emessi a causa del riassestamento degli elettroni orbitali, in seguito a fenomeni quali la conversione interna e la cattura elettronica, che lasciano l atomo privo degli elettroni degli strati interni. Figura.4- Emissione di elettroni Auger 9

10 .. Legge temporale dei decadimenti radioattivi Il decadimento di tutte le sostanze radioattive avviene seguendo la medesima legge temporale. Supponendo di avere una sorgente radioattiva e di poter conoscere il numero di atomi che si disintegrano in un dato intervallo di tempo, è possibile ottenere un grafico in cui venga riportato il numero di atomi presenti in funzione del tempo. La curva risultante mostra un tipico andamento esponenziale, con una diminuzione costante dell intensità di disintegrazione in uguali intervalli di tempo. Figura.5- Rappresentazione lineare del decadimento In ogni intervallo di tempo non si disintegra lo stesso numero di atomi, ma la stessa percentuale degli atomi presenti. Quindi, l intensità di disintegrazione di una sostanza, chiamata attività, è una grandezza proporzionale al numero di atomi presenti al tempo t, come indicato nell espressione seguente: dn α N dt dn dove è l attività e N è il numero degli atomi presenti al tempo t. dt Includendo una costante di proporzionalità, l espressione precedente diventa: 0

11 dn dt = λn dove λ è la costante di decadimento, mentre il segno meno indica che l attività decresce con il tempo. Infine, integrando l espressione precedente si ottiene la legge esponenziale generale del decadimento radioattivo: N = N 0 e λt in cui N è il numero di atomi presenti al tempo t in un campione che presentava un numero N 0 di atomi radioattivi iniziali. La costante di decadimento λ esprime la probabilità che un singolo atomo decada nell unità di tempo; maggiore è il valore di λ più rapidamente il radioelemento decade...3 La vita media ed il tempo di dimezzamento dei radioelementi La costante di decadimento è legata al concetto di vita media (τ) e di tempo di dimezzamento, T, di un radioisotopo. La vita media è definita come: τ = λ Corrisponde, quindi, al tempo necessario affinché l attività di un dato radioisotopo si riduca di un fattore e rispetto al suo valore iniziale.

12 Il tempo di dimezzamento è il tempo necessario affinché l attività iniziale di un radioisotopo si riduca a metà; si può calcolare tramite l espressione seguente: T ln λ 0,693 λ = = = 0,693τ Ciascun atomo radioattivo ha il proprio schema di decadimento, caratterizzato da due grandezze: ) la vita media, ) l energia emessa. L identificazione di un particolare radioisotopo dipenderà dall accuratezza con la quale queste grandezze possono essere determinate. La conoscenza di entrambe è necessaria in quanto alcuni radioisotopi possono avere una vita media all incirca uguale, differendo invece notevolmente per la loro energia di emissione, mentre altri hanno energie di emissione molto vicine, ma vite medie notevolmente diverse...4 Le famiglie radioattive Molte sostanze radioattive non decadono direttamente in un isotopo stabile, ma danno luogo a discendenti, anch essi radioattivi, che decadono con la propria caratteristica vita media. Si supponga che ad un certo istante vi siano 0 N atomi del radioisotopo capostipite, con una costante di decadimento λ, e che non vi siano atomi del discendente. Dato che ogni atomo del capostipite decadendo diviene un atomo di discendente, la

13 variazione del numero di discendenti ( dn ) in un intervallo di tempo infinitesimo ( dt ) si ottiene con la seguente espressione: dn dt = λ N λ N Dalla legge generale del decadimento radioattivo, il numero di atomi del capostipite al tempo t è: 0 N = N e λ t Sostituendo questa espressione in quella precedente, ed integrando l equazione, si giunge al seguente risultato: N λt λ t ( e e ) N = 0 λ λ λ dove N è il numero di atomi del discendente presenti al tempo t. Si parla di famiglie radioattive quando una sostanza radioattiva decade dando luogo alla formazione della specie radioattiva successiva, con un processo a cascata che termina con l isotopo stabile. Tra le famiglie radioattive sono di particolare interesse quelle naturali e precisamente quelle dell uranio, quella del torio e quella dell attinio; una famiglia che rientra nel campo dei radioisotopi artificiali è invece quella del nettunio. 3

14 .3 Le radiazioni ionizzanti Le radiazioni ionizzanti sono delle onde elettromagnetiche, o delle particelle, dotate di potere altamente penetrante nella materia; ciò consente loro di ionizzare gli atomi con cui entrano in collisione. Figura.6- Il processo di ionizzazione ed eccitazione di un atomo Verrà focalizzata l attenzione sulle radiazioni ionizzanti che determinano diversi effetti e rischi biologici, e che quindi maggiormente interessano la radioprotezione. In modo particolare verranno trattate: particelle alfa; particelle beta; raggi gamma; raggi X. Queste radiazioni hanno sia origine naturale che antropica; lo studio del tipo e del contributo delle diverse fonti è fondamentale nella determinazione dell esposizione massima ammissibile per la popolazione. 4

15 .3. Le sorgenti di esposizione alle radiazioni ionizzanti La radiazione cosmica, la radioattività naturale delle acque di superficie, dell aria, del suolo ed anche dello stesso organismo, rappresentano una fonte di radiazione cui sono soggetti tutti gli esseri viventi. Queste sorgenti naturali di esposizione sono indicate nel loro insieme come radiazione di fondo; questa presenta un elevata variabilità da luogo a luogo, così che ogni sito avrà un proprio livello della radiazione di fondo. Figura.7- Dose media annuale mondiale Di seguito vengono descritte, brevemente, le sorgenti che rientrano nella radiazione di fondo. a) Raggi cosmici: hanno origine extraterrestre e sono costituiti principalmente da particelle cariche positivamente (protoni, particelle α, nuclei pesanti), che quando giungono in prossimità della Terra risentono dell azione derivante dal campo magnetico terrestre. Molte di queste particelle, chiamate raggi cosmici primari (nuclei atomici, elettroni, positroni e raggi γ), si scontrano con gli atomi dell atmosfera terrestre, generando altre particelle, i raggi cosmici secondari, costituite ad esempio da mesoni (particelle di massa compresa tra l elettrone ed il protone), elettroni, fotoni, protoni e neutroni. I raggi cosmici hanno un energia elevatissima, 5

Le particelle dell atomo

Le particelle dell atomo La carica elettrica I fenomeni elettrici sono noti fin dall antichità: gli antichi Greci usavano la parola elektron per spiegare il fenomeno dell elettrizzazione dell ambra. I Greci sapevano che strofinando

Dettagli

Uomo, ambiente e radiazioni

Uomo, ambiente e radiazioni Uomo, ambiente e radiazioni Natura delle radiazioni 76 Le radiazioni di cui si tratta parlando di tecnologia nucleare sono le radiazioni ionizzanti Natura delle radiazioni Cosa sono le radiazioni ionizzanti?

Dettagli

INTERAZIONI DELLE RADIAZIONI CON LA MATERIA

INTERAZIONI DELLE RADIAZIONI CON LA MATERIA M. Marengo INTERAZIONI DELLE RADIAZIONI CON LA MATERIA Servizio di Fisica Sanitaria Ospedale Policlinico S.Orsola - Malpighi, Bologna mario.marengo@unibo.it Si definiscono radiazioni ionizzanti tutte le

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton

ATOMO. Legge della conservazione della massa Legge delle proporzioni definite Dalton Democrito IV secolo A.C. ATOMO Lavoisier Proust Legge della conservazione della massa Legge delle proporzioni definite Dalton (808) Teoria atomica Gay-Lussac volumi di gas reagiscono secondo rapporti interi

Dettagli

ATOMI E MOLECOLE. Tutte le varie forme di materia esistenti sono costituite da sostanze semplici (elementi) e da sostanze composte (composti).

ATOMI E MOLECOLE. Tutte le varie forme di materia esistenti sono costituite da sostanze semplici (elementi) e da sostanze composte (composti). 1 ATOMI E MOLECOLE Tutte le varie forme di materia esistenti sono costituite da sostanze semplici (elementi) e da sostanze composte (composti). Un elemento (es. il mercurio) è una sostanza che non può

Dettagli

Il modello strutturale dell atomo

Il modello strutturale dell atomo Il modello strutturale dell atomo Gli atomi sono costituiti dal nucleo e dagli elettroni Proprietà dell atomo dipendono dal nucleo (fisica nucleare) e dagli elettroni (chimica). Il nucleo contiene protoni

Dettagli

Modelli atomici. Teoria atomica Dalton (1803) La materia non è continua, ma costituita da particelle.

Modelli atomici. Teoria atomica Dalton (1803) La materia non è continua, ma costituita da particelle. Modelli atomici Teoria atomica Dalton (1803) La materia non è continua, ma costituita da particelle. Presupposti 1. Legge di Lavoisier della conservazione della massa: in una reazione chimica nulla si

Dettagli

La struttura della materia

La struttura della materia La struttura della materia IL CORPO NERO In fisica, i corpi solidi o liquidi emettono radiazioni elettromagnetiche, a qualsiasi temperatura. Il corpo nero, invece, è un oggetto ideale che assorbe tutta

Dettagli

Chimica. Lezione 1 La materia

Chimica. Lezione 1 La materia Chimica Lezione 1 La materia Materia Tutte le sostanze che costituiscono l universo Infinita varietà di forme Classificazione a seconda dello stato FISICO (solido, liquido, gassoso) o della COMPOSIZIONE

Dettagli

IL LEGAME CHIMICO. Per descrivere come gli elettroni si distribuiscono nell atomo attorno al nucleo si può far riferimento al MODELLO A GUSCI

IL LEGAME CHIMICO. Per descrivere come gli elettroni si distribuiscono nell atomo attorno al nucleo si può far riferimento al MODELLO A GUSCI IL LEGAME CIMICO Come dagli atomi si costruiscono le molecole 02/19/08 0959 PM 1 Per descrivere come gli elettroni si distribuiscono nell atomo attorno al nucleo si può far riferimento al MODELLO A GUSCI

Dettagli

Struttura dell atomo e Sistema Periodico degli elementi unità 1, 2 e 3, modulo C del libro

Struttura dell atomo e Sistema Periodico degli elementi unità 1, 2 e 3, modulo C del libro Struttura dell atomo e Sistema Periodico degli elementi unità 1, 2 e 3, modulo C del libro Gli atomi di tutti gli elementi sono formati da tre tipi di particelle elementari: elettrone, protone e neutrone.

Dettagli

Esploriamo la chimica

Esploriamo la chimica 1 Valitutti, Tifi, Gentile Esploriamo la chimica Seconda edizione di Chimica: molecole in movimento Capitolo 10 Il sistema periodico 1. L energia di legame 2. I gas nobili e le regole dell ottetto 3. Il

Dettagli

L unità di misura della dose nel S.I. è il Gray

L unità di misura della dose nel S.I. è il Gray LA LA DOSE DOSE DA DA RADIAZIONE Le radiazioni (particelle, raggi gamma ) quando interagiscono con un mezzo cedono (tutta o parte) della loro energia al mezzo stesso. Si definisce allora la dose assorbita

Dettagli

Il nucleo dell'atomo

Il nucleo dell'atomo Il nucleo dell'atomo L'atomo si può considerare suddiviso in due regioni: Il nucleo, carico positivamente: è formato di protoni e neutroni La nuvola elettronica, carica negativamente: lo spazio intorno

Dettagli

IN UN ATOMO SI DISTINGUE UN NUCLEO CARICO POSITIVAMENTE ATTORNO AL QUALE RUOTANO PARTICELLE CARICHE NEGATIVAMENTE: GLI ELETTRONI (e - ) (-)

IN UN ATOMO SI DISTINGUE UN NUCLEO CARICO POSITIVAMENTE ATTORNO AL QUALE RUOTANO PARTICELLE CARICHE NEGATIVAMENTE: GLI ELETTRONI (e - ) (-) LA VITA, LA CHIMICA E L ACQUA PER INIZIARE QUALCHE CENNO DI CHIMICA LA MATERIA E FATTA DI COMBINAZIONI DI ELEMENTI. GLI ELEMENTI SONO COMPOSTI DA SINGOLI ATOMI, LE PIU PICCOLE UNITA CHE MANTENGONO LE PROPRIETA

Dettagli

Legame covalente Puro Polare Legame dativo o di coordinazione Legame ionico Legame metallico

Legame covalente Puro Polare Legame dativo o di coordinazione Legame ionico Legame metallico I LEGAMI CHIMICI Legami atomici o forti Legami molecolari o deboli Legame covalente Puro Polare Legame dativo o di coordinazione Legame ionico Legame metallico Legame dipolo-dipolo Legame idrogeno Legame

Dettagli

Verifica di chimica su: Atomo, tavola periodica, legame chimico Nome cognome data classe

Verifica di chimica su: Atomo, tavola periodica, legame chimico Nome cognome data classe 1 Verifica di chimica su: Atomo, tavola periodica, legame chimico Nome cognome data classe 21) Quanti neutroni, protoni ed elettroni ha l elemento con numero atomico Z = 23 e numero di massa A = 51? P=23,

Dettagli

I LEGAMI CHIMICI E LA REGOLA DELL OTTETTO

I LEGAMI CHIMICI E LA REGOLA DELL OTTETTO I LEGAMI CHIMICI E LA REGOLA DELL OTTETTO REGOLA DELL OTTETTO: Tutti gli atomi si legano, cedono, acquistano o condividono elettroni per raggiungere un livello esterno pieno di otto (o due) elettroni.

Dettagli

Principio dell Aufbau (riempimento)

Principio dell Aufbau (riempimento) LA TABELLA PERIODICA DEGLI ELEMENTI Principio dell Aufbau (riempimento) Schema semplificato dei livelli energetici atomici Distribuzione energetica reale dei livelli energetici atomici 7p Schema empirico

Dettagli

CHIMICA: studio della composizione e della struttura della materia e delle sue trasformazioni

CHIMICA: studio della composizione e della struttura della materia e delle sue trasformazioni CHIMICA: studio della composizione e della struttura della materia e delle sue trasformazioni composto materia sostanza pura miscela omogenea elemento eterogenea Elementi, Composti e Miscele Miscela eterogenea

Dettagli

Cenni di Fisica del Nucleo

Cenni di Fisica del Nucleo Capitolo 8 Cenni di Fisica del Nucleo 8.1 Proprietà generali dei nuclei In questo capitolo affrontiamo lo studio dei nuclei. Un nucleo è un insieme di neutroni e protoni legati insieme ( incollati ) dalla

Dettagli

Numero atomico Z : numero di protoni presenti nell atomo di quell elemento. Numero di massa A : somma dei protoni e dei neutroni in un atomo

Numero atomico Z : numero di protoni presenti nell atomo di quell elemento. Numero di massa A : somma dei protoni e dei neutroni in un atomo ATOMI E TAVOLA PERIODICA ATOMO: è il più piccolo costituente di un elemento che ne conservi le proprietà chimiche ELEMENTO: sostanza che non può essere scissa in una sostanza più semplice mediante reazione

Dettagli

Struttura dell'atomo a cura di Petr Ushakov

Struttura dell'atomo a cura di Petr Ushakov Struttura dell'atomo a cura di Petr Ushakov Struttura dell'atomo Gli atomi di tutti gli elementi sono formati da tre tipi di particelle elementari: protone, neutrone e elettrone. particelle elementari

Dettagli

Moto degli elettroni di conduzione per effetto di un campo elettrico.

Moto degli elettroni di conduzione per effetto di un campo elettrico. LA CORRENTE ELETTRICA: Moto degli elettroni di conduzione per effetto di un campo elettrico. Un filo metallico, per esempio di rame, da un punto di vista microscopico, è costituito da un reticolo di ioni

Dettagli

Configurazione elettronica e Tavola periodica. Lezioni 13-16

Configurazione elettronica e Tavola periodica. Lezioni 13-16 Configurazione elettronica e Tavola periodica Lezioni 13-16 Orbitali possibili Gusci e sottogusci Gli elettroni che occupano orbitali con lo stesso valore di numero quantico principale n si dice che sono

Dettagli

FONDAMENTI ANATOMO-FISIOLOGICI DELL ATTIVITA PSICHICA

FONDAMENTI ANATOMO-FISIOLOGICI DELL ATTIVITA PSICHICA FONDAMENTI ANATOMO-FISIOLOGICI DELL ATTIVITA PSICHICA Il potenziale di membrana a riposo Per poter comprendere il potenziale di membrana a riposo dobbiamo considerare: i fluidi ricchi di sali presenti

Dettagli

Struttura dell atomo e Sistema Periodico degli elementi unità 1, 2 e 3, modulo C del libro

Struttura dell atomo e Sistema Periodico degli elementi unità 1, 2 e 3, modulo C del libro Struttura dell atomo e Sistema Periodico degli elementi unità 1, 2 e 3, modulo C del libro Gli atomi di tutti gli elementi sono formati da tre tipi di particelle elementari: elettrone, protone e neutrone.

Dettagli

C.I. CHIMICA-TECNOLOGIA DEI MATERIALI Modulo di Chimica. Lezione del 7 Marzo 2016

C.I. CHIMICA-TECNOLOGIA DEI MATERIALI Modulo di Chimica. Lezione del 7 Marzo 2016 C.I. CHIMICA-TECNOLOGIA DEI MATERIALI Modulo di Chimica Lezione del 7 Marzo 2016 Particelle Elementari Carica Massa SI (C) Atom. SI (kg) Atom. Protone 1.602x10-19 +1 1.673x10-27 1.0073 Neutrone 0 0 1.675x10-27

Dettagli

RIASSUNTI DI CHIMICA

RIASSUNTI DI CHIMICA Tecla Spelgatti RIASSUNTI DI CHIMICA per il liceo scientifico 2 - LA TAVOLA PERIODICA Questo testo è distribuito con licenza Common Creative: http://creativecommons.org/licenses/ CC BY-NC-ND Attribuzione

Dettagli

UNITA DIDATTICA P A1.01

UNITA DIDATTICA P A1.01 Titolo: Grandezze fisiche fondamentali e derivate, unità di misura. Conversioni di unità di misura e notazione scientifica. Codice: A1-P-Tec-Gra Campo di indagine della chimica. Il Sistema Internazionale

Dettagli

Ultima verifica pentamestre. 1)definizione di miscuglio, soluzione, composto, elemento, molecola ( definizione importantissima!!!!!!!!

Ultima verifica pentamestre. 1)definizione di miscuglio, soluzione, composto, elemento, molecola ( definizione importantissima!!!!!!!! Ultima verifica pentamestre 1)definizione di miscuglio, soluzione, composto, elemento, molecola ( definizione importantissima!!!!!!!!) 2) gruppi dal IV al VIII 3) differenza tra massa atomica e massa atomica

Dettagli

CHIMICAMENTE. Lezioni del prof. Puletti Classe II B

CHIMICAMENTE. Lezioni del prof. Puletti Classe II B CHIMICAMENTE Lezioni del prof. Puletti Classe II B Scuola Media PIO X Artigianelli A.S. 2011-2012 PERCORSO - cos è la materia e da cosa è costituita - le particelle atomiche fondamentali: protoni, neutroni

Dettagli

1. CALCOLO DELLA QUANTITÀ D'ARIA NECESSARIA ALLA COMBUSTIONE DI UN DATO COMBUSTIBILE

1. CALCOLO DELLA QUANTITÀ D'ARIA NECESSARIA ALLA COMBUSTIONE DI UN DATO COMBUSTIBILE 1. ALL DELLA QUANTITÀ D'ARIA NEESSARIA ALLA MBUSTINE DI UN DAT MBUSTIBILE 1.1. Reazioni di combustione stechiometrica di un idrocarburo m omponente Simbolo Peso molecolare (M) arbonio (12) Idrogeno 2 (2)

Dettagli

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI LAUREA IN OTTICA E OPTOMETRIA Anno Accademico 007-008 CORSO di FISCA ED APPLICAZIONE DEI LASERS Questionario del Primo appello della Sessione Estiva NOME: COGNOME: MATRICOLA: VOTO: /30 COSTANTI

Dettagli

L energia e le sue proprietà

L energia e le sue proprietà L ENERGIA L energia e le sue proprietà La parola energia è uno dei vocaboli di ambito scientifico più utilizzati nel linguaggio comune, in relazione a fenomeni anche molto complessi (biologici, chimici,

Dettagli

La radioattività e la datazione al radio-carbonio

La radioattività e la datazione al radio-carbonio 1 Espansione 2.2 La radioattività e la datazione al radio-carbonio Henry Becquerel. I coniugi Pierre e Marie Curie. La radioattività La radioattività è un fenomeno naturale provocato dai nuclei atomici

Dettagli

STATISTICA COL GEIGER. Rilievo del conteggio della radioattività di fondo con un contatore Geiger

STATISTICA COL GEIGER. Rilievo del conteggio della radioattività di fondo con un contatore Geiger STATISTICA COL GEIGER Rilievo del conteggio della radioattività di fondo con un contatore Geiger Premessa: la distribuzione di Poisson. Cos hanno in comune i numeri seguenti: il numero di telefonate ricevute

Dettagli

Struttura elettronica e tavola periodica

Struttura elettronica e tavola periodica Struttura elettronica e tavola periodica La tavola è suddivisa nei blocchi s, p, d e f Eccezioni: 1) Elio (He) il quale pur appartenendo al blocco s, compare in quello p. Possiede uno strato di valenza

Dettagli

Atomi, molecole e ioni

Atomi, molecole e ioni Atomi, molecole e ioni anione + - catione Teoria atomica di Dalton 1. Un elemento è composto da particelle minuscole chiamate atomi. 2. In una normale reazione chimica, nessun atomo di nessun elemento

Dettagli

Tracce di energia. viaggio dentro l atomo

Tracce di energia. viaggio dentro l atomo Tracce di energia viaggio dentro l atomo Di cosa è fatta la torre Eiffel? di 10.000 tonnellate di ferro ovvero 10.000.000.000 di grammi di ferro miliardi Ogni grammo di ferro, a sua volta, è composto da

Dettagli

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata LASER Light Amplification by Stimulated Emission of Radiation Introduzione. Assorbimento, emissione spontanea, emissione stimolata Cenni storici 1900 Max Planck introduce la teoria dei quanti (la versione

Dettagli

Inquinamento da Campi Elettromagnetici

Inquinamento da Campi Elettromagnetici Inquinamento da Campi Elettromagnetici Aspetti Tecnici, Sanitari, Normativi A cura di ECORICERCHE s.r.l. Lo Spettro Elettromagnetico ECORICERCHE s.r.l. 2 Elettrosmog: che cos è? E un termine entrato nell

Dettagli

Chimica. Lezione 2 Il legame chimico Parte I

Chimica. Lezione 2 Il legame chimico Parte I Chimica Lezione 2 Il legame chimico Parte I GLI ATOMI TENDONO A LEGARSI SPONTANEAMENTE FRA DI LORO, PER FORMARE DELLE MOLECOLE, OGNI QUALVOLTA QUESTO PROCESSO PERMETTE LORO DI RAGGIUNGERE UNA CONDIZIONE

Dettagli

3. Il sistema periodico degli elementi

3. Il sistema periodico degli elementi 3. Il sistema periodico degli elementi 3.1 Il sistema periodico degli elementi: gruppi e periodi; elementi di transizione; 3.2 proprietà periodiche degli elementi: raggio atomico, potenziale di ionizzazione,

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta

INTRODUZIONE ALLA TERMODINAMICA. Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta INTRODUZIONE ALLA TERMODINAMICA Supponiamo di voler studiare il comportamento di una determinata quantità di gas contenuta in un recipiente, ad esempio 5g di ossigeno. Dato l elevato numero di molecole

Dettagli

Rivelatori a gas. In situazione di equilibrio il gas si comporta come isolante e non c è passaggio di corrente elettrica

Rivelatori a gas. In situazione di equilibrio il gas si comporta come isolante e non c è passaggio di corrente elettrica STRUMENTI Rivelatori a gas I rivelatori a gas sono costituiti da due elettrodi immersi in un gas tra i quali è applicata un campo elettrico uniforme (differenza di potenziale) In situazione di equilibrio

Dettagli

Chimica. 1) Il simbolo del Carbonio è: A) C B) Ca. C) Ce D) Cu. 2) Secondo il principio della conservazione della materia:

Chimica. 1) Il simbolo del Carbonio è: A) C B) Ca. C) Ce D) Cu. 2) Secondo il principio della conservazione della materia: Chimica 1) Il simbolo del Carbonio è: A) C B) Ca C) Ce D) Cu 2) Secondo il principio della conservazione della materia: A) Durante le reazioni chimiche il numero totale di atomi di ciascun elemento chimico

Dettagli

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano S P E T T R O S C O P I A SPETTROSCOPIA I PARTE Cenni generali di spettroscopia: La radiazione elettromagnetica e i parametri che la caratterizzano Le regioni dello spettro elettromagnetico Interazioni

Dettagli

Lezione 6. Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. WWW.SLIDETUBE.IT

Lezione 6. Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. WWW.SLIDETUBE.IT Lezione 6 Forze attive e passive. L interazione gravitazionale. L interazione elettromagnetica. Classificazione delle Forze Distinguiamo tra: Forze attive Forze passive Forze attive Le 4 forze fondamentali:

Dettagli

La Teoria dei Quanti e la Struttura Elettronica degli Atomi. Capitolo 7

La Teoria dei Quanti e la Struttura Elettronica degli Atomi. Capitolo 7 La Teoria dei Quanti e la Struttura Elettronica degli Atomi Capitolo 7 Proprietà delle Onde Lunghezza d onda (λ) E la distanza tra due punti identici su due onde successive. Ampiezza è la distanza verticale

Dettagli

La tavola periodica. 1- Introduzione

La tavola periodica. 1- Introduzione La tavola periodica 1- Introduzione La legge periodica (1869, Mendeleiev in Russia e Meyer in Germania) stabilisce che gli elementi, quando vengono disposti in ordine di massa atomica, mostrano una periodicità

Dettagli

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di

La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di La base di partenza per la maggior parte dei processi produttivi di materiali ceramici sono le sospensioni. Queste si ottengono dalla miscelazione di un solido (polvere) che diverrà il ceramico, con un

Dettagli

Grandezze fisiche e loro misura

Grandezze fisiche e loro misura Grandezze fisiche e loro misura Cos è la fisica? e di che cosa si occupa? - Scienza sperimentale che studia i fenomeni naturali suscettibili di sperimentazione e caratterizzati da grandezze misurabili.

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

MASSE ATOMICHE. 1,000 g di idrogeno reagiscono con 7,9367 g di ossigeno massa atomica ossigeno=2 x 7,9367=15,873 g (relativa all'idrogeno)

MASSE ATOMICHE. 1,000 g di idrogeno reagiscono con 7,9367 g di ossigeno massa atomica ossigeno=2 x 7,9367=15,873 g (relativa all'idrogeno) MASSE ATOMICHE Sono a volte impropriamente chiamate pesi atomici. All'epoca di Dalton non era possibile pesare i singoli atomi ma solo trovare la massa di un atomo relativa a quella di un altro acqua di

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA D =!E AREA CONTROLLATA. energia assorbita nell'unità di massa

DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA D =!E AREA CONTROLLATA. energia assorbita nell'unità di massa DOSE DI RADIAZIONE IONIZZANTE PERICOLO DA RADIAZIONI IONIZZANTI DOSE ASSORBITA AREA CONTROLLATA D =!E!m energia assorbita nell'unità di massa 2 UNITA' DI MISURA dose assorbita D =!E!m dimensioni [D] =

Dettagli

Corso di CHIMICA INORGANICA

Corso di CHIMICA INORGANICA Corso di CHIMICA INORGANICA Lezione Seconda La teoria atomica La massa atomica e il concetto di Isotopi Dentro l atomo, le particelle subatomiche La Tavola Periodica degli Elementi 2 Gli atomi di un certo

Dettagli

Esempi di esercizi per la preparazione al secondo compito di esonero

Esempi di esercizi per la preparazione al secondo compito di esonero Esempi di esercizi per la preparazione al secondo compito di esonero 1. La forza esercitata fra due cariche di segno opposto è repulsiva od attrattiva? 2. Quanto vale la forza, in modulo, esercitata fra

Dettagli

Radioattività e dosimetria

Radioattività e dosimetria Radioattività e dosimetria Un nucleo atomico è caratterizzato da: IL IL NUCLEO ATOMICO numero atomico (Z) che indica il numero di protoni numero di massa (A) che rappresenta il numero totale di nucleoni

Dettagli

SCUOLA PRIMARIA DI MAGGIATE Classe terza

SCUOLA PRIMARIA DI MAGGIATE Classe terza SCUOLA PRIMARIA DI MAGGIATE Classe terza Anno scolastico 2012-2013 TERRE ACQUE Osservando il nostro pianeta possiamo notare che la maggior parte della superficie è occupata dalle acque. Infatti esse occupano

Dettagli

La quantità chimica LA MOLE

La quantità chimica LA MOLE La quantità chimica LA MOLE 1 QUANTO PESA UN ATOMO? Se lo misurassimo in grammi, l atomo di H, il più piccolo, avrebbe una massa di 1,6 x10-24 g. Per convenzione, si assegna un valore arbitrario (12) alla

Dettagli

Dispense CHIMICA GENERALE E ORGANICA (STAL) 2012/13 Prof. P. Carloni GLI ATOMI

Dispense CHIMICA GENERALE E ORGANICA (STAL) 2012/13 Prof. P. Carloni GLI ATOMI GLI ATOMI L'atomo e le particelle che lo compongono, il nucleo e gli elettroni, numero atomico e numero di massa, isotopi, la struttura dell'atomo, gli orbitali s, p e d, la configurazione fondamentale

Dettagli

Dipartimento Scientifico-Tecnologico

Dipartimento Scientifico-Tecnologico ISTITUTO TECNICO STATALE LUIGI STURZO Castellammare di Stabia - NA Anno scolastico 2012-13 Dipartimento Scientifico-Tecnologico CHIMICA, FISICA, SCIENZE E TECNOLOGIE APPLICATE Settore Economico Indirizzi:

Dettagli

Massa assoluta e relativa e mole

Massa assoluta e relativa e mole Massa assoluta e relativa e mole Massa atomica assoluta.. Massa di un atomo di un dato elemento. In questo caso si parla spesso di peso atomico assoluto, che viene espresso in grammi: l'ordine dei valori

Dettagli

Il nucleo degli atomi

Il nucleo degli atomi Il nucleo atomico 1. Energia di legame nucleare 2. La radioattività naturale 3. Banda di stabilità degli isotopi degli elementi naturali 4. Decadimenti radioattivi 5. Reazioni nucleari Il nucleo degli

Dettagli

Legame Chimico. Legame Chimico

Legame Chimico. Legame Chimico Legame Chimico Fra due atomi o gruppi di atomi esiste un legame chimico se le forze agenti tra essi danno luogo alla formazione di un aggregato di atomi sufficientemente stabile da consentire di svelarne

Dettagli

MODELLO ATOMICO DI BOHR - ULTERIORI APPROFONDIMENTI

MODELLO ATOMICO DI BOHR - ULTERIORI APPROFONDIMENTI MODELLO ATOMICO DI BOHR - ULTERIORI APPROFONDIMENTI Se riscaldiamo un qualsiasi elemento chimico ponendolo ad esempio su una fiamma, notiamo che esso emette un colore caratteristico. Ad esempio riscaldando

Dettagli

CHIMICA QUANTITATIVA. Massa atomica. Unità di massa atomica. Massa molare

CHIMICA QUANTITATIVA. Massa atomica. Unità di massa atomica. Massa molare CHIMICA QUANTITATIVA Unità di massa atomica Massa atomica Mole Massa molare 1 L unità di misura della massa è pari a 1/12 della massa dell isotopo 12 6C Questa quantità si chiama unità di massa atomica

Dettagli

MASSE ATOMICHE. Oggi è possibile misurare accuratamente le masse atomiche tramite uno strumento chiamato spettrometro di massa

MASSE ATOMICHE. Oggi è possibile misurare accuratamente le masse atomiche tramite uno strumento chiamato spettrometro di massa Stechiometria MASSE ATOMICHE Dal 1969 si usa una scala basata sull'isotopo 12 C : a tale isotopo è stata arbitrariamente assegnata una massa di 12 unità di massa atomica. Una unità di massa atomica (a.m.u.)=

Dettagli

L'energia media V di interazione fra uno ione avente carica q e un dipolo permanente ad una distanza r Ä

L'energia media V di interazione fra uno ione avente carica q e un dipolo permanente ad una distanza r Ä Interazioni intermolecolari Interazioni ione-dipolo Interazioni dipolo-dipolo Interazione dipolo permanente-dipolo indotto Interazione dipolo istantaneo-dipolo indotto Forze di Van der Waals Legame idrogeno

Dettagli

Stabilita' dei nuclei

Stabilita' dei nuclei Il Nucleo Nucleo e' costituito da nucleoni (protoni e neutroni). Mentre i neutroni liberi sono abbastanza instabili tendono a decadere in un protone ed un elettrone (t1/2 circa 900 s), i protoni sono stabili.

Dettagli

Classificazione della materia 3 STATI DI AGGREGAZIONE

Classificazione della materia 3 STATI DI AGGREGAZIONE Classificazione della materia MATERIA spazio massa Composizione Struttura Proprietà Trasformazioni 3 STATI DI AGGREGAZIONE SOLIDO (Volume e forma propri) LIQUIDO (Volume definito e forma indefinita) GASSOSO

Dettagli

LE RADIAZIONI. E = h. in cui è la frequenza ed h una costante, detta costante di Plank.

LE RADIAZIONI. E = h. in cui è la frequenza ed h una costante, detta costante di Plank. LE RADIAZIONI Nel campo specifico di nostro interesse la radiazione è un flusso di energia elettromagnetica o di particelle, generato da processi fisici che si producono nell atomo o nel nucleo atomico.

Dettagli

Energia elettrica. L atomo nel suo complesso è neutro perché ha l equilibrio tra protoni ed elettroni presenti nello stesso numero.

Energia elettrica. L atomo nel suo complesso è neutro perché ha l equilibrio tra protoni ed elettroni presenti nello stesso numero. Energia elettrica Si fonda sulla costituzione dell atomo che è costituito da particelle più piccole : neutroni (carica neutra) e protoni (carica +) che costituiscono il nucleo ed elettroni (carica negativa)

Dettagli

La tavola periodica. Le proprietà degli elementi sono funzioni periodiche dei rispettivi numeri atomici

La tavola periodica. Le proprietà degli elementi sono funzioni periodiche dei rispettivi numeri atomici La tavola periodica Le proprietà degli elementi sono funzioni periodiche dei rispettivi numeri atomici Si possono classificare gli elementi secondo la loro configurazione elettronica: Gas nobili. Elementi

Dettagli

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s / 14. Elenco moduli Argomenti Strumenti / Testi Letture. Le proprietà fisiche della materia.

PROGRAMMAZIONE DISCIPLINARE INDIVIDUALE a. s / 14. Elenco moduli Argomenti Strumenti / Testi Letture. Le proprietà fisiche della materia. Pagina 1 di 6 DISCIPLINA: SCIENZE INTEGRATE : CHIMICA INDIRIZZO: 2TU DOCENTE : prof. Paola Leggeri Elenco moduli Argomenti Strumenti / Testi Letture 1 LE FORME DELLA MATERIA Le proprietà fisiche della

Dettagli

STRUTTURA ATOMICA E CONFIGURAZIONE ELETTRONICA

STRUTTURA ATOMICA E CONFIGURAZIONE ELETTRONICA pg 1 STRUTTURA ATOMICA E CONFIGURAZIONE ELETTRONICA Per capire il comportamento degli atomi dobbiamo studiare il comportamento dei suoi elettroni L'atomo e le sue particelle NON sono direttamente visibili

Dettagli

PROPRIETÀ PERIODICHE DEGLI ELEMENTI

PROPRIETÀ PERIODICHE DEGLI ELEMENTI PROPRIETÀ PERIODICHE DEGLI ELEMENTI 1) Energia di ionizzazione E ion Energia necessaria per sottrarre ad un atomo, allo stato di gas monoatomico, un elettrone A (g) d A + (g) + e - E ion processo endotermico

Dettagli

La Risonanza Magnetica Funzionale

La Risonanza Magnetica Funzionale La Risonanza Magnetica Funzionale Facoltà di Farmacia Corso di Laurea in Chimica e Tecnologie Farmaceutiche Attività a scelta dello studente AA 2004-2005 Cosimo Del Gratta Dipartimento di Scienze Cliniche

Dettagli

LE RADIAZIONI RADIAZIONI CORPUSCOLATE RADIAZIONI ELETTROMAGNETICHE RADIAZIONI TRASPORTO DI ENERGIA ATTRAVERSO IL VUOTOE/O UN MEZZO QUALSIASI

LE RADIAZIONI RADIAZIONI CORPUSCOLATE RADIAZIONI ELETTROMAGNETICHE RADIAZIONI TRASPORTO DI ENERGIA ATTRAVERSO IL VUOTOE/O UN MEZZO QUALSIASI LE RADIAZIONI RADIAZIONI TRASPORTO DI ENERGIA ATTRAVERSO IL VUOTOE/O UN MEZZO QUALSIASI L ENERGIA PUO SPOSTARSI SIA ASSOCIATA A MATERIA SIA INDIPENDENTE DA QUESTA ENERGIA CINETICA RADIAZIONI CORPUSCOLATE

Dettagli

LA FORZA...SIA CON TE!

LA FORZA...SIA CON TE! LA FORZA...SIA CON TE! CHE COS'E' LA FORZA? E' UNA GRANDEZZA FISICA VETTORIALE. L'UNITA' DI MISURA NEL S.I. E' IL "NEWTON" ( N ), DAL CELEBRE SCIENZIATO INGLESE ISAAC NEWTON, CHE NE HA STUDIATO LE LEGGI,

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza Parte I Problemi Richiami Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza u ν = 8π hν c 3 ν e βhν 1, dove c è la velocità della luce

Dettagli

Fisica delle Radiazioni Ionizzanti. Dott. Mirco Amici Esperto Qualificato U.O.C Medicina Legale e Gestione del Rischio

Fisica delle Radiazioni Ionizzanti. Dott. Mirco Amici Esperto Qualificato U.O.C Medicina Legale e Gestione del Rischio Fisica delle Radiazioni Ionizzanti Dott. Mirco Amici Esperto Qualificato U.O.C Medicina Legale e Gestione del Rischio 1 Fisica delle Radiazioni Ionizzanti Cosa sono le radiazioni ionizzanti Tipi di radiazioni

Dettagli

LA LEGGE DI COULOMB PER I MAGNETI

LA LEGGE DI COULOMB PER I MAGNETI 1 LA LEGGE DI COULOMB PER I MAGNETI Lo scopo di questo esperimento è quello di riprodurre quello storico e importante ormai scomparso dai testi scolastici perché ritenuto non attinente alla realtà. È noto,

Dettagli

PROGETTO AMICI DI SCIASCIA. Fisica delle particelle

PROGETTO AMICI DI SCIASCIA. Fisica delle particelle PROGETTO AMICI DI SCIASCIA Fisica delle particelle TEMI TRATTATI NELLA PRESENTAZIONE 1. STORIA DELLA FISICA DELLE PARTICELLE 2. COME E FATTO L ATOMO? IPOTESI SULLA STRUTTURA DELL ATOMO 3. LA FISICA DELLE

Dettagli

percorso 4 Estensione on line lezione 2 I fattori della produzione e le forme di mercato La produttività La produzione

percorso 4 Estensione on line lezione 2 I fattori della produzione e le forme di mercato La produttività La produzione Estensione on line percorso 4 I fattori della produzione e le forme di mercato lezione 2 a produzione a produttività Una volta reperiti i fattori produttivi necessari l imprenditore dovrà decidere come

Dettagli

Come calcolare i parametri farmacocinetici

Come calcolare i parametri farmacocinetici Come calcolare i parametri farmacocinetici La conoscenza dei parametri farmacocinetici fondamentali di un farmaco è essenziale per comprendere in che modo esso venga trattato dall organismo e come sia

Dettagli

Lo stato liquido. Un liquido non ha una forma propria, ma ha la forma del recipiente che lo contiene; ha però volume proprio e non è comprimibile.

Lo stato liquido. Un liquido non ha una forma propria, ma ha la forma del recipiente che lo contiene; ha però volume proprio e non è comprimibile. I liquidi Lo stato liquido Lo stato liquido rappresenta una condizione intermedia tra stato aeriforme e stato solido, tra lo stato di massimo disordine e quello di perfetto ordine Un liquido non ha una

Dettagli

Nomenclatura chimica. di Giorgio Benedetti Lezioni d'autore

Nomenclatura chimica. di Giorgio Benedetti Lezioni d'autore Nomenclatura chimica di Giorgio Benedetti Lezioni d'autore VIDEO Introduzione (I) La nomenclatura chimica è un sistema di classificazione utilizzato dalla chimica per individuare un composto attribuendogli

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una porzione anello carico avente raggio R = 4 cm, giace sul piano x-y (uadrante x e y positivi) come indicato in figura 1. La densità lineare di carica dell anello è di 40 nc/m. i. Calcolare

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CRITERIO DI ROUTH-HURWITZ

Dettagli

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado.

Questo paragrafo e quello successivo trattano gli stessi argomenti del capitolo B6 relativo alla soluzione grafica dei sistemi di primo grado. D1. Retta D1.1 Equazione implicita ed esplicita Ogni equazione di primo grado in due incognite rappresenta una retta sul piano cartesiano (e viceversa). Si può scrivere un equazione di primo grado in due

Dettagli

Le reazioni di ossido-riduzione

Le reazioni di ossido-riduzione Le reazioni di ossido-riduzione Si dicono reazioni di ossidazione e di riduzione (o ossido-riduzione) quelle reazioni che avvengono con cambiamento del numero di elettroni che una specie chimica coinvolge

Dettagli

Risonanza magnetica: Codifica spaziale del segnale.

Risonanza magnetica: Codifica spaziale del segnale. Risonanza magnetica: Codifica spaziale del segnale Introduzione La tomografia a Risonanza magnetica si basa sulla rappresentazione in immagini digitali di alcune caratteristiche fisico-chimiche di tessuti

Dettagli

Stabilitá idrostatica

Stabilitá idrostatica Fondamenti di Fisica dell Atmosfera e del Clima Trento, 14 Aprile 2015 Consideriamo uno strato di atmosfera con un gradiente di temperatura Γ (misurato, ad esempio, da una radiosonda). Se una particella

Dettagli