() t. B = insieme di segnali. M = { s 1 (t),, s i (t),, s m (t) } 1 b 1 (t) = 0 ) 2 b 2 (t) = 0 ) Lo spazio dei segnali. Lo spazio dei segnali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "() t. B = insieme di segnali. M = { s 1 (t),, s i (t),, s m (t) } 1 b 1 (t) = 0 ) 2 b 2 (t) = 0 ) Lo spazio dei segnali. Lo spazio dei segnali"

Transcript

1 Lo spazo e segnal Lo spazo e segnal Inroucao una rappresenazone veorale e segnal ella cosellazone M Serve a seplfcare proble n rcezone, ove nvece lavorare con le fore ona s (), è pù seplce lavorare con e veor. Proceeno:. Da segnal M s cosrusce una base oronorale B.. S lavora nello spazo e segnal S generao a B. 3. Ogn segnale S s può esprere coe cobnazone lneare e segnal B corrspone a un veore nuer real (coeffcen cobnazone lneare) Propreà ella base oronroale Cosruzone ella base B Daa la cosellazone M { s (),, s (),, s () } Cerchao una base B { b (),, b (),, b () } ( ) B nsee segnal. orogonal b () b() when. con energa unara b () 3. n nuero no e suffcene a poer scrvere ogn segnal M coe cobnazone lneare s () s b () s R Daa M, coe s cosrusce B? Per cosellazon seplc, non è ffcle rovare la base B In ogn caso, esse un algoro che consene sepre cosrure una base n oo sseaco: Algoro Gra-Sch Algoro Gra-Sch Algoro Gra-Sch M { s (),, s (),, s () } SEP Dao s (), cerchao l secono versore SEP Dao s () calcolao l pro versore efnao noralzzao b () s () Calcolao la prezone sul pro versore s s() b () efnao b () s () s b() b () b () ( se b () b () ) E( b ) Alla fne ell algoro, u b ugual a zero verranno elna noralzzao b () b () E( b ) ( se b () b () )

2 Algoro Gra-Sch Algoro Gra-Sch s s () b () S no che: b () s () s b() se b () (s () è proporzonale a b () ) b () e nessun nuovo versore vene rovao f b () (s () non è proporzonale a b () ) b () e s oene un nuovo versore Dao s () Calcolao la proezone su u versor cosru fno a quel oeno s s () b () o efnao 3 b () s () s b () SEP b () noralzzao b () ( se b () ) E( b ) b () Algoro Gra-Sch Algoro Gra-Sch s s () b () o S no che: b () s () s b () f b () (s () è oenble coe cobnazone lneare e versor cosru fno a quel oeno ) b () e nessun nuovo versore vene rovao f b () (s () non è una cobnazone lneare) b () e s oene un nuovo versore SEP Fnale S cancellano u segnal b () S rnuerano u quell vers a zero b () S ha la base B { b (),, b (),, b () } ( ) Esepo Esepo Daa la cosellazone Daa la cosellazone ( f ulplo nero /) M { s () + P (), s () P ()} M { s () + P ()cos( π f ), s () P ()cos( π f )} S cosrusca una base oronorale B. S cosrusca una base oronorale B. B b () + P () B b() + P ()cos( π f) S ulzz la propreà x sn x cos xx + 4

3 Eserczo Cosruzone ella base Daa la cosellazone M { s ( ) + AP ( )cos( π f ), s ( ) + AP ( )sn( π f )} Cosrure una base oronorale B. B b() P()cos( π f), b() P()sn( π f) Per cosellazon seplc, è spesso possble cosrure una base oronorale B per spezone rea, senza over rcorrere a Gra Sch. È suffcene rovare segnal che sosfano la efnzone base oronorale. orogonal. con energa unara 3. In nuero no e suffcene a poer scrvere ogn segnale M coe cobnazone lneare Inolre la base B non è unca (uava, aa una cosellazone M, ue le possbl bas B hanno la sessa ensone ) Eserczo Eserczo Daa la cosellazone M { s ( ), s ( ) + P ( )} Cosrure una base oronorale B. Daa la cosellazone M { s () + AP ()cos( π f ), s () + AP ()sn( π f ), s () AP ()cos( π f ), s () AP ()sn( π f )} 3 4 Cosrure una base oronorale B. B b () + P () B b() P()cos( π f), b() P()sn( π f) Lo spazo e segnal S Eserczo Daa la base B B { b (),, b (),, b () } lo spazo e segnal S generao a B è S a() ab() a R (nsee u segnal che s possono scrvere coe cobnazone lneare e versor B) Daa la base B B b () + P () Cos è lo spazo e segnal S? S nsee u segnal cosan nell nervallo [,[ 3

4 Eserczo Eserczo Daa la base B B b() + P ()cos ( π f) Cos è lo spazo e segnal S? Daa la base B B b() P()cos( π f), b() P()sn( π f) Cos è lo spazo e segnal S? S nsee u segnal po coseno con frequenza f, fase nzale nulla, apezza qualsas e uraa [,[ S nsee u segnal snusoal frequenza f con fase nzale qualsas, apezza qualsas e uraa [,[ Rcorano che ( ) ( ) Acos( π f ϑ) Acosϑ cos( π f) + Asnϑ sn( π f) Rappresenazone veorale Rappresenazone veorale Fssaa la base B, per ogn segnale a() S abbao a () ab () Il segnale a() corrspone qun n oo unco a un veore reale con coponen ( coeffcen a ella cobnazone lneare), e vceversa: a ( ) a ( a,..., a,..., a) scrura unca. Dal veore a al segnale a() a ( a,..., a,..., a ). Dal segnale a() al veore a a () a a() b() a ( a,..., a,..., a ) a () ab () Proezone sul versore b () Rappresenazone veorale ella cosellazone Rappresenazone veorale ella cosellazone Ceraene abbao M S Ogn segnale s () S corrspone n oo unco a un veore reale con coponen, e vceversa: s ( ) s ( s,..., s,... s ) Cosellazone M coe nsee segnal Cosellazone M coe nsee veor M { s (),, s (),, s () } M { s,, s,, s }. Dal veore s al segnale s () s ( s,..., s,..., s ). Dal segnale s () al veore s s () s s () b () s ( s,..., s,..., s ) s () s b () Proezone sul versore b () 4

5 Rappresenazone veorale ella cosellazone Rappresenazone veorale ella cosellazone Meoo alernavo, spesso possble: per spezone rea, senza calcolare esplcaene le proezon. Scrveno s ( ) s b( ) s b ( ) +... s b ( ) I segnal b () ella base sono no. Esplcano le espresson el segnale s (), spesso s resce a nvuare un nsee coeffcen s che sosfa l equazone. La soluzone è unca. Lo spazo S è soorfo allo spazo Eucleo R (nsee u veor con coponen real) Lo possao segnare coe uno spazo Caresano Se, S R e può essere segnao coe una lnea -D Se, S R e può essere segnao coe un pano -D If 3, S R 3 e può essere segnao coe uno spazo 3-D Rappresenazone veorale ella cosellazone Esepo La cosellazone M, nesa coe nsee veor, conce qun con un soonsee R Esepo cosellazone -D (PAM) (ovvero un nsee pun nello spazo Eucleo R ) Scrvereo M R Esepo Energa e segnal Esepo cosellazon -D Dao un segnale a() S La sua energa è aa alla ( ) ( ) E a a PSK QAM Daa la sua rappresenazone veorale a ( ) ( a,..., a,... a) è facle osrare che (enà Parseval) Ea ( ) a 5

6 Energa e segnal Energa ella cosellazone Infa, poché a () ab () Daa una cosellazone con { },...,,..., M s s s R s ( s,..., s,..., s ) E( a) a () [ a b ()] a b () a Dove abbao usao la propreà orogonalà b () b() se abbao: s Es ( ) L energa ea ella cosellazone è efna coe: Es Ps ( ) Es ( ) ove P(s ) è la probablà raseere s Energa ella cosellazone Energa per b nforazone Sequenze bnare nforazone: rano eal Veor bnar v H k equprobabl Il labelng è un appng uno-a-uno I segnal ella cosellazone ( ) Ps s M e: Hk M sono equprobabl L energa ella cosellazone è seplceene: Es Es ( ) Energa ea necessara per raseere un b nforazone eane M ES Eb k Esepo Esepo Daa la cosellazone Dsegnare la cosellazone. M { s () + P (), s () P ()} Daa la cosellazone M { s() + P()cos( π f), s() + P()sn( π f), s () P ()cos( π f ), s () P ()sn( π f )} 3 4 Dsegnare la cosellazone Calcolare E s e E b 6

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Principio di sostituzione - I

Principio di sostituzione - I 67 Prncpo d sosttuzone - I In una rete elettrca (lneare o non-lneare) un coponente elettrco, o un nsee d coponent elettrc (lnear o non lnear), può essere sosttuto con un altro coponente o nsee d coponent

Dettagli

Convertitore DC-DC Flyback

Convertitore DC-DC Flyback Conerore C-C Flyback era al buck-boos e al poso ell nuore c è un rasforaore n ala frequenza: Fgura : schea prncpo el flyback conerer Prncpo funzonaeno: TO: la correne ene a enrare al pallno superore el

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari Cors d Laurea n Ingegnera Eleronca, Informaca e delle Telecomuncazon Lezone n. 2 d Conroll Auomac A prof. Aurelo Pazz dfferenzal lnear Unversà degl Sud d Parma a.a. 2009-2010 Cenn d modellsca (crcu elerc

Dettagli

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t 4. Approcco formale E neressane efnre le caraersche e var regm fnanzar n manera pù asraa e generale, n moo a poer suare qualsas regme fnanzaro. A al fne efnamo percò e paramer n grao escrvere qualsas po

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

Per un corpo rigido: la distanza relativa di tutti i punti nel corpo e costante Segue che: il loro moto relativo puo solo essere di rotazione

Per un corpo rigido: la distanza relativa di tutti i punti nel corpo e costante Segue che: il loro moto relativo puo solo essere di rotazione La naca rotazonale e corp rg Per un corpo rgo: la stanza relatva tutt punt nel corpo e costante Segue che: l loro oto relatvo puo solo essere rotazone S conserno punt o, a e b solal con l corpo rgo e s

Dettagli

Campi Elettromagnetici e Circuiti I Potenza in regime sinusoidale

Campi Elettromagnetici e Circuiti I Potenza in regime sinusoidale Facolà d ngegnera Unersà degl sud d aa Corso d aurea rennale n ngegnera Eleronca e nformaca Camp Eleromagnec e Crcu oenza n regme snusodale Camp Eleromagnec e Crcu a.a. 05/6 rof. uca erregrn oenza n regme

Dettagli

MATERIALI COMPOSITI Prof. A.M.Visco

MATERIALI COMPOSITI Prof. A.M.Visco Corso Laurea Magsrae n Ingegnera e Maera A.A. 006/07 MATRIALI COMPOSITI Pro. A.M.Vsco FIBR DISCONTINU PARALLL In un coposo ove e bre sono connue n una rezone, g sorz ee bre possono essere eerna acene con

Dettagli

Campo magnetico stazionario

Campo magnetico stazionario Campo magneco sazonaro www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Equazon fondamenal Equazon per l campo magneco H J B H B n d J n d Equazon d legame maerale ezzo lneare soropo B H H ) ( ezzo

Dettagli

PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI

PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI Perequazone eante oell lnear generalzzat Sano PEREQUAZIONE MEDIANTE MODELLI LINEARI GENERALIZZATI qˆ oppure ˆ = a, a +, K, ω le ste nzal una tavola sopravvvenza ottenute n un approcco tpo non paraetrco

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007

Elettronica dello Stato Solido Prova scritta del 4 settembre 2007 Elettronca dello Stato Soldo Prova scrtta del 4 settebre 7 Cognoe e Noe Matrcola Fla Posto Es.) In un esperento d dffrazone d ragg n un crstallo cubco, la cella untara del retcolo recproco s trova ad essere

Dettagli

Prova scritta di Esperimentazioni II del

Prova scritta di Esperimentazioni II del Prova scrtta Espermentazon II el 9--98 Un amplcatore a transstor ha lo schema presentato n gura. Calcolare la tensone el collettore Vc, sapeno che l transstor ha un h FE 0. Calcolare la potenza sspata

Dettagli

F est. I int. I est. ,L int. costante. Kcm

F est. I int. I est. ,L int. costante. Kcm Urt Sere, anztutto, rleare alcune caratterstche coun agl urt. Gl urt sono olto bre ed e dunque dcle tener conto esplctaente delle orze che nterengono nell urto. Se ne rcaa norazone a partre dalle propreta

Dettagli

PROBLEMA 1. Soluzione. β = 64

PROBLEMA 1. Soluzione. β = 64 PROBLEMA alcolare l nclnazone β, rspetto al pano stradale, che deve avere un motocclsta per percorrere, alla veloctà v = 50 km/h, una curva pana d raggo r = 4 m ( Fg. ). Fg. Schema delle condzon d equlbro

Dettagli

Campionamento a grappoli

Campionamento a grappoli Caponaento a grappol Caponaento a grappol a stratfcazone è uno struento per auentare la precsone, col quale dvdao una popolazone n sottopopolazon strat, cascuna delle qual vene po caponata separataente

Dettagli

Regimi periodici non sinusoidali

Regimi periodici non sinusoidali Regm perodc non snusodal www.de.ng.unbo./pers/masr/ddaca.hm versone del -- Funzon perodche S dce che una funzone y è perodca se esse un > ale che per ogn e per ogn nero y y l pù pccolo valore d per cu

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007 Meod quanav per la sma del rscho d mercao Aldo Nassgh 16 Oobre 007 METODI NUMERICI Boosrap della curva de ass Prncpal Componen Analyss Rsk Mercs Meod d smulazone per l calcolo del VaR basa su Full versus

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

urto v 2f v 2i e forza impulsiva F r F dt = i t

urto v 2f v 2i e forza impulsiva F r F dt = i t 7. Urt Sstem a due partcelle Defnzone d urto elastco, urto anelastco e mpulso L urto è un nterazone fra corp che avvene n un ntervallo d tempo normalmente molto breve, al termne del quale le quanttà d

Dettagli

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica CODIFICA BINARIA DELL INFORMAZIONE

Università degli Studi di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica CODIFICA BINARIA DELL INFORMAZIONE Unverstà degl Stud d Caglar Dpartento d Ingegnera Elettrca ed Elettronca CODIFICA BINARIA DELL INFORMAZIONE Analogco Vs. Nuerco Sste analogc: la grandezza da surare vene rappresentata con un altra grandezza

Dettagli

2. La base monetaria e i mercati dei depositi e del credito

2. La base monetaria e i mercati dei depositi e del credito 2. La base monetara e mercat e epost e el creto Esercz svolt Eserczo 2.1 (a) Conserate l moello che rappresenta l equlbro el mercato ella base monetara e el mercato e epost (fate l potes che coe cent c;

Dettagli

Definizione di campione

Definizione di campione Defnzone d campone S consder una popolazone fnta U = {1, 2,..., N}. Defnamo campone ordnato d dmensone n qualsas sequenza d n etchette della popolazone anche rpetute. s = ( 1, 2,..., n ), dove j è l etchetta

Dettagli

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA

GUGLIOTTA CALOGERO. Liceo Scientifico E.Fermi Menfi (Ag.) ENTROPIA GUGLIOTTA CALOGERO Lceo Scentco E.Ferm Men (Ag.) ENTROIA Il concetto d processo termodnamco reversble d un dato sstema è collegato all dea che s possa passare dallo stato allo stato attraverso una successone

Dettagli

Circuiti magnetici. (versione del ) Campo magnetico stazionario o quasi stazionario

Circuiti magnetici.  (versione del ) Campo magnetico stazionario o quasi stazionario Crcu magnec www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Campo magneco sazonaro o quas sazonaro Condzon sazonare: grandezze eleromagneche cosan nel empo Condzon quas sazonare: varazon nel empo

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabltà Che collegamento c è tra gl strument statstc vst fno ad ora per lo studo de fenomen real e l calcolo delle probabltà? Non sempre la conoscenza delle caratterstche d un fenomeno

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

Correnti e circuiti resistivi

Correnti e circuiti resistivi Corrent e crcut resstv Intensta d corrente Densta d corrente Resstenza Resstvta Legge d Ohm Potenza dsspata n una resstenza R Carche n un conduttore cos(θ ) v m N v 0 Se un conduttore e n equlbro l campo

Dettagli

Determinare gli insiemi delle soluzioni dei seguenti sistemi lineari non omogenei e scriverli in forma di spazio affine ESERCIZIO 1.3.

Determinare gli insiemi delle soluzioni dei seguenti sistemi lineari non omogenei e scriverli in forma di spazio affine ESERCIZIO 1.3. Deermnare gl nsem delle soluon de seguen ssem lnear non omogene e srverl n forma d spao affne ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO 6 ESERCIZIO ESERCIZIO ESERCIZIO 9 ESERCIZIO SOLUZIONI

Dettagli

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3

Rappresentazione dei numeri PH. 3.1, 3.2, 3.3 Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Trovare, se esiste, il punto (od i punti) in cui si può applicare il risultante sistema di forze F

Trovare, se esiste, il punto (od i punti) in cui si può applicare il risultante sistema di forze F oe s trova l punto applcazone R? Tanto la retta azone quanto l punto applcazone ella rsultante el sstea non sono eternabl attraverso la soa e vettor effettuata con l etoo punta-coa o el parallelograa.

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

CPM: Calcolo del Cammino Critico

CPM: Calcolo del Cammino Critico Supponamo d conoscere per ogn attvtà A = (,j) la sua durata t j t j j Calcolamo l tempo al pù presto n cu può nzare o fnre una attvtà. Supponamo d dover calcolare l tempo al pù presto n cu s possono nzare

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Ricerca di radici di equazioni non lineari

Ricerca di radici di equazioni non lineari Rcerca rac equazon non lnear Il problema consste nella rcerca elle soluzon ell'equazone sotto forma mplcta f( ) Torna all'nce generale f e possono essere n generale ue vettor a n component, anche se la

Dettagli

Soluzione del compito di Fisica febbraio 2012 (Udine)

Soluzione del compito di Fisica febbraio 2012 (Udine) del compto d Fsca febbrao (Udne) Elettrodnamca È data una spra quadrata d lato L e resstenza R, ed un flo percorso da corrente lungo z (ved fgura). Dcamo a e b le dstanze del lato parallelo pù vcno e pù

Dettagli

Analisi delle reti con elementi dinamici

Analisi delle reti con elementi dinamici Prncp d ngegnera elerca ezone a Anals delle re con elemen dnamc Induore Connesson d nduor Induore nduore è un bpolo caraerzzao da una relazone ensonecorrene d po dfferenzale: ( d( d e hanno ers coordna

Dettagli

d P 1 fig.1 distanza, distanza orizzontale, dislivello

d P 1 fig.1 distanza, distanza orizzontale, dislivello Rlevamento n ambto locale. Ret topografche Una rete topografca è un nseme punt, ett vertc, collegat fra loro a msure topografche. I vertc possono essere punt stazone, oppure semplcemente punt collmat.

Dettagli

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0

INTERPOLAZIONE MEDIANTE CURVE SPLINE. '' ( b ) = 0 INTERPOLAZIONE EDIANTE CURVE SPLINE Defnzone del problema Sovente, nelle applcazon grafche (CAD Computer Aed Desgn), s ha la necesstà d traccare, dat alcun punt, una lnea che l raccord e che sa suffcentemente

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

(come ragionare quantitativamente in condizioni di incertezza)

(come ragionare quantitativamente in condizioni di incertezza) LABORATORIO DI FISICA IGEGERIA "La Sapenza" Prof. A. Scubba ELEMETI DI TEORIA DELLE PROBABILITÀ (coe ragonare quanttatvaente n condzon d ncertezza) LO SPAZIO DEGLI EVETI Pra d ntrodurre l concetto d probabltà

Dettagli

Le forze conservative e l energia potenziale

Le forze conservative e l energia potenziale S dcono conservatve quelle orze che s comportano n accordo alla seguente denzone: La orza F s dce conservatva se l lavoro eseguto da tale orza sul punto materale P mentre s sposta dalla poszone P 1 alla

Dettagli

Campo di validità: al crescere della velocità del fluido, la relazione fra portata defluente e perdita di carico diviene non più lineare.

Campo di validità: al crescere della velocità del fluido, la relazione fra portata defluente e perdita di carico diviene non più lineare. La Legge d DARCY Campo d valdtà: al crescere della veloctà del fludo, la relaone fra portata defluente e perdta d carco dvene non pù lneare. d ν umero d Reynolds de granul: Re dove d è l dametro medo del

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x)

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x) Qualtà ell aattamento una funzone y=f() a un nseme msure (y n funzone ) Date N msure coppe valor elle granezze e y, legate alla relazone y=f(;a,b), nell potes che le ncertezze sulle sano trascurabl e y

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Anals de dat 6 Y Rcaptolo generale Dato un nsee d sure sperental d una varable dpendente al varare d una varable ndpendente è possble edante l crtero de

Dettagli

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015

FISICA per SCIENZE BIOLOGICHE, A.A. 2014/2015 Prova scritta del 24 Febbraio 2015 FISICA per SCIENZE BIOLOGICHE, A.A. 04/05 Prova scrtta del 4 Febbrao 05 ) Un corpo d massa m = 300 g scvola lungo un pano nclnato lsco d altezza h = 3m e nclnazone θ=30 0 rspetto all orzzontale. Il corpo

Dettagli

B - ESERCIZI: IP e TCP:

B - ESERCIZI: IP e TCP: Unverstà d Bergamo Dpartmento d Ingegnera dell Informazone e Metod Matematc B - ESERCIZI: IP e TCP: F. Martgnon Archtetture e Protocoll per Internet Eserczo b. S consder l collegamento n fgura A C =8 kbt/s

Dettagli

FISICA CAMPO MAGNETICO

FISICA CAMPO MAGNETICO CAMPO MAGNETICO Una regone eo spazo è see un campo magnetco se n essa rsutano soggett a forze sa po magnetc che carche eettrche n movmento. F Lnee campo N v +q S Se n un punto P eo spazo compreso fra ue

Dettagli

L equazione di Dirac. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico

L equazione di Dirac. Fenomenologia delle Interazioni Forti. Diego Bettoni Anno Accademico equazone d Drac Fenoenologa delle Interazon Fort Dego Betton Anno Accadeco 8-9 D Betton Fenoenologa Interazon Fort Equazone relatvstca er descrvere l elettrone (ncluso lo sn) Conservazone della robabltà

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami

Architetture aritmetiche. Corso di Organizzazione dei Calcolatori Mariagiovanna Sami Archtetture artmetche Corso d Organzzazone de Calcolator Maragovanna Sam 27-8 8 Sommator: : Full Adder s = x y c + x y c + x y c + x y c Full Adder x y c s x y c = x y + x c + + y c c + Full Adder c x

Dettagli

Segmentazione di immagini

Segmentazione di immagini Segentazone d agn Introduzone Segentazone: processo d partzonaento d un agne n regon dsgunte e oogenee. Esepo d segentazone. Tratta da [] Introduzone def. forale Sa R l ntera regone spazale occupata dall

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

Rappresentazione dei numeri

Rappresentazione dei numeri Rappresentazone de numer PH. 3.1, 3.2, 3.3 1 Tp d numer Numer nter, senza segno calcolo degl ndrzz numer che possono essere solo non negatv Numer con segno postv negatv Numer n vrgola moble calcol numerc

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

Il lavoro L svolto da una forza costante è il prodotto scalare della forza per lo spostamento del punto di applicazione della forza medesima

Il lavoro L svolto da una forza costante è il prodotto scalare della forza per lo spostamento del punto di applicazione della forza medesima avoro ed Energa F s Fs cos θ F// s F 0 0 se: s 0 θ 90 Il lavoro svolto da una orza costante è l prodotto scalare della orza per lo spostamento del punto d applcazone della orza medesma [] [M T - ] N m

Dettagli

AZIONAMENTI BRUSHLESS

AZIONAMENTI BRUSHLESS AZIOAMETI BRUSHLESS Brushless senza spazzole Lezone Incherebbe tutt gl azonaent n C.A. oralente s usa per ncare otor sncron a agnet peranent sotrop, ett S.M.P.M. Surface Mounte Peranent Magnet Synchronous

Dettagli

DOMANDE TEORICHE 1 PARTE

DOMANDE TEORICHE 1 PARTE DOMANDE TEORICHE 1 PARTE 1) Trasformazone delle sorgent n regme costante: * Introdurre l legame costtutvo e la caratterstca grafca (dettaglandone le propretà ne punt d lavoro estrem: generatore a vuoto

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( )

Generalità. Problema: soluzione di una equazione differenziale alle derivate ordinarie di ordine n: ( ) Generaltà Problema: soluzone d una equazone derenzale alle dervate ordnare d ordne n: n n K soggetta alle n condzon nzal: K n Ovvero rcercare la soluzone d un sstema d n equazon derenzal ordnare del prmo

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) Ing. Eleronca - II a Esperenza del aboraoro d Fsca Generale II Oscllazon lbere e rsonanza d un crcuo -sere (Traazone analca del crcuo -sere on quesa breve noa s vuole fornre la raazone eorca del crcuo

Dettagli

1. METODO DELLE EQUAZIONI DI STATO

1. METODO DELLE EQUAZIONI DI STATO IUITI ON MMOIA Vengono e crcu con memora (o crcu namc) quell n cu è presene almeno un componene oao memora (come nuor e conensaor, ma non solo); n queso caso l ssema rsolene el crcuo sesso conene le caraersche

Dettagli

Capitolo 2 Le leggi del decadimento radioattivo

Capitolo 2 Le leggi del decadimento radioattivo Capolo Le legg del decadmeno radoavo. Sablà e nsablà nucleare Se analzzamo aenamene la cara de nucld, vedamo che n essa sono rappresena, olre a nucle sabl, anche var nucle nsabl. Con l ermne nsable s nende

Dettagli

Gas ideale (perfetto):

Gas ideale (perfetto): C.d.L. Scenze e ecnologe grare,.. 2015/2016, Fsca Gas deale (perfetto): non esste n realtà drogeno e elo assomglano d pù a un gas deale - le molecole sono puntform; - nteragscono tra loro e con le paret

Dettagli

Elettricità e circuiti

Elettricità e circuiti Elettrctà e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà Effetto termco della corrente esstenze n sere e n parallelo Legg d Krchoff P. Maestro Elettrctà e crcut

Dettagli

Circuiti elettrici in regime stazionario

Circuiti elettrici in regime stazionario rcut elettrc n regme stazonaro omponent www.de.ng.unbo.t/pers/mastr/ddattca.htm (ersone del 3-9-0) Bpol resst Equazon caratterstca d un bpolo ressto f, 0 L equazone d un bpolo ressto defnsce una cura nel

Dettagli

Lezione mecc n.14 pag 1

Lezione mecc n.14 pag 1 Lezone mecc n.4 pag Argoment d questa lezone: Urt ra due corp Legg d conserazone negl urt ra due corp Urt stantane e orze mpulse Urt elastc ed anelastc Prm cenn a sstem d pù partcelle (energa d rotazone

Dettagli

Ubicazione degli impianti. industriali

Ubicazione degli impianti. industriali Meod d d ubcazone degl pan ndusral Ubcazone degl pan Macroscela Deernare l area geograca nella quale poszonare l pano ndusral Tp d scela da aronare Mcroscela Rappresena l aspeo opograco coè dove nsallare

Dettagli

Analisi della Sopravvivenza

Analisi della Sopravvivenza Anals ella Sopravvvenza Inrouzone Con la regressone Posson è possble analzzare a provenen a su coore, eneno cono che l asso ncenza ell eveno neresse per esempo more, ncenza malaa può non essere cosane,

Dettagli

GENERATORE DI IMPULSO CON AMPLIFICATORE OPERAZIONALE

GENERATORE DI IMPULSO CON AMPLIFICATORE OPERAZIONALE GENEAOE DI IMPULSO CON AMPLIFICAOE OPEAZIONALE Un generaore d mpulso, o mulvbraore monosable, è un crcuo che presena due possbl sa: uno sao sable ed uno sao quas sable Il crcuo s rova, normalmene, nello

Dettagli

Ombre in assonometria

Ombre in assonometria Ombre n assonometra Prma entrare nel ettaglo el charoscura e veere come s ombreggano gl oggett è necessaro capre n che moo la luce crea le ombre ncontrano gl oggett. Come avevamo gà vsto n preceenza quano

Dettagli

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri

Individuazione di linee e curve. Minimi quadrati. Visione e Percezione. Model fitting: algoritmi per trovare le linee. a = vettore dei parametri Segmentazone tramte modell ad hoc Indvduazone d lnee e curve Obbettvo: Data l mmagne d output d un algortmo d rlevamento d bord, trova tutte le stanze d una certa curva (lnea o ellss) o una sua parte.

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE

MATEMATICA FINANZIARIA 1 PROVA SCRITTA DEL 17 NOVEMBRE 2009 ECONOMIA AZIENDALE MATEMATICA FINANZIARIA PROVA SCRITTA DEL 7 NOVEMBRE 009 ECONOMIA AZIENDALE ESERCIZIO Un ndduo contrae un prestto d.000 da rborsare edante rate annual costant postcpate al tasso annuo del,%. Dopo l pagaento

Dettagli

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico.

Il logaritmo discreto in Z p Il gruppo moltiplicativo Z p delle classi resto modulo un primo p è un gruppo ciclico. Il logartmo dscreto n Z p Il gruppo moltplcatvo Z p delle class resto modulo un prmo p è un gruppo cclco. Defnzone (Logartmo dscreto). Sa p un numero prmo e sa ā una radce prmtva n Z p. Sa ȳ Z p. Il logartmo

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A Esame Scritto del 10/12/2004 Soluzione (sommaria) degli esercizi

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A Esame Scritto del 10/12/2004 Soluzione (sommaria) degli esercizi INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO LA A.A. 2004-05 Esame Scrtto del 10/12/2004 Soluzone (sommara) degl esercz Eserczo 1: S vuole acqusre e convertre n dgtale la msura d deformazone d una

Dettagli

3.1 Modellistica di un attuatore elettromeccanico

3.1 Modellistica di un attuatore elettromeccanico 3 PRINCIPI DI CONVERSIONE ELETTROMECCANICA DELL ENERGIA 3. Moellsca un auaoe eleomeccanco Pe noue fonamen ella convesone eleomeccanca ell enega conseamo la suua elemenae llusaa n Fg. 3., noa come auaoe

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTECNICA Ingegnera Indusrale UTUE INDUTTANZE CIRCUITI AGNETICI Sefano Pasore Dparmeno d Ingegnera e Archeura Corso d Eleroecnca 043IN a.a. 03-4 È un componene dnamco a due pore conservavo del II ordne

Dettagli

Fluidodinamica Applicata. 3.3 Esercizio 2 (Bernoulli Il Tubo a U)

Fluidodinamica Applicata. 3.3 Esercizio 2 (Bernoulli Il Tubo a U) Poliecnico i Torino Flioinamica pplicaa 3.3 Esercizio (Bernolli Il Tbo a U) ESERCIZIO (Bernolli il bo a U ) Fig.5 Si consieri il sisema in figra, in ci n bo a U, i sezione, viene riempio con n volme i

Dettagli

Controllo predittivo (MPC o MBPC)

Controllo predittivo (MPC o MBPC) Conrollo predvo MPC o MBPC Nella sa formlaone pù enerale, l conrollo predvo consa d re dee d base:. L lo d n modello maemaco ao a prevedere le sce del processo nel san d empo fr l orone. Le sce fre, comprese

Dettagli

LIOFILIZZAZIONE. Liofilizzazione Riduzione del contenuto di acqua per sublimazione

LIOFILIZZAZIONE. Liofilizzazione Riduzione del contenuto di acqua per sublimazione Loflzzazone Ruzone el contenuto acqua per sublmazone Obettv tablzzazone Ruzone peso e volume trutturazone rncp Trasporto calore Trasporto matera Vantagg Alle basse temperature eserczo aottate è preservata

Dettagli

Lezione 3. F. Previdi - Automatica - Lez. 3 1

Lezione 3. F. Previdi - Automatica - Lez. 3 1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

Componenti dotati di memoria (dinamici)

Componenti dotati di memoria (dinamici) omponen doa d memora (dnamc) S raa d componen elerc che esprmono una relazone cosua ra ensone e correne che rchama anche alor d ensone e/o correne rfer ad san d empo preceden. a relazone cosua è n queso

Dettagli