Primo esonero del corso di Ottica con Laboratorio A.A Novembre 2014

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Primo esonero del corso di Ottica con Laboratorio A.A Novembre 2014"

Transcript

1 Primo esonero del corso di Ottica con Laboratorio A.A Novembre 2014 Grouchy espéré, Blücher survenant N. Esercizio 1 (4 punti): Un sottile fascio di luce incide su una faccia di una lastra di vetro crown (n=1,52). Calcolare per quali valori dell angolo di incidenza θ la luce arriva all altro estremo della lastra dopo essersi riflessa totalmente più volte sulle pareti della stessa. Con un disegno schematizzare il percorso del fascio di luce. Il problema è schematizzato dalla figura seguente. Strutturiamo il nostro ragionamento in questa maniera: cominciamo con lo scrivere una relazione pertinente alla domanda e poi proseguiamo a ritroso, fino a collegarci a grandezze note. Nel nostro caso, partiamo dalla riflessione totale; per ottenerla, dobbiamo essere in condizioni tali che sin α > 1 n Tuttavia, nei dati α non c è, quindi dobbiamo esprimerlo come funzione di grandezze che conosciamo. Per prima cosa, possiamo esprimere α in funzione dell angolo di rifrazione θ' grazie a delle semplici proprietà trigonometriche: sin α = sin θ = cos θ >. (1) Il secondo passo è quello di usare la legge di Snell per trovare θ' in funzione dell angolo di incidenza θ:

2 sin θ = "# (2) Adesso dobbiamo mettere insieme la condizione per la riflessione totale (1) con la legge di Snell (2). Con pochi passaggi arriviamo alla condizione: sin θ < n 1 = 1,14. (3) Siccome già di suo il seno è limitato superiormente a 1, questa condizione non introduce di fatto altri vincoli. Possiamo arrivare con qualsiasi angolo di incidenza e le condizioni per la riflessione totale saranno sempre soddisfatte. Esercizio 2 (4 punti): Il sodio ha due righe gialle di emissione molto vicine a 589,0nm e 589,6nm. Se si adopera uno spettroscopio con un prisma di vetro flint (n λ = 1,58 + "#$$, dove λ è espresso in nm), qual è l errore massimo tollerabile per risolvere le due righe? Il principio di funzionamento dello spettroscopio a prisma si basa sulla relazione tra angolo di deviazione minima e indice di rifrazione: n = "# "#, (1) dove possiamo prendere il caso del prisma equilatero α = 60. In pratica, associamo ad ogni valore della deviazione minima un dato valore dell indice di rifrazione. Per il nostro problema vogliamo invertire la relazione (2) e associare a ciascun indice di rifrazione il corrispondente angolo di deviazione minima: n = 2 sin = sin = sin x con x =

3 x = arcsin quindi, sostituendo l espressione per x: δ = 2 arcsin α (2) Dalla legge di Cauchy, troviamo i valori dei due indici di rifrazione: n = n(589nm) = n = n(589.6nm) = cui corrispondono gli angoli: δ = δ = Dobbiamo quindi poter distinguere gli angoli di deviazione minima meglio della differenza tra questi due angoli quindi: Δδ < δ δ = 28 Esiste un secondo modo per risolvere questo problema, se consideriamo che la differenza per angoli a lunghezze d onda così vicine sarà molto piccola. Quindi possiamo usare la formula per piccole variazioni che usiamo per la propagazione degli errori: n n ~ " " δ δ (3) Ribadiamo che nella (3) non stiamo calcolando un errore per propagazione, ma, siccome gli angoli sono piccoli, possiamo usare lo stesso ragionamento che facciamo per gli errori. Quale valore di δ usiamo nella derivata? In realtà, anche se a rigore dovremmo usare δ 1, numericamente cambia molto poco. La derivata è data da: " " = cos (4) Per trovarla possiamo o ricavare prima δ, oppure usare la relazione fondamentale tra seno e coseno:

4 cos θ + sin θ = 1 per qualsiasi angolo θ. Rielaborando (3) e (4), troviamo: n n = 1 (δ δ ) e da quest ultima formula, Δδ < δ δ = = rad (4) che sono circa 29 di grado. Ritroviamo, entro le approssimazioni, il risultato di prima. Il fatto che stavolta il risultato sia in radianti proviene dall uso della derivata, dove si fa implicitamente l ipotesi che gli angoli siano espressi in radianti. Se vogliamo, possiamo raffinare questa stima, considerando l errore dello strumento. In uno spettroscopio, l angolo di deviazione minima è calcolato come la differenza tra la direzione di zero N e quella su cui si osserva il fascio deviato N. Inoltre, la misura è presa con due goniometri e poi si fa la media. Abbiamo così che l angolo δ è dato da: δ = N N + N N 2 Siccome l errore di lettura è lo stesso per tutti gli angoli, troviamo che l errore su δ coincide con quello di lettura. Esercizio 3 (3 punti): In un esperimento di Young si osservano frange con densità N = 15 frange/cm quando si usa luce alla lunghezza d onda λ = 532nm. Quale sarà la densità se invece si usa luce infrarossa di lunghezza d onda λ = 1064nm? Nell esperimento di Young si osservano le frange a piccoli angoli. La condizione di massimo si scrive in generale

5 d sin θ = mλ, m = 0, ±1, ±2 (1) ma, nel nostro caso, possiamo approssimare sin θ ~θ~tan (θ). Con un disegno, possiamo vedere che la tangente è data dalla posizione y sullo schermo diviso la distanza L tra lo schermo e le due fenditure. Allora, avremo un massimo alla posizione (lineare, non angolare): d = mλ, m = 0, ±1, ±2 La formula ci dice che la distanza tra due massimi è λ L/d, quindi la densità di frange ne sarà il reciproco N = " Non abbiamo i dettagli di L e di d, ma non importa, perché possiamo vedere che il prodotto Nλ è una costante. Troviamo quindi che N λ = N λ ossia, la densità di frange con la luce infrarossa è la metà di quella con la luce verde: N = 7.5 frange/cm. Esercizio 4 (10 punti): Si vuole studiare il fenomeno della dispersione di una sorgente policromatica in acqua. Il metodo impiegato è quello di trovare l angolo limite corrispondente a ciascuna lunghezza d onda e da lì ricavare l indice di rifrazione, le cui misure restituiscono i seguenti valori: λ (nm) Δλ (nm) θ Δθ a) Si calcolino, per ogni lunghezza d onda, i valori dell indice di rifrazione con il relativo errore e si riportino in un grafico. b) L andamento graficato di n(λ) è compatibile con quello atteso? c) Le variazioni di n(λ) osservate sono statisticamente significative?

6 d) Si individui inoltre la miglior retta passante per gli stessi dati di n(λ) e se ne calcolino i parametri con i relativi errori. L indice di rifrazione è legato all angolo limite θ lim dalla relazione sin θ "# = in cui, siccome n è funzione della lunghezza d onda, anche () θ lim sarà funzione di λ. La tabella con i valori di n è λ (nm) Δλ (nm) n Δn con gli errori trovati per propagazione: Δn = "# "# "# "# Δθ "# dove Δθ "# deve essere espresso in radianti. Dai valori nella tabella otteniamo il grafico seguente: L andamento è ragionevole, siccome l indice decresce con la lunghezza d onda, come ci si attende dalla legge di Cauchy. Inoltre, possiamo verificare quando le differenze tra punti successivi sono superiori all errore. Per far questo, possiamo controllare che le differenze non siano zero entro l errore: mettiamo i dati in una tabella.

7 valore incertezza n(460)-n(530) Δn = n(530)-n(590) n(590)-n(700) Il fattore 2 proviene dalla propagazione. L ultimo punto riguarda la linearizzazione dell andamento. Siccome la legge di Cauchy prevede un andamento del tipo n λ = A + B/λ, la linearizzazione opportuna è definire z = 1/λ e quindi n z = A + Bz. Gli errori su n chiaramente non cambiano, quelli su z si trovano per propagazione. Il grafico linearizzato è riportato sotto. I parametri del fit lineare sono A = ± e B = 3000 ± 100 nm, con R = Esercizio 5 (3 punti): Si individuino gli errori presenti nel grafico riportato qui sotto e si completi, dove mancano, le informazioni necessarie ad una corretta interpretazione dei dati.

8 Il grafico corretto, con le unità di misura e senza la linea spezzata tra i punti sperimentali è riportato qui sotto: Abbiamo inserito, inoltre, delle barre di errore per le grandezze in ascissa e in ordinata. Siccome il problema non le fornisce esplicitamente, le abbiamo riportate con grandezza arbitraria e solo per visibilità. Esercizio 6 (4 punti): Si tracci lo schema delle lenti del sistema cannocchiale-collimatore presente nello spettroscopio, secondo la costruzione dell ottica geometrica. Il sistema ottico dello spettroscopio è costituito da due elementi: un collimatore e un cannocchiale. Il collimatore serve, appunto, a collimare la luce proveniente dalla fenditura: nel linguaggio dell ottica geometrica, vogliamo che i raggi escano paralleli dalla lente L 0. Per questo, occorre che la fenditura sia nel fuoco della lente del collimatore.

9 Il cannocchiale è costituito da due lenti convergenti, L 1, l obiettivo (in buon italiano, si scrive con una sola b, secondo l origine latina) ed L 2, l oculare. Si fa in modo che il cannocchiale formi un immagine virtuale all infinito di un oggetto posto all infinito, come appare la fenditura attraverso la lente del collimatore. Lo schema finale è quello riportato qui sotto. Esercizio 7 (4 punti): In figura è riporta la posizione angolare dei massimi di un reticolo di diffrazione (m=1) in funzione della lunghezza d onda. a) Come può questo grafico essere impiegato per individuare le diverse emissioni di una lampada policromatica (spettrometro)? Δθ ( ) λ (nm) b) Se si misura luce alla posizione 22,3 ± 0,1, la sorgente utilizzata è un laser HeNe (arancione), un laser Nd:YAG (verde) o un laser Ti:Zaffiro (infrarosso)? c) Osservando l andamento sperimentale si individui in quale intervallo di lunghezze d onda la calibrazione è più affidabile e perché.

10 In questo sistema, ad ogni posizione angolare (in y) corrisponde una lunghezza d onda (in x), quindi se conosciamo l angolo su cui emerge la luce, ne conosciamo anche la lunghezza d onda. Per una lampada policromatica, ci saranno più angoli di uscita, cui possiamo associare ciascuno una riga diversa dell emissione. Dal grafico, si deduce che la luce verde (a 532nm) esce ad un angolo di circa 17, mentre la luce infrarossa (oltre 800nm) esce a circa 28. È infatti la luce del laser HeNe (a 633nm) quella che esce all angolo indicato. Il nostro apparato, però non è così affidabile nell infrarosso: possiamo certamente usarlo per distinguere tra righe molto lontane, come nel punto sopra, ma non per avere una risoluzione molto fine. La calibrazione è più affidabile dal violetto (400nm) fino all arancione-rosso (circa nm), ossia finché le deviazioni tra la predizione e i punti sperimentali rimane all incirca pari all errore. Esercizio 8 (2 punti): E possibile che, risolvendo uno spettro con un reticolo di diffrazione, si osservi una riga viola tra le righe del rosso? Si giustifichi la risposta. Quando si osserva uno spettro con un reticolo, sono presenti tutti gli ordini. Può verificarsi che, se abbiamo una riga violetta di lunghezza d onda λ, e una riga rossa di lunghezza d onda λ ~2λ per esempio λ = 400nm e λ = 800nm avremo luce rossa alla posizione angolare: p sin θ = λ al primo ordine e luce viola alla posizione angolare p sin θ = 2λ = λ al secondo ordine. Però, per la relazione tra le lunghezze d onda, i due angoli coincidono: θ = θ. Nel caso generale, può accadere che alcune righe del violetto si mescolino a quelle del rosso e dell infrarosso. Per evitare che si verifichi questo problema, si adoperano dei filtri colorati che rimuovono la frazione dello spettro cui non si è interessati.

Spettrometro a reticolo e a prisma

Spettrometro a reticolo e a prisma Spettrometro a reticolo e a prisma Marilena Teri, Valerio Toso & Ettore Zaffaroni (gruppo Lu4) 1 Introduzione 1.1 Introduzione ai feomeni in esame Quando la luce viene fatta incidere normalmente alla superficie

Dettagli

Esperimento di Ottica

Esperimento di Ottica Esperimento di Ottica studio dei fenomeni di interferenza e diffrazione Capitolo 24 del Giancoli (Fisica con Fisica Moderna) Onde cresta valle x = lunghezza d onda A = ampiezza Onde elettromagnetiche la

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione.

FAM. 2. A che cosa corrisponde l intersezione delle iperboli con la retta y = 2? Rappresenta graficamente la situazione. FAM Serie 6: Fenomeni ondulatori VI C. Ferrari Esercizio 1 Equazione dell iperbole ed interferenza Considera due sorgenti S 1 e S 2 poste sull asse Ox in x = d 2 e x = d 2. 1. Nel piano Oxy determina le

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

I Esonero di Elementi di Ottica del 13/06/2011

I Esonero di Elementi di Ottica del 13/06/2011 I Esonero di Elementi di Ottica del 13/06/2011 1) L onda elettromagnetica piana sinusoidale di frequenza f= 100 khz emessa da un sottomarino in superficie, si propaga orizzontalmente sia nell aria che

Dettagli

MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE

MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE Il reticolo di diffrazione può essere utilizzato per determinare la lunghezza d onda di una radiazione monocromatica. Detto d

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2. Ottica fisica: diffrazione e dipendenza di n dalla frequenza Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT2 Ottica fisica: diffrazione e dipendenza di n dalla frequenza Scopo dell'esperienza: 1. Visualizzazione delle figura di

Dettagli

OTTICA. Piano Lauree Scientifiche 1 febbraio 2013

OTTICA. Piano Lauree Scientifiche 1 febbraio 2013 OTTICA Ottica geometrica Ottica fisica Ignora il carattere ondulatorio della luce e parla di raggi luminosi che si propagano in linea retta. Fenomeni descritti dall ottica geometrica: riflessione e rifrazione

Dettagli

SPETTROSCOPIO A RETICOLO

SPETTROSCOPIO A RETICOLO SPETTROSCOPIO A RETICOLO Scopo dell esperienza: determinazione passo del reticolo separazione tra le due righe del doppietto della luce gialla del sodio determinazione della lunghezza d onda di un fascio

Dettagli

Interferenza da doppia fenditura

Interferenza da doppia fenditura Corso di Fisica per Scienze Biologiche A.A. 2016-17 Esperienza di laboratorio: OTTICA - ESPERIMENTO DI YOUNG Interferenza da doppia fenditura Nomi degli studenti:......... Data:... Introduzione L'obiettivo

Dettagli

Un percorso di ottica parte III. Ottica ondulatoria

Un percorso di ottica parte III. Ottica ondulatoria Un percorso di ottica parte III Ottica ondulatoria Isabella Soletta Liceo Fermi Alghero Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare con materiali

Dettagli

Spettrometria. Relazione sperimentale

Spettrometria. Relazione sperimentale 1 Relazione sperimentale Scopo dell esperienza è la misura della lunghezza d onda delle righe dello spettro della luce al mercurio e la misura dell indice di rifrazione del vetro in funzione della lunghezza

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1

La diffrazione. Prof. F. Soramel Fisica Generale II - A.A. 2004/05 1 La diffrazione Il fenomeno della diffrazione si incontra ogni volta che la luce incontra un ostacolo o un apertura di dimensioni paragonabili alla sua lunghezza d onda. L effetto della diffrazione è quello

Dettagli

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica

Esercizi di Ottica. Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Università di Cagliari Laurea Triennale in Biologia Corso di Fisica Esercizi di Ottica 1. Un fascio di luce di lunghezza λ passa attraverso una fenditura rettangolare di larghezza a. La sua immagine viene

Dettagli

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE

ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE ESPERIMENTO 6: OTTICA GEOMETRICA E DIFFRAZIONE Scopo dell esperimento: studiare l ottica geometrica e i fenomeni di diffrazione MATERIALE A DISPOSIZIONE: 1 banco ottico 1 blocco di plexiglass 2 lenti con

Dettagli

Interferenza da doppia fenditura

Interferenza da doppia fenditura Corso di Fisica per Scienze Biologiche A.A. 2017-18 Esperienza di laboratorio: OTTICA - ESPERIMENTO DI YOUNG Interferenza da doppia fenditura Introduzione Lo scopo di questa esperienza di laboratorio consiste

Dettagli

La rifrazione della luce

La rifrazione della luce La rifrazione della luce E. Modica erasmo@galois.it Istituto Provinciale di Cultura e Lingue Ninni Cassarà A.S. 2010/2011 Il bastone spezzato La rifrazione e le sue leggi Il bastone spezzato Definizione

Dettagli

sin ϑ = n sin ϑ Inoltre, applicando semplici considerazioni geometriche si ha: {

sin ϑ = n sin ϑ Inoltre, applicando semplici considerazioni geometriche si ha: { 6 Il prisma Il prisma è definito dal suo angolo al vertice φ e dal suo indice di rifrazione n. Consideriamo un raggio luminoso che incide su una faccia del prisma con un angolo i rispetto alla normale

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 21 giugno 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 21 giugno 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) giugno 08 Problema Due lenti sottili, biconvesse e simmetriche, hanno raggio di curvatura R = 0.0 cm e indice di rifrazione n =.5. Queste

Dettagli

Lo Spettro Elettromagnetico

Lo Spettro Elettromagnetico Spettroscopia 1 Lo Spettro Elettromagnetico Lo spettro elettromagnetico è costituito da un insieme continuo di radiazioni (campi elettrici e magnetici che variano nel tempo, autogenerandosi) che va dai

Dettagli

Richiami di ottica fisica: interferenza tra 2 sorgenti coerenti Quando 2 onde coerenti (la loro differenza di fase Δφ = φ 1

Richiami di ottica fisica: interferenza tra 2 sorgenti coerenti Quando 2 onde coerenti (la loro differenza di fase Δφ = φ 1 Richiami di ottica fisica: interferenza tra sorgenti coerenti Quando onde coerenti (la loro differenza di fase Δφ = φ 1 φ è costante nel tempo) si sovrappongono in una regione di spazio l intensità totale

Dettagli

Ottica fisica - Diffrazione

Ottica fisica - Diffrazione Ottica fisica - Diffrazione 1. Diffrazione di Fraunhofer 2. Risoluzione di una lente 3. Reticoli di diffrazione IX - 0 Diffrazione Interferenza di un onda con se stessa, in presenza di aperture od ostacoli

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Quinta lezione Occhio agli spettri! (Laboratorio III) Antonio Maggio Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Prima parte Sommario 5 a

Dettagli

PRINCIPIO DI FERMAT. n 3. n 1 n2

PRINCIPIO DI FERMAT. n 3. n 1 n2 PRINCIPIO DI FERMAT Il percorso seguito da un raggio di luce per andare da un punto ad un altro attraverso un qualsiasi insieme di mezzi è quello che richiede il minimo tempo ovvero il minimo cammino ottico

Dettagli

DETERMINAZIONE DELL INDICE DI RIFRAZIONE DI UN PRISMA DI VETRO CON UNO SPETTROSCOPIO E MISURA DI LUNGHEZZE D ONDA

DETERMINAZIONE DELL INDICE DI RIFRAZIONE DI UN PRISMA DI VETRO CON UNO SPETTROSCOPIO E MISURA DI LUNGHEZZE D ONDA DETERMINAZIONE DELL INDICE DI RIFRAZIONE DI UN PRISMA DI VETRO CON UNO SPETTROSCOPIO E MISURA DI LUNGHEZZE D ONDA Per un prisma di vetro posto nella condizione di deviazione minima sussiste la seguente

Dettagli

Simulazione. Definizione dei parametri. Confronto e validazione. Modello del sistema. Valori di aspettazione delle osservabili

Simulazione. Definizione dei parametri. Confronto e validazione. Modello del sistema. Valori di aspettazione delle osservabili Simulazione L'applicazione principale di metodi Monte Carlo è la simulazione di processi che hanno delle caratteristiche di casualità: processi stocastici (es. random walk, simulazione di code, sistemi

Dettagli

La luce. Quale modello: raggi, onde, corpuscoli (fotoni)

La luce. Quale modello: raggi, onde, corpuscoli (fotoni) La luce Quale modello: raggi, onde, corpuscoli (fotoni) Le onde luminose onde elettromagnetiche con frequenza compresa tra 4. 10 14 e 8. 10 la lunghezza d onda e compresa fra 400nm e 750nm 10 14 Hz 14

Dettagli

MISURA DELLA VELOCITA DEL SUONO

MISURA DELLA VELOCITA DEL SUONO MISURA DELLA VELOCITA DEL SUONO AVVERTENZA: durante lo svolgimento dell esperienza viene emesso un suono continuo che non è pericoloso ma potrebbe risultare fastidioso. Per questo motivo siete invitati

Dettagli

Reticolo di diffrazione

Reticolo di diffrazione Partendo dalla interferenza di fenditure: Reticolo di diffrazione II(PP) = 4 II 0 cccccc δδ = 4 II 0 cccccc ( ππ λλ dd ssssss θθ) δδ = kk (xx xx 1 ) = ππ λλ dd ssssss θθ Essendo: d= la distanza tra le

Dettagli

Guida alle esperienze di laboratorio

Guida alle esperienze di laboratorio LABORATORIO III Corso di Laurea in Fisica (Orientamento Generale) Guida alle esperienze di laboratorio Anno accademico 2008 09 (October 2, 2011) La descrizione di ogni esperienza è pensata come una scheda

Dettagli

sia fa(a la luce, e la luce fu. Genesi, 1,3

sia fa(a la luce, e la luce fu. Genesi, 1,3 sia fa(a la luce, e la luce fu. Genesi, 1,3 PLS Astronomia Secondo anno I. Cose è uno SPETTRO e come si costruisce II. Gli spettri delle stelle: che informazioni fisiche ci forniscono? (osservazione di

Dettagli

Lezioni di ottica fisica: lezione n.2 seconda parte

Lezioni di ottica fisica: lezione n.2 seconda parte Lezioni di ottica fisica: lezione n.2 seconda parte Alessandro Farini 12 gennaio 2007 1 Interferenza 1.1 Sovrapposizione di onde Consideriamo cosa accade quando due sistemi di onde si incrociano in una

Dettagli

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2

Corso di Laurea in Astronomia. Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA 2 Corso di Laurea in Astronomia Laurea Triennale DISPENSE DI ESPERIMENTAZIONI DI FISICA A.A. 01-013 Indice 1 Introduzione 5 1.1 Indice di rifrazione.............................. 5 1. Riflessione e rifrazione............................

Dettagli

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore

Capitolo 15. L interferenza e la natura ondulatoria della luce. Copyright 2009 Zanichelli editore Capitolo 15 L interferenza e la natura ondulatoria della luce 15.2 Il principio di sovrapposizione e l interferenza della luce Quando due onde luminose passano per uno stesso punto, i loro effetti si sommano

Dettagli

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2

OTTICA GEOMETRICA. Ovvero la retta perpendicolare alla superficie riflettente. Figura 1. Figura 2 OTTICA GEOMETRICA L ottica geometrica si occupa di tutta quella branca della fisica che ha a che fare con lenti, specchi, vetri e cose simili. Viene chiamata geometrica in quanto non interessa la natura

Dettagli

nasce la spettroscopia come tecnica di analisi chimica

nasce la spettroscopia come tecnica di analisi chimica sviluppo storico della spettroscopia: il reticolo di diffrazione *1810 Fraunhofer sviluppa il diffrattometro a reticolo e misura ben 700 righe, fra righe chiare (di emissione) e righe scure (di assorbimento);

Dettagli

d >> λ rettilinea raggio luminoso riflessione rifrazione

d >> λ rettilinea raggio luminoso riflessione rifrazione Ottica geometrica Proprietà più macroscopiche della luce d >> λ Propagazione rettilinea della luce (no diffrazione) Fondamentale concetto di raggio luminoso il cui percorso è determinato dalle leggi della

Dettagli

Laboratorio di analisi dati: esperienza di OTTICA

Laboratorio di analisi dati: esperienza di OTTICA Laboratorio di analisi dati: esperienza di OTTICA A.A. 2016/2017 Daniele Bonacorsi, Cristian Vignali, Federico Marulli (Università di Bologna) In aula collaborano: Enrico Baglione, Lorenzo Gigante, Anna

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Quarta lezione Applicazione di tecniche di diffrazione (Laboratorio II) Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico di

Dettagli

ESPERIMENTO DI YOUNG DOPPIA FENDITURA

ESPERIMENTO DI YOUNG DOPPIA FENDITURA ESPERIMENTO DI YOUNG DOPPIA FENDITURA Larghezza fenditure a > d (L = distanza fenditure - schermo; d = distanza tra le fenditure) Evidenza della natura ondulatoria della luce Luce monocromatica

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione LA LUCE Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione Perché vediamo gli oggetti? Perché vediamo gli oggetti? Noi vediamo gli oggetti perché da essi

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 2 novembre 2017

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 2 novembre 2017 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) novembre 07 Problema Quattro sorgenti identiche di onde elettromagnetiche (λ = 3.0 cm) puntiformi, di potenza P =.0 W, sono disposte

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Spettroscopia. Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman

Spettroscopia. Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman Spettroscopia Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman Di nuovo l'esperimento di Young delle due fenditure Onda piana incidente Se la larghezza d delle fenditure tende a zero:

Dettagli

Piano Lauree Scientifiche Fenomeni luminosi M. Ciminale, M. D Angelo, C. Evangelista, E. M. Fiore

Piano Lauree Scientifiche Fenomeni luminosi M. Ciminale, M. D Angelo, C. Evangelista, E. M. Fiore sperienza N. 1 - Riflessione della luce su uno specchio piano Quando un fascio di luce incide su di una superficie parte di esso generalmente torna indietro. Se la superficie è perfettamente liscia, come

Dettagli

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente

Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente OTTICA FISICA Quando lungo il percorso della luce vi sono fenditure ed ostacoli con dimensioni dello stesso ordine di grandezza della lunghezza d'onda incidente gli effetti sperimentali non sono spiegabili

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Lezione 22 - Ottica geometrica

Lezione 22 - Ottica geometrica Lezione 22 - Ottica geometrica E possibile, in certe condizioni particolari, prescindere dal carattere ondulatorio della radiazione luminosa e descrivere la propagazione della luce usando linee rette e

Dettagli

1 LENTE SPESSA Calcoliamo la matrice dei raggi di una lente spessa, ovvero di una lente in cui non sia possibile trascurare la propagazione interna tr

1 LENTE SPESSA Calcoliamo la matrice dei raggi di una lente spessa, ovvero di una lente in cui non sia possibile trascurare la propagazione interna tr 1 LENTE SPESSA Calcoliamo la matrice dei raggi di una lente spessa, ovvero di una lente in cui non sia possibile trascurare la propagazione interna tra le due rifrazioni. In analogia al caso di lente sottile,

Dettagli

Principio di Huygens principio di Huygens

Principio di Huygens principio di Huygens Principio di Huygens La propagazione dei fronti d onda (superfici a fase costante) può essere ottenuta supponendo ad ogni istante un fronte d onda come la sorgente dei fronti d onda a istanti successivi

Dettagli

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date

ESPERIMENTO SULL OTTICA. L ottica geometrica può essere considerata un metodo per la costruzione di immagini date ESPERIMENTO SULL OTTICA Introduzione L ottica geometrica può essere considerata un metodo per la costruzione di immagini date da sistemi ottici quali lenti e specchi. Essa costituisce una teoria approssimata,

Dettagli

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2)

Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Ottica fisiologica, ovvero perché funzionano i Google Glass (parte 2) Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

I esonero di Ottica Geometria a.a compito A

I esonero di Ottica Geometria a.a compito A I esonero di Ottica Geometria a.a. 2016-17 compito A Un onda elettromagnetica piana con frequenza 5x10 12 Hz entra con incidenza normale in un mezzo spesso 10 Km. Sapendo che la luce impiega un tempo t=50

Dettagli

CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione FSE PON "Competenze per lo sviluppo" Bando 2373

CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione FSE PON Competenze per lo sviluppo Bando 2373 CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione 2007-2013 FSE PON "Competenze per lo sviluppo" Bando 2373 26/02/2013 Piano integrato 2013 Codice progetto: C-2-FSE-2013-313

Dettagli

Fisica Generale B. 3. Esercizi di Ottica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II) ! 1. = v = c 2.

Fisica Generale B. 3. Esercizi di Ottica. Esercizio 1. Esercizio 1 (III) Esercizio 1 (II)  ! 1. = v = c 2. Fisica Generale B 3. Esercizi di Ottica http://campus.cib.unibo.it/490/ May 7, 0 Esercizio La fiamma di un fornello, continuamente e regolarmente rifornita di sale da cucina, costituisce una sorgente estesa

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2

Analisi Matematica II Corso di Ingegneria Gestionale Compito del y 2 Analisi Matematica II Corso di Ingegneria Gestionale Compito del 15--18 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione

Fisica II - CdL Chimica. Interferenza Coerenza Diffrazione Polarizzazione Interferenza Coerenza Diffrazione Polarizzazione Fenomeni interferenziali Interferenza: combinazione di onde identiche provenienti da diverse sorgenti che si sovrappongono in un punto dello spazio costruttiva

Dettagli

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione

Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione Fenomeni che evidenziano il comportamento ondulatorio della luce: interferenza e diffrazione L'identificazione della luce come fenomeno ondulatorio è dovuta principalmente a Fresnel e Huyghens ed è basata

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE B B o E o E v z y x B E o B o E T λ t x E = E(x,t) v = B = B(x,t) λ T = λf VELOCITA DELLA LUCE NEL VUOTO nel vuoto (unità S.I.) v c c = 3 10 8 m s 1 velocità

Dettagli

misura di lunghezza d onda mediante spettrogoniometro a reticolo

misura di lunghezza d onda mediante spettrogoniometro a reticolo mura di lunghezza d onda mediante spettrogoniometro a reticolo idoro.sciarratta@alice.it 1 strumenti necessari Lampada a scarica e relativo alimentatore; goniometro ottico dotato di fenditura, due stemi

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

La rifrazione della luce

La rifrazione della luce La rifrazione della luce E. Modica erasmo@galois.it Liceo Scientifico Statale S. Cannizzaro - Palermo A.S. 2017/2018 Il bastone spezzato Definizione di rifrazione Dall aria all acqua... Dall acqua all

Dettagli

MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE

MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE MISURA DI LUNGHEZZE D ONDA CON UNO SPETTROSCOPIO A RETICOLO DI DIFFRAZIONE Il reticolo di diffrazione può essere utilizzato per determinare la lunghezza d onda di una radiazione monocromatica. Detto d

Dettagli

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo;

1. l induzione magnetica B in modulo, direzione e verso nel piano ortogonale al filo nel suo punto medio, a distanza r dal filo; Prova scritta di Elettromagnetismo e Ottica (CCS Fisica), 21 gennaio 2013 Nel piano x = 0 giace una lastra conduttrice collegata a terra. Nei punti di coordinate (a, a, 0) e (a, a, 0) si trovano due cariche,

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

TECHNOTOUR LE TECNOLOGIE PER UNO SFRUTTAMENTO EFFICIENTE DELL ENERGIA SOLARE PROGETTO LAUREE SCIENTIFICHE

TECHNOTOUR LE TECNOLOGIE PER UNO SFRUTTAMENTO EFFICIENTE DELL ENERGIA SOLARE PROGETTO LAUREE SCIENTIFICHE PROGETTO LAUREE SCIENTIFICHE TECHNOTOUR LE TECNOLOGIE PER UNO SFRUTTAMENTO EFFICIENTE DELL ENERGIA SOLARE TECHNOTOUR Prof. Carlo Meneghini Dr. Micol Casadei Dr. Francesca Paolucci LA PRIMA LEGGE DI OHM

Dettagli

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2

Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 a.a 2005/06 Corso di Laurea in Informatica/Informatica Multimediale Esercizi Analisi Matematica 2 Funzioni di due variabili a cura di Roberto Pagliarini Vediamo prima di tutto degli esercizi sugli insiemi

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

6) Si considerino due polarizzatori ideali (il primo orientato in direzione verticale e il secondo in

6) Si considerino due polarizzatori ideali (il primo orientato in direzione verticale e il secondo in 1) Un onda monocromatica polarizzata, con componenti del campo elettrico uguali a: E x = (1/2) 1/2 cos(kz - t) E y = (1/2) 1/2 sen(kz - t + /4), passa attraverso polarizzatori ideali, il primo orientato

Dettagli

Riflessione e rifrazione della luce su una superficie di separazione tra due mezzi

Riflessione e rifrazione della luce su una superficie di separazione tra due mezzi Riflessione e rifrazione della luce su una superficie di separazione tra due mezzi La luce si propaga in linea retta, Il raggio luminoso è la direzione di propagazione Quando la luce incide su una superficie

Dettagli

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 10 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Analisi Matematica Prova scritta del 0 gennaio 007 Primo esercizio. È assegnato il numero complesso z = + i. (a) Posto z = + i, determinare la forma trigonometrica

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza 1 Liceo Falchi Montopoli in Val d Arno - Classe 3 a I - Francesco Daddi - 16 aprile 010 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli

OTTICA GEOMETRICA. L ottica geometrica è valida quando la luce interagisce solo con oggetti di dimensioni molto maggiori della sua lunghezza d onda.

OTTICA GEOMETRICA. L ottica geometrica è valida quando la luce interagisce solo con oggetti di dimensioni molto maggiori della sua lunghezza d onda. Un raggio di luce si propaga rettilineamente in un mezzo omogeneo ed isotropo con velocità: c v =, n > 1 n OTTICA GEOMETRICA L ottica geometrica è valida quando la luce interagisce solo con oggetti di

Dettagli

Costituisce l ingresso per la luce e la sua collimazione. E stata impiegata una fenditura con apertura regolabile mediante vite micrometrica.

Costituisce l ingresso per la luce e la sua collimazione. E stata impiegata una fenditura con apertura regolabile mediante vite micrometrica. Lo spettro solare prodotto da un prisma ci appare formato da una banda continua di colori dal rosso fino al blu-violetto. In realtà impiegando uno strumento (spettroscopio) di maggiore risoluzione si nota

Dettagli

4.4 Reticoli Capitolo 4 Ottica

4.4 Reticoli Capitolo 4 Ottica 4.4 Reticoli Esercizio 92 Un fascio piano di onde e.m. con frequenza ν = 10 11 Hz incide su uno schermo conduttore piano su cui sono praticate 5 fenditure parallele e lunghe, di larghezza a = 6 mm e passo

Dettagli

MISURA DEL COEFFICIENTE DI DISPERSIONE (NUMERO DI ABBE) ν DI UN VETRO OTTICO

MISURA DEL COEFFICIENTE DI DISPERSIONE (NUMERO DI ABBE) ν DI UN VETRO OTTICO MISURA DEL COEFFICIENTE DI DISPERSIONE (NUMERO DI ABBE ν DI UN VETRO OTTICO SPERIMENTATORI: MARCO ERCULIANI ( MATRICOLA: 4549 V.O. IVAN NORO (N MATRICOLA:458656 V.O. DURATA ESPERIMENTO: 3 ORE (DALLE ORE

Dettagli

Corso di Ottica con Laboratorio A.A Simulazione di Prova d Esonero, Novembre 2017

Corso di Ottica con Laboratorio A.A Simulazione di Prova d Esonero, Novembre 2017 Simulazione di Prova d Esonero, Novembre 2017 Esercizio 1. Un elettrone è inizialmente fermo sulla piastra di un condensatore di area A=18cm 2, separata di 8cm dalla seconda piastra. Per effetto della

Dettagli

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro?

3. (Da Veterinaria 2006) Perché esiste il fenomeno della dispersione della luce bianca quando questa attraversa un prisma di vetro? QUESITI 1 FENOMENI ONDULATORI 1. (Da Medicina 2008) Perché un raggio di luce proveniente dal Sole e fatto passare attraverso un prisma ne emerge mostrando tutti i colori dell'arcobaleno? a) Perché riceve

Dettagli

Lezione 04. Costruzione grafica dei cammini ottici

Lezione 04. Costruzione grafica dei cammini ottici Lezione 04 Costruzione grafica dei cammini ottici Riflessione e rifrazione della luce su una superficie di separazione tra due mezzi La luce si propaga in linea retta, Il raggio luminoso è la direzione

Dettagli

Diffrazione. configurazione che fornisce uno sfasamento di nel passaggio. dal bordo della fenditura al centro. = λ per il primo minimo.

Diffrazione. configurazione che fornisce uno sfasamento di nel passaggio. dal bordo della fenditura al centro. = λ per il primo minimo. Diffrazione Mentre l interferenza può essere analizzata con i principi dell ottica geometrica, la diffrazione può essere spiegata solo con l ipotesi ondulatoria della luce. Ipotesi corpuscolare Corpuscoli

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

Andamento e periodo delle funzioni goniometriche

Andamento e periodo delle funzioni goniometriche Andamento e periodo delle funzioni goniometriche In questa dispensa ricaviamo gli andamenti delle funzioni goniometriche seno, coseno, tangente e cotangente tra 0 e 360, detti, rispettivamente, sinusoide,

Dettagli

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742.

tg α = sostituendo: cos α 9 = 1 Esercizi Trigonometria Es. n. 246 pag 742. Esercizi Trigonometria Es. n. pag 7. Sviluppa con le formule di duplicazione e semplifica le seguenti espressioni: cos α + sen α + sen α Applichiamo le formule di duplicazione a cos α e sen α cos α sen

Dettagli

Percorso ottico attraverso un corpo semicircolare: osservazione. Studio del cammino dei raggi di luce attraverso un corpo semicircolare

Percorso ottico attraverso un corpo semicircolare: osservazione. Studio del cammino dei raggi di luce attraverso un corpo semicircolare ESPERIENZA 4 Percorso ottico attraverso un corpo semicircolare: osservazione 1 Argomenti Studio del cammino dei raggi di luce attraverso un corpo semicircolare 2 Montaggio Fig. 1 3 Note al montaggio 3.1

Dettagli

Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW

Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW Ottica (2/2) Interferenza e diffrazione Lezione 18, 4/12/2018, JW 21.1-21.5 1 1. Sovrapposizione e interferenza Quando due onde occupano la stessa regione di spazio, le loro ampiezze si sommano in ogni

Dettagli

Lezione 12. Sistemi di Lenti. TRE Università degli Studi ROMA. Laboratorio di Calcolo per l Ottica 1/9

Lezione 12. Sistemi di Lenti. TRE Università degli Studi ROMA. Laboratorio di Calcolo per l Ottica 1/9 Lezione 12 Sistemi di Lenti 1/9 Ingrandimento angolare Abbiamo visto che quando si pone un oggetto tra il fuoco e il centro di una lente semplice, l immagine risulta Virtuale e Ingrandita. L ingrandimento

Dettagli

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO

OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO OTTICA ONDE INTERFERENZA DIFFRAZIONE RIFRAZIONE LENTI E OCCHIO 1 INTERFERENZA Massimi di luminosità Onda incidente L onda prodotta alla fenditura S0, che funge da sorgente, genera due onde alle fenditure

Dettagli

INTERFERENZA E DIFFRAZIONE

INTERFERENZA E DIFFRAZIONE INTERFERENZA E DIFFRAZIONE Scopo dell esperienza:determinare sperimentalmente le seguenti caratteristiche fisiche: lunghezza d onda di una sorgente LASER apertura di una singola fenditura rettilinea apertura

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 4 Andrea Susa PROPRIETÀ GENERALI DISEQUAZIONI 1 Proprietà disuguaglianze Siano,,, allora valgono le seguenti proprietà se

Dettagli

Diffrazione a doppia fenditura

Diffrazione a doppia fenditura Diffrazione a doppia fenditura Cusinato Spirito Tirelli Tonnini Marco Mario Michelangelo Michele Data: 31 Maggio 2017 1 1 Preambolo Lo scopo di questa esperienza consiste nel verificare la legge di diffrazione

Dettagli

Reticoli e Diffrazione - Testi degli esercizi

Reticoli e Diffrazione - Testi degli esercizi Reticoli e Diffrazione - Testi degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Reticoli e Diffrazione Esercizio 1....................................

Dettagli

4.5 Polarizzazione Capitolo 4 Ottica

4.5 Polarizzazione Capitolo 4 Ottica 4.5 Polarizzazione Esercizio 98 Un reticolo con N fenditure orizzontali, larghe a e con passo p, è posto perpendicolarmente a superficie di un liquido con n =.0. Il reticolo è colpito normalmente alla

Dettagli

I prismi. Prismi. Un prisma è un mezzo ottico delimitato da facce piane, lavorate otticamente e non parallele. Alessandro Farini CNR-INOA CNR-INOA

I prismi. Prismi. Un prisma è un mezzo ottico delimitato da facce piane, lavorate otticamente e non parallele. Alessandro Farini CNR-INOA CNR-INOA I prismi Alessandro Farini Prismi Un prisma è un mezzo ottico delimitato da facce piane, lavorate otticamente e non parallele. 1 Il prisma triangolare Il prisma più tradizionale è quello triangolare :

Dettagli

GEOMETRIA ANALITICA ESERCIZI CON SOLUZIONI

GEOMETRIA ANALITICA ESERCIZI CON SOLUZIONI utore: Enrico Manfucci - 0/0/0 GEOMETRI NLITIC ESERCIZI CON SOLUZIONI. Posizionare nel piano cartesiano e calcolare la distanza delle seguenti coppie di punti: a. (, ) e (, ) I due punti hanno la stessa

Dettagli

Appunti sulla circonferenza

Appunti sulla circonferenza Liceo Falchi Montopoli in Val d Arno - Classe a I - Francesco Daddi - 1 dicembre 009 Appunti sulla circonferenza In queste pagine sono trattati gli argomenti riguardanti la circonferenza nel piano cartesiano

Dettagli