Lezione 11. Polinomi a coefficienti in un campo.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 11. Polinomi a coefficienti in un campo."

Transcript

1 Lezone Prerequs: Lezone 0. Polnom a coeffcen n un campo. Sa K un campo. In quesa lezone sudamo le propreà armeche dell'anello d polnom K[ X ], che sono analoghe a quelle valde nell'anello Z e da no consderae nelle Lezon 6 e 7. Le loro dmosrazon, laddove esse sano sml a quelle gà effeuae per numer ner, verranno qu omesse. Rcordamo che, nella Lezone 6, abbamo defno la relazone d dvsblà n ogn anello commuavo unaro (v. Defnzone 6.). Quesa s applca, n parcolare, all'anello K[ X ]. Ad essa s rfersce l'nero conenuo d quesa lezone, a comncare dal prmo enuncao, che è analogo al Teorema 6.0. Sarà nolre ule enere presene che, come conseguenza del Corollaro 5.8 e del Corollaro 0.6, l'anello K[ X ] è negro. Teorema. (Teorema d dvsone eucldea) Sano a( X ), b( X ) K[ X ], ove b( X ) 0. Allora essono, e sono unvocamene deermna, q( X ), r( X ) K[ X ] al che () a( X ) = b( X ) q( X ) + r( X ); () r( X ) = 0 oppure r( X ) 0 e deg( r) < deg( b). I polnom q( X ) ed r( X ) s dcono, rspevamene, quozene e reso della dvsone (eucldea) d a( X ) per b( X ). I polnom a( X ) e b( X ) s dcono, rspevamene, dvdendo e dvsore. Dmosrazone: Provamo prma l essenza. A al fne consderamo l'nseme { } C = a( X ) b( X ) f ( X ) f ( X ) K[ X ]. Se 0 C, allora esse q( X ) K[ X ] ale che a( X ) b( X ) q( X ) = 0 e la es è verfcaa con r( X ) = 0. Supponamo ora che 0 C. Sa D l'nseme de grad de polnom d C. Allora D è un soonseme non vuoo d N. Qund, per l prncpo del mnmo (assoma d buon ordnameno), D possede un mnmo d. Sa r( X ) C ale che deg( r) = d. Allora a( X ) b( X ) q( X ) = r( X ) per qualche q( X ) K[ X ] e dunque è verfcaa la condzone (). Poché r( X ) 0, resa da provare che d < deg( b). Supponamo per assurdo che d deg( b). Sa n = deg( b) e sano d n = 0 = 0 r( X ) = r X, b( X ) = b X, ( r, b K). Sa ora r X = r X r b X b X = a X b X q X + r b X C Allora r '( X ) 0 e d n d n '( ) ( ) d n ( ) ( ) ( )( ( ) d n ).

2 d n d n d n d d n n d n+ d n d d n n d n = 0 = 0 = 0 = 0 r '( X ) = r X r b X b X = r X r b X b X + r X r b b X. 0 deg< d Qund deg( r ') < d, conro la mnmalà d d. Cò fornsce la conraddzone cercaa e conclude la dmosrazone dell'essenza d q( X ), r( X ) K[ X ] verfcan la () e la (). Provamo ora l'uncà. Sano q ( X ), q( X ), r ( X ), r ( X ) K[ X ] al che q( X ) = q ( X ), r( X ) = r ( X ) con =,, verfcano la () e la (). Allora, n parcolare, b( X ) q ( X ) + r ( X ) = b( X ) q ( X ) + r ( X ), () da cu b( X )( q ( X ) q ( X )) = r ( X ) r ( X ). Supponamo per assurdo che sa r ( X ) r ( X ) 0. Allora, uno ra r ( X ), r ( X ) è non nullo. Sa esso r ( X ). Se anche r ( X ) è non nullo, sa r ( X ) quello ra due che ha grado massmo. Allora, n base alle formule del grado (Proposzone 0.), deg( r ) deg( r r ) = deg( b( q q )) = deg( b) + deg( q q ) deg( b) Ma allora deg( r ) deg( b), conro la (). Qund r ( X ) = r ( X ), e dalla () segue che q ( X ) = q ( X ). Cò prova l'uncà del quozene e del reso. Esempo. Per deermnare l quozene ed l reso della dvsone eucldea del polnomo a( X ) per l polnomo b( X ) s può effeuare una dvsone n colonna. Consderamo ad esempo, n Q [ X ], polnom 3 a( X ) = X + X e b( X ) = X + X. X + X X + X 3 + = 3 X 3 X X + X 3 X X X q X ( ) X + X = r X ( ) Abbamo oenuo l quozene q( X ) = X ed l reso r X X X ( ) = +. Defnamo ora la nozone d massmo comune dvsore n K[ X ]: essa è analoga a quella daa n Z (v. Defnzone 6.3). S porà dare, n manera smle, una defnzone d mnmo comune mulplo. Defnzone.3 Sano a( X ), b( X ) K[ X ]. Allora s dce massmo comune dvsore d a( X ) e b( X ) ogn polnomo d( X ) ale che (a) d( X ) a( X ) e d( X ) b( X ) ; (b) per ogn e( X ) K[ X ] ale che e( X ) a( X ) ed e( X ) b( X ), s ha che e( X ) d( X ).

3 Da a( X ), b( X ) K[ X ], esse sempre un loro massmo comune dvsore. Cò segue dal prossmo enuncao, analogo alla Proposzone 6.5. La sua dmosrazone, che non rporamo per brevà, s basa, come nel caso dell'anello Z, sul Teorema d dvsone eucldea e sfrua l prncpo del mnmo, applcao ad nsem cu elemen sono grad d polnom verfcan una cera propreà. In alr ermn, la dmosrazone del prossmo enuncao s effeua operando, sulla dmosrazone della Proposzone 6.5, modfche analoghe a quelle che hanno prodoo la dmosrazone del Teorema. a parre da quella del Teorema 6.0. Proposzone. (Lemma d Bézou) Sano a( X ), b( X ) K[ X ]. Allora esse un massmo comune dvsore d( X ) d a( X ) e b( X ). Inolre essono s( X ), ( X ) K[ X ] al che s( X ) a( X ) + ( X ) b( X ) = d( X ). () Tale uguaglanza s dce denà d Bézou. I polnom s( X ), ( X ) s dcono coeffcen d Bézou d a( X ) e b( X ). Come per numer ner, massm comun dvsor d due polnom fssa sono a due a due assoca. Il prossmo rsulao è analogo alla Proposzone 6.6. Proposzone.5 Sano a( X ), b( X ) K[ X ] e sa d( X ) un massmo comune dvsore d a( X ) e b( X ). Allora massm comun dvsor d a( X ) e b( X ) sono u e sol polnom ud( X ), ove u K *. Noa S ha d( X ) = 0 se e solo se a( X ) = b( X ) = 0. In u gl alr cas esse uno ed un solo massmo comune dvsore d a( X ) e b( X ) avene coeffcene dreore uguale a (un polnomo sffao s dce monco). Queso vene ndcao con l smbolo MCD( a( X ), b( X )). Anche n K[ X ] massm comun dvsor s deermnano con l'algormo delle dvson successve, d cu proponamo qu d seguo la versone per polnom. Sano a( X ), b( X ) K[ X ], enramb non null. S comnca effeuando la dvsone con reso d a( X ) per b( X ) : ) a( X ) = b( X ) q ( X ) + r ( X ) ( r ( X ) = 0 oppure r ( X ) 0 e deg( r ) < deg( b). ) Se r ( X ) 0, s prosegue effeuando la dvsone con reso d b( X ) per r ( X ) : b( X ) = r ( X ) q ( X ) + r ( X ) ( r ( X ) = 0 oppure r ( X ) 0 e deg( r ) < deg( r ).) ) Se r ( X ) 0, s prosegue effeuando la dvsone con reso d r ( X ) per r ( X ) : r ( X ) = r ( X ) q ( X ) + r ( X ). ( r 3 ( X ) = 0 oppure r 3 ( X ) 0 e deg( r3 ) < deg( r ).) 3) 3 3 Fnano che non s rova un reso nullo, s va avan, rcorsvamene, effeuando ogn vola la dvsone del penulmo reso per l'ulmo reso rovao. In queso modo, l passo -esmo fornsce l'uguaglanza:

4 .) r ( X ) = r ( X ) q ( X ) + r ( X ) ( r ( X ) = 0 oppure r ( X ) 0 e deg( r ) < deg( ). ) In base a quano osservao a margne delle uguaglanze.),.), 3.),.), (e che derva dalla condzone () del Teorema.), s conclude che la sequenza de grad de res non null è sreamene decrescene: r deg( ) > deg( ) > deg( ) > > deg( ) > r r r3 r Poché ques numer sono u maggor o ugual a zero, la sequenza de res non null non può essere nfna. Qund l nosro procedmeno s conclude con le seguen due uguaglanze: n.) rn 3( X ) = rn ( X ) qn ( X ) + rn ( X ) ( r ( ) 0 n X e deg( rn ) < deg( rn ). ) n. ) r ( X ) = r ( X ) q ( X ) n n n S prova allora che r ( ) n X è un massmo comune dvsore d a( X ) e b( X ) ; nfa vale la seguene proposzone, analoga alla Proposzone 6.8: Proposzone.6 Un massmo comune dvsore d due polnom non null (che non sano uno dvsore dell alro) è l'ulmo reso non nullo che compare nel relavo algormo delle dvson successve. Eserczo.7* Sano, come nell'esempo., che MCD( a( X ), b( X )) =. a( X ) = X + X e 3 b( X ) = X + X. Provare Nel reso d quesa lezone preseneremo, n K[ X ], nozon analoghe a quelle vse nella Lezone 7. Osservamo prelmnarmene che, n vrù del Corollaro 0.7, polnom nverbl d K[ X ] sono * u e sol quell cosan e non null (ossa, U ( K[ X ]) = K ), equvalenemene: polnom d grado zero. I prossm re enunca corrspondono, nell'ordne, alle Defnzon 7. e 7. e al Lemma 7.3. Defnzone.8 Un polnomo p( X ) K[ X ], non nullo e non nverble, s dce prmo se, per ogn a( X ), b( X ) K[ X ], Alrmen p( X ) s dce composo. p( X ) a( X ) b( X ) p( X ) a( X ) oppure p( X ) b( X ). Defnzone.9 Un polnomo p( X ) K[ X ], non nullo e non nverble, s dce rrducble se, per ogn a( X ), b( X ) K[ X ], p( X ) = a( X ) b( X ) a( X ) è nverble oppure b( X ) è nverble.

5 Alrmen p( X ) s dce rducble. Lemma.0 Sa p( X ) K[ X ] un polnomo non nullo e non nverble. Allora sono equvalen le seguen condzon. () p( X ) è prmo; () p( X ) è rrducble; () dvsor d p( X ) sono u e sol polnom u, up( X ), ove u K *. Osservazone. Rcordamo che, n base al Lemma 7.3, dvsor d un numero prmo p sono,, p, p. Dal confrono con la condzone () del Lemma.0 rsula che, sa nell'anello Z, sa nell'anello K[ X ] dvsor d un elemeno prmo (equvalenemene, rrducble) sono u e sol gl elemen nverbl ed prodo ra ques e l'elemeno sesso. D'ora n po sosuremo la condzone non nullo e non nverble con la condzone equvalene non cosane. Inolre useremo ermn prmo ed rrducble come snonm. Il prossmo enuncao, analogo al Lemma 7.5, s deduce dalla Defnzone.8 con un facle ragonameno nduvo. Lemma.* Sa p( X ) K[ X ] un polnomo prmo e sano a ( ),..., ( ) [ ] X a X K X al che p( X ) a ( X ) a ( X ). Allora p( X ) a ( X ) per qualche {,..., r}. r r Corollaro.3 Sa p( X ) K[ X ]. Se deg( p ) =, allora p( X ) è rrducble. Dmosrazone: Sano a( X ), b( X ) K[ X ] al che p( X ) = a( X ) b( X ). Allora, n base alla formula del grado per l prodoo (Proposzone 0. (b)), segue che Dunque, se deg( ), deg( p) = deg( a) + deg( b). deg( a),deg( b ) = 0,. Dunque uno ra a( X ) e b( X ) ha grado zero, p = allora { } { } ossa a( X ) è nverble oppure b( X ) è nverble. Cò prova che p( X ) è rrducble. Esempo. I polnom d grado maggore d non sono necessaramene rrducbl. Ad esempo, l polnomo quadraco f ( X ) = X + 3X + Q [ X ] è rducble, poché ammee la decomposzone f ( X ) = ( X + )( X + ) n cu nessuno de due faor a secondo membro è nverble. Nell'anello K[ X ], come nell'anello Z, vale un eorema d faorzzazone unca, ossa un enuncao analogo al Teorema 7.6. Teorema.5 (Teorema d faorzzazone unca) Sa f ( X ) K[ X ] un polnomo non cosane. Allora essono, per qualche nero posvo s, s polnom rrducbl p ( X ), p( X ),..., ps ( X ) K[ X ] al che

6 f ( X ) = p ( X ) p ( X ) p ( X ). (3) s Inolre, l numero s ed polnom p ( X ), p( X ),..., ps ( X ) sono unvocamene deermna a meno d molplcazone per polnom cosan non null. Dmosrazone: Supponamo per assurdo che essa polnomo non cosane per l quale non esse una decomposzone del po (3). Allora l'nseme C d al polnom è non vuoo. Sa D l'nseme de grad d al polnom; allora D è un soonseme non vuoo d N ed n quano ale, per l prncpo del mnmo (assoma d buon ordnameno), ammee un mnmo m. Sa f ( X ) C ale che deg( f ) = m. In parcolare f ( X ) non è allora un polnomo rrducble. Perano essono a( X ), b( X ) K[ X ] non nverbl al che f ( X ) = a( X ) b( X ). Allora a( X ), b( X ) sono non null e d grado posvo. D'alra pare, n base alla formula del grado per l prodoo, m = deg( f ) = deg( a) + deg( b), e qund, essendo deg( a ) > 0, deg( b) < m. Analogamene s deduce che deg( a) < m. Dunque a( X ), b( X ) C, qund a( X ), b( X ) s scrvono come prodo d polnom rrducbl, e qund lo sesso vale per f ( X ), conro l'poes. Cò prova che ogn polnomo non cosane d K[ X ] ammee una decomposzone del po (3). Supponamo ora che l polnomo non cosane f ( X ) K[ X ] ammea, olre ad (3), la seguene decomposzone, dove è un nero posvo e q ( X ), q( X ),..., q ( X ) K[ X ] sono polnom rrducbl: f ( X ) = q ( X ) q ( X ) q ( X ). () Provamo allora che s = e che, a meno d rordnare faor n (3) e n (), per ogn =,..., s s ha p = uq per qualche u * K. Procedamo per nduzone su s. Se s =, allora f ( X ) = p ( X ) è rrducble. Dalla () segue allora che =. Non può essere, nfa,, perché alrmen f ( X ) sarebbe l prodoo d q ( X ) e q ( ) ( ) X q X, che sono polnom non cosan e qund non nverbl, e dunque f ( X ) sarebbe rducble. Qund f ( X ) = q ( X ), e perano, n parcolare, p ( X ) = q ( X ). Cò prova la base dell'nduzone. Supponamo ora che sa s > e che la es sa vera per s. Dalla (3) e dalla () segue che s p ( X ) p ( X ) p ( X ) = q ( X ) q ( X ) q ( X ). (5) Poché p ( X ) dvde l prodoo a secondo membro, e p ( ) X è prmo, n vrù del Lemma.5, a meno d rordnare faor, s ha che p ( X ) q ( X ). Ma, n base al Lemma.0, dvsor d q ( X ) sono u e sol polnom nverbl ed prodo d ques ulm con q ( X ). Essendo p ( X ) non cosane, segue che * p = uq per qualche u K. Allora, essendo p ( ) X non nullo e qund cancellable, dalla (5) segue che p ( X ) p ( X ) = q ( X ) q ( X ), ove q ( X ) = u q ( X ) è s assocao a q ( ) X (v. Proposzone 6.6) e qund rrducble (v. Corollaro 6.8). Il numero d faor a prmo membro è s, menre faor a secondo membro sono, qund, per l'poes nduva, s ha s =, coè s =, e, a meno d rordnare faor, per ogn =,..., s, p = uq per qualche u * K. Cò conclude l passo nduvo e complea la dmosrazone.

7 Noa L'uguaglanza (3) s dce faorzzazone o decomposzone n faor rrducbl del polnomo f ( X ). I polnom p ( X ) (ed polnom ad ess assoca) s dcono faor rrducbl d f ( X ). Esempo.6 Sa, come nell'esempo., ammee le seguen faorzzazon: f ( X ) = X + 3X + Q [ X ]. Allora f ( X ) f ( X ) = ( X + )( X + ), f ( X ) = ( X )( X ), f ( X ) = (X + )( X + ). Quese sono solo re delle nfne faorzzazon f ( X ) = ( ax + a)( a X + a ), ove a Q. Nel prossmo eserczo, d caraere eorco, s esende all'anello K[ X ] la defnzone d elemen coprm (nrodoa nella Defnzone 6.0 per numer ner), e s rchede d adaare al caso de polnom le dmosrazon del Corollaro 6., della Proposzone 6. e lo svolgmeno dell'eserczo 7.. Eserczo.7* Sano a( X ), b( X ) K[ X ]. Provare che sono equvalen le seguen condzon. () MCD( a( X ), b( X )) = ; () essono s( X ), ( X ) K[ X ] al che s( X ) a( X ) + ( X ) b( X ) = ; () a( X ) e b( X ) non hanno faor prm n comune. Se valgono (), () e (), polnom a( X ) e b( X ) s dcono coprm.

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini.

Lezione 12. Funzioni polinomiali. Radici di un polinomio. Teorema di Ruffini. Lezone Peequs: Lezone. Funzon polnomal. Radc d un polnomo. Teoema d Ruffn. Sa K un campo e sa L un campo d cu K è soocampo (n al caso s dce anche che L è un'esensone d K). Sa f ( X ) K[ X ] e sa α L. Alloa,

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorema Fondamentale dell'artmetca Defnzone 7 Un nmero ntero p dverso da 0 e s dce prmo se per ogn a b Z Altrment p s dce composto p ab p a oppre

Dettagli

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE

CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI 1. LEGGI FINANZIARIE CAPITOLO PRIMO LEGGI E REGIMI FINANZIARI SOMMARIO:. Legg fnanzare. - 2. Regme fnanzaro dell neresse semplce e dello scono razonale. - 3. Regme fnanzaro dell neresse e dello scono composo. - 4. Tass equvalen.

Dettagli

Condensatore + - Volt

Condensatore + - Volt 1) Defnzone Condensaore Sruura: l condensaore è formao da due o pù superfc condurc, chamae armaure, separae da un maerale solane, chamao delerco. Equazon Caraersche: La ensone ra armaure è dreamene proporzonale

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria APPENDICE ATEATICA Elemen d maemaca fnanzara. Il regme dell neresse semplce L neresse è l fruo reso dall nvesmeno del capale. Nel corso dell esposzone s farà rfermeno a due regm o pologe d calcolo dell

Dettagli

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari

Lezione n. 2 di Controlli Automatici A prof. Aurelio Piazzi Modellistica ed equazioni differenziali lineari Cors d Laurea n Ingegnera Eleronca, Informaca e delle Telecomuncazon Lezone n. 2 d Conroll Auomac A prof. Aurelo Pazz dfferenzal lnear Unversà degl Sud d Parma a.a. 2009-2010 Cenn d modellsca (crcu elerc

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Regimi periodici non sinusoidali

Regimi periodici non sinusoidali Regm perodc non snusodal www.de.ng.unbo./pers/masr/ddaca.hm versone del -- Funzon perodche S dce che una funzone y è perodca se esse un > ale che per ogn e per ogn nero y y l pù pccolo valore d per cu

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Introduzione ai Processi Stocastici

Introduzione ai Processi Stocastici Capolo 1 Inroduzone a Process Socasc 1.1 Prme defnzon 1.1.1 Process socasc Rcordamo che uno spazo d probablà è una erna Ω, F, P dove Ω è un nseme, F è una σ-algebra d par d Ω, P è una msura d probablà

Dettagli

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie)

Oscillazioni libere e risonanza di un circuito RLC-serie (Trattazione analitica del circuito RLC-serie) Ing. Eleronca - II a Esperenza del aboraoro d Fsca Generale II Oscllazon lbere e rsonanza d un crcuo -sere (Traazone analca del crcuo -sere on quesa breve noa s vuole fornre la raazone eorca del crcuo

Dettagli

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t

Nel caso di un regime di capitalizzazione definiamo, relativamente al periodo [t, t + t] : i t 4. Approcco formale E neressane efnre le caraersche e var regm fnanzar n manera pù asraa e generale, n moo a poer suare qualsas regme fnanzaro. A al fne efnamo percò e paramer n grao escrvere qualsas po

Dettagli

Campo magnetico stazionario

Campo magnetico stazionario Campo magneco sazonaro www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Equazon fondamenal Equazon per l campo magneco H J B H B n d J n d Equazon d legame maerale ezzo lneare soropo B H H ) ( ezzo

Dettagli

LA SCOMPOSIZIONE DEI POLINOMI

LA SCOMPOSIZIONE DEI POLINOMI LA SCOMPOSIZIONE DEI POLINOMI 8 Per rcordare H Scomporre un polnomo sgnfca scrverlo come prodotto d altr polnom. Nella scomposzone d un polnomo non devono qund comparre operazon d addzone o sottrazone

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA. - Seconda prova scritta di ANALISI MATEMATICA 1 - APPELLO DEL 9 settembre 2013 UNIVERSITÀ DEGLI STUDI DELLA CALABRIA CORSI DI LAUREA IN INGEGNERIA - Seconda prova scria di ANALISI MATEMATICA - APPELLO DEL 9 seembre 0 COGNOME... NOME... MATRICOLA... IMPORTANTE Al ermine della prova

Dettagli

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k

Soluzioni 3.1. n(n 1) (n k + 1) z n k! k + 1 n k. lim k (1) La sere bnomale è B n (z) = k=0 Con l metodo del rapporto s ottene R = lm k Soluzon 3.1 n(n 1) (n k + 1) z n k! c k c k+1 = lm k k + 1 n k lm k c k z k. k=0 1 + 1 k 1 n k = 1 (2) La multfunzone f(z)

Dettagli

GENERATORE DI IMPULSO CON AMPLIFICATORE OPERAZIONALE

GENERATORE DI IMPULSO CON AMPLIFICATORE OPERAZIONALE GENEAOE DI IMPULSO CON AMPLIFICAOE OPEAZIONALE Un generaore d mpulso, o mulvbraore monosable, è un crcuo che presena due possbl sa: uno sao sable ed uno sao quas sable Il crcuo s rova, normalmene, nello

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Circuiti magnetici. (versione del ) Campo magnetico stazionario o quasi stazionario

Circuiti magnetici.  (versione del ) Campo magnetico stazionario o quasi stazionario Crcu magnec www.de.ng.unbo./pers/masr/ddaca.hm (versone del 3--) Campo magneco sazonaro o quas sazonaro Condzon sazonare: grandezze eleromagneche cosan nel empo Condzon quas sazonare: varazon nel empo

Dettagli

Determinare gli insiemi delle soluzioni dei seguenti sistemi lineari non omogenei e scriverli in forma di spazio affine ESERCIZIO 1.3.

Determinare gli insiemi delle soluzioni dei seguenti sistemi lineari non omogenei e scriverli in forma di spazio affine ESERCIZIO 1.3. Deermnare gl nsem delle soluon de seguen ssem lnear non omogene e srverl n forma d spao affne ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO ESERCIZIO 6 ESERCIZIO ESERCIZIO ESERCIZIO 9 ESERCIZIO SOLUZIONI

Dettagli

Equazioni di stato per circuiti del I ordine

Equazioni di stato per circuiti del I ordine Lezone 5 Equazon d sao per crcu del ordne Lezone n.5 Equazon d sao per crcu del ordne. Equazone d sao per crcu del ordne. Dmensone fsca de coeffcen dell equazone d sao. Esercz. sere e parallelo. L sere

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

Controllo predittivo (MPC o MBPC)

Controllo predittivo (MPC o MBPC) Conrollo predvo MPC o MBPC Nella sa formlaone pù enerale, l conrollo predvo consa d re dee d base:. L lo d n modello maemaco ao a prevedere le sce del processo nel san d empo fr l orone. Le sce fre, comprese

Dettagli

Capitolo 2 Le leggi del decadimento radioattivo

Capitolo 2 Le leggi del decadimento radioattivo Capolo Le legg del decadmeno radoavo. Sablà e nsablà nucleare Se analzzamo aenamene la cara de nucld, vedamo che n essa sono rappresena, olre a nucle sabl, anche var nucle nsabl. Con l ermne nsable s nende

Dettagli

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1

Lezione 6. Funzione di trasferimento. F. Previdi - Automatica - Lez.6 1 Lezone 6. Funzone d rafermeno F. Prevd - uomaca - Lez.6 Schema della lezone. Defnzone (operava). Inerpreazone della funzone d rafermeno 3. Funzone d rafermeno: pol e zer 4. Funzone d rafermeno: paramerzzazon.

Dettagli

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima

4. ALGORITMI GREEDY. cambia-monete scheduling a minimo il ritardo. Il problema del cambia-monete. Proprietà di una soluzione ottima Il problema del camba-monete. ALGORITMI GREEDY camba-monete schedulng a mnmo l rtardo Scopo. Dat tagl dsponbl: c, c, 5c, 0c, 0c, 50c,, progettare un algortmo che data una certa somma la camb usando l mnmo

Dettagli

Componenti dotati di memoria (dinamici)

Componenti dotati di memoria (dinamici) omponen doa d memora (dnamc) S raa d componen elerc che esprmono una relazone cosua ra ensone e correne che rchama anche alor d ensone e/o correne rfer ad san d empo preceden. a relazone cosua è n queso

Dettagli

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi

Allenamenti di matematica: Teoria dei numeri e algebra modulare Soluzioni esercizi Allenament d matematca: Teora de numer e algebra modulare Soluzon esercz 29 novembre 2013 1. Canguro salterno. Un canguro salterno s trova a ped d una scala nfnta che ntende salre nel seguente modo: Salta

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Definizione della tariffa per l accertamento di conformità degli strumenti di misura

Definizione della tariffa per l accertamento di conformità degli strumenti di misura alla delberazone d Guna n. 2 del 20.0.2009 Defnzone della arffa per l accerameno d conformà degl srumen d msura. Per l accerameno d conformà degl srumen d msura sono defne le seguen 8 class arffare: denfcavo

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale EETTROTECNICA Ingegnera Indusrale UTUE INDUTTANZE CIRCUITI AGNETICI Sefano Pasore Dparmeno d Ingegnera e Archeura Corso d Eleroecnca 043IN a.a. 03-4 È un componene dnamco a due pore conservavo del II ordne

Dettagli

Lezione 24. Campi finiti.

Lezione 24. Campi finiti. Lezoe 4 Prerequst: Lezo 0,,, 3 Rfermet a test: [FdG] Sezoe 86; [H] Sezoe 79; [PC] Sezoe 63; Cam ft Nelle lezo recedet abbamo vsto dvers esem d cam ft: ess erao tutt del to oure [ x ]/( f ( x )), dove f

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

CINQUE CONCETTI CHIAVE

CINQUE CONCETTI CHIAVE CINQUE CONCETTI CHIAVE - Tasso d dsoccupazone : p. 2 - Tasso d nflazone : p. 3 - Tasso d cresca del l : p. 4 - Tasso d neresse : pp. 5-7 - Tasso d cambo : pp. 8-3 G.Garofalo Tasso d dsoccupazone op.ava

Dettagli

Bayes. stati del mondo

Bayes. stati del mondo ayes Sao del mondo Se ndchamo con uno sao del mondo e un eveno, la probablà d dao ndca che s manfesa dao che è lo sao del mondo. Qund l eveno può essere pensao anche come uno sao del mondo. La formula

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

INDICE. Capitalizzazione Pagina 3 Sconto e valore attuale Pagina 10 Equivalenza finanziaria e operazioni composte Pagina 14 Rendite Pagina 16

INDICE. Capitalizzazione Pagina 3 Sconto e valore attuale Pagina 10 Equivalenza finanziaria e operazioni composte Pagina 14 Rendite Pagina 16 MATEMATICA FINANZIARIA www.marosandr. INDICE Capalzzazone Pagna 3 Scono e valore auale Pagna 0 Equvalenza fnanzara e operazon compose Pagna 4 Rende Pagna 6 2 CAPITALIZZAZIONE Defnzon Il conrao d preso

Dettagli

Esercitazione sulle Basi di di Definizione

Esercitazione sulle Basi di di Definizione Eserctazone sulle as d d Defnzone ESERIZIO Un bpolo ressto (dodo) ha la seguente equazone: = k [ 0 + 00] con k 0 nella quale ed sono descrtt dalla conenzone degl utlzzator come n fgura. Stablre se l bpolo

Dettagli

Risoluzione quesiti I esonero 2011

Risoluzione quesiti I esonero 2011 Rsoluzone quest I esonero 011 1) Compto 1 Q3 Un azenda a a dsposzone due progett d nvestmento tra d loro alternatv. Il prmo prevede l pagamento d un mporto par a 100 all epoca 0 e fluss par a 60 all epoca

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

Definizione. Algoritmi di Change Detection - foreground. background

Definizione. Algoritmi di Change Detection - foreground. background Algorm d Change Deecon - Defnzone 1 Change Deecon: rlevameno de cambamen n mmagn della sessa scena acquse n san dfferen. Inpu: due o pu mmagn della scena. Oupu: mmagne bnara dea Change Mask che ad ogn

Dettagli

MISURA DELLA CAPACITA DI UN CONDENSATORE TRAMITE UN CIRCUITO RC

MISURA DELLA CAPACITA DI UN CONDENSATORE TRAMITE UN CIRCUITO RC MISUA DELLA CAACITA DI UN CONDENSATOE TAMITE UN CICUITO C Spermenaor: Marco Erculan (n marcola: 4549.O) Ivan Noro (n marcola: 458656.O) Duraa dell espermeno:.5 ore ( dalle ore 9: alle ore :) Daa d effeuazone:

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

NOTA METODOLOGICA INDICI SINTETICI PER CONFRONTI TEMPORALI: UN INDICE STATICO E UNO DINAMICO

NOTA METODOLOGICA INDICI SINTETICI PER CONFRONTI TEMPORALI: UN INDICE STATICO E UNO DINAMICO Noa meodologca - Indc snec per confron emporal 53 INDICI SINTETICI PER CONFRONTI TEMPORALI: UN INDICE STATICO E UNO DINAMICO Uno de prncpal problem nella cosruzone d ndc snec rguarda la scela d meod che

Dettagli

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007

Metodi quantitativi per la stima del rischio di mercato. Aldo Nassigh. 16 Ottobre 2007 Meod quanav per la sma del rscho d mercao Aldo Nassgh 16 Oobre 007 METODI NUMERICI Boosrap della curva de ass Prncpal Componen Analyss Rsk Mercs Meod d smulazone per l calcolo del VaR basa su Full versus

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Napol Parthenope acoltà d Ingegnera Corso d Metod Probablstc Statstc e Process Stocastc docente: Pro. Vto Pascazo 20 a Lezone: /2/2003 Sommaro Dstrbuzon condzonate: CD, pd, pm Teorema della

Dettagli

Processi periodici. Capitolo 2. 2.1 Modello. 2.1.1 Simboli. 2.1.2 Grafico dei processi. {τ 1,...,τ n } processi periodici

Processi periodici. Capitolo 2. 2.1 Modello. 2.1.1 Simboli. 2.1.2 Grafico dei processi. {τ 1,...,τ n } processi periodici 3 Capolo 2 Process perodc 2. Modello 2.. Smbol {,...,τ n } process perodc τ,k sanza k-esma del processo φ fase d un processo (prmo empo d avazone) T perodo del processo r,k = φ +(k ) T k-esma avazone D

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017. Esercizi 3 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/2017 Esercz 3 Pan d ammortamento Eserczo 1. Un prestto d 12000e vene rmborsato n 10 ann con rate mensl e pano all

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Principi di ingegneria elettrica. Lezione 2 a

Principi di ingegneria elettrica. Lezione 2 a Prncp d ngegnera elettrca Lezone 2 a Defnzone d crcuto elettrco Un crcuto elettrco (rete) è l nterconnessone d un numero arbtraro d element collegat per mezzo d fl. Gl element sono accessbl tramte termnal

Dettagli

RESISTENZA A FLESSIONE, A TAGLIO E RIGIDEZZA ROTAZIONALE DI UN GIUNTO

RESISTENZA A FLESSIONE, A TAGLIO E RIGIDEZZA ROTAZIONALE DI UN GIUNTO RESISTENZA A FLESSIONE, A TAGLIO E RIGIDEZZA ROTAZIONALE DI UN GIUNTO FLANGIATO CON GINOCCHIO ) Inro Vene svolo l calcolo del momeno ressene, della ressenza a aglo e della rgdezza roazonale d un guno flangao

Dettagli

LEZIONE 11. Argomenti trattati

LEZIONE 11. Argomenti trattati LEZIONE LE ECONOMIE PERTE (2) Il modello IS-LM n regme d camb fss e d camb flessbl rgoment trattat S esamnano gl effett delle poltche macroeconomche n economa aperta consderando tre modell Il modello IS-LM

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

CAPITOLO 2: PRIMO PRINCIPIO

CAPITOLO 2: PRIMO PRINCIPIO Introduzone alla ermodnamca Esercz svolt CAIOLO : RIMO RINCIIO Eserczo n 7 Una certa quanttà d Hg a = atm e alla temperatura = 0 C è mantenuta a = costante Quale dventa la se s porta la temperatura a =

Dettagli

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali

Lezione n. 10. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità Convenzioni per le soluzioni reali Chmca Fsca - Chmca e Tecnologa Farmaceutche Lezone n. 10 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Convenzon per le soluzon real Relazon tra coeffcent d attvtà 02/03/2008 Antonno

Dettagli

PROBLEMA DI SCELTA FRA DUE REGIMI DI

PROBLEMA DI SCELTA FRA DUE REGIMI DI PROBLEMA DI SCELTA FRA DUE REGIMI DI CAPITALIZZAZIONE Prerequst: legge d captalzzazone semplce legge d captalzzazone composta logartm e loro propretà dervate d una funzone pendenza d una curva n un punto

Dettagli

RESISTENZA TERMICA E MECCANISMI COMBINATI

RESISTENZA TERMICA E MECCANISMI COMBINATI Corso d Fsca Tecnca a.a. 2010/2011 - Docene: Prof. Carlo Ise RESISTENZA TERMICA E MECCANISMI COMBINATI 12.1 RESISTENZE TERMICHE Per analzzare process d rasmssone n cu sano conemporaneamene presen fenomen

Dettagli

Matematica Finanziaria. Lezione 3

Matematica Finanziaria. Lezione 3 1 Maemaica Finanziaria Lezione 3 Regime finanziario di capializzazione a ineressi anicipai Ponendo: C = Capiale iniziale M = Capiale disponibile in (capiale finale I= Ineresse d = asso di scono della legge

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Calcolo di integrali - svolgimento degli esercizi

Calcolo di integrali - svolgimento degli esercizi Calcolo di inegrali - svolgimeno degli esercizi Calcoliamo una primiiva di cos(e 5. Inegriamo due vole per pari, scegliendo e 5 d come faore differenziale e cos( come faore finio. Si ha cos(e 5 d e5 5

Dettagli

Lezione 13. Anelli ed ideali.

Lezione 13. Anelli ed ideali. Lezoe 3 Prerequst: Aell e sottoaell. Sottogrupp. Rfermet a test: [FdG] Sezoe 5.2; [H] Sezoe 3.4; [PC] Sezoe 4.2 Aell ed deal. Rcordamo la seguete defzoe, data el corso d Algebra : Defzoe 3. S dce aello

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 7 2 Maggio 2011

Università di Siena Sede di Grosseto Secondo Semestre 2010-2011. Macroeconomia. Paolo Pin ( pin3@unisi.it ) Lezione 7 2 Maggio 2011 Unversà d Sena Sede d Grosseo Secondo Semesre 200-20 acroeconoma Paolo Pn ( pn3@uns. ) Lezone 7 2 aggo 20 La lezone d ogg Rpasso e conclusone capolo 4 qulbro nel mercao della monea e la relazone L Polca

Dettagli

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio

I Appello di Calcolo delle Probabilità Cognome: Laurea Triennale in Matematica 2014/15 Nome: 29 gennaio I Appello d Calcolo delle Probabltà Cognome: Laurea Trennale n Matematca 24/5 Nome: 29 gennao 25 Emal: Se non è espressamente ndcato l contraro, per la soluzone degl esercz è possble usare tutt rsultat

Dettagli

Corso di Misure Geodeiche Esercizio posizionameno relaivo Versione:. Jun. 00 Creao da Marco Scurai. remessa. La presene eserciazione risolve in modo compleo e deagliao un problema di sima della posizione

Dettagli

Allocazione Statica. n i

Allocazione Statica. n i Esercazon d Sse Inegra d Produzone Allocazone Saca I eod asa sull'allocazone saca scheazzano l processo d assegnazone delle rsorse alle par consderandolo da un lao ndpendene dal epo e rascurando dall'alro

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Osservatorio dinamica prezzi dispositivi medici Assobiomedica - CEr. Presentazione. Assobiomedica Centro Studi

Osservatorio dinamica prezzi dispositivi medici Assobiomedica - CEr. Presentazione. Assobiomedica Centro Studi Osservaoro dnamca prezz dsposv medc Assobomedca - CEr Presenazone Assobomedca Cenro Sud L Osservaoro L ndagne è condoa dal CER a cadenza semesrale presso le mprese assocae ad Assobomedca per rlevare la

Dettagli

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica! "#$

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica! #$ UNIVERITA DEGLI TUDI DI FIRENZE Facolà d Ingegnera Corso d Laurea n Ingegnera Informaca! "#$ ##%& ' ommaro OMMARIO... 1 INTRODUZIONE... 2 1.1 I DATI BIOLOGICI COME EQUENZE DI IMBOLI... 3 1.1.1 Qualà delle

Dettagli

Lezione 9. Congruenze lineari. Teorema Cinese del Resto.

Lezione 9. Congruenze lineari. Teorema Cinese del Resto. Lezoe 9 Prerequt: Lezoe 8. Cogrueze lear. Teorema Cee el Reto. Nella Lezoe 8 abbamo vto che a caua ella compatbltà ella cogrueza moulo rpetto alle operazo artmetche le relazo cogrueza moulo pooo eere ottopote

Dettagli

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 10: 6-7 Maggio Meccanismi con Pagamenti: Applicazioni e Limiti

Strumenti della Teoria dei Giochi per l Informatica A.A. 2009/10. Lecture 10: 6-7 Maggio Meccanismi con Pagamenti: Applicazioni e Limiti trument della Teora de Goch per l Informatca A.A. 2009/0 Lecture 0: 6-7 Maggo 200 Meccansm con Pagament: Applcazon e Lmt ocente Paolo Penna Note redatte da: Paolo Penna Lezone precedente Funzon d scelta

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo La funzone d domanda ndvduale e l denttà d Slutsky. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fa:

Dettagli

Matematica elementare art.1 di Raimondo Valeri

Matematica elementare art.1 di Raimondo Valeri Matematca elemetare art. d Ramodo Valer I questo artcolo voglamo provare che esste ua formula per calcolare l umero de dvsor d u dato umero aturale seza cooscere la scomposzoe fattor prm del umero stesso.

Dettagli

I COMPONENTI DEGLI IMPIANTI TERMICI 2 parte

I COMPONENTI DEGLI IMPIANTI TERMICI 2 parte I comonen degl man ermc II.8 I COMPONENTI DEGLI IMPIANTI TERMICI are II. Generalà sulle macchne a fludo Per "macchna" s nende normalmene un ssema comao d organ (fss e mobl) n grado d effeuare una rasformazone

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Regime di capitalizzazione composta

Regime di capitalizzazione composta Regme d capalzzazoe composa Se s deposa baca, all zo dell ao, ua somma d 000 ad u asso auale uaro =0,05 oppure r=5%, dopo ao ale somma frua u eresse par a I = = 000 0,05 = 50 che aggugedos al capale zale

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

- Transitori nelle reti RC ed RL. prof. Cleto Azzani IPSIA Moretto Brescia 12/11/95 - SOMMARIO

- Transitori nelle reti RC ed RL. prof. Cleto Azzani IPSIA Moretto Brescia 12/11/95 - SOMMARIO - SOMMAIO FNOMNI ANSIOI IN IUII... serczo :... Osservazon... 6 AIA DI UN ONDNSAO A ON OSAN... 7 Osservazon... 7 IUII FOMAOI DI IMPUSO... 7 Osservazon... 8 FNOMNI ANSIOI IN IUII... 9 Osservazon... 0 AIA

Dettagli

Premessa essa sulle soluzioni

Premessa essa sulle soluzioni Appunt d Chmca La composzone delle soluzon Premessa sulle soluzon...1 Concentrazone...2 Frazone molare...2 Molartà...3 Normaltà...4 Molaltà...4 Percentuale n peso...4 Percentuale n volume...5 Massa per

Dettagli

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n

x 0 x 50 x 20 x 100 CASO 1 CASO 2 CASO 3 CASO 4 X n X n X n X n Corso d Statstca docente: Domenco Vstocco La msura della varabltà per varabl qualtatve ordnal Lo studo della varabltà per varabl qualtatve ordnal può essere condotto servendos degl ndc d omogenetà/eterogenetà

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Regolamento dell Indice. Banca IMI Protected Basket Index June 2015 A

Regolamento dell Indice. Banca IMI Protected Basket Index June 2015 A Sede legale n Pazzea Gordano Dell Amore 3, 20121 Mlano scra all Albo delle Banche con l n. 5570 Soceà apparenene al Gruppo Bancaro Inesa Sanpaolo scro all Albo de Grupp Bancar Soceà soggea alla drezone

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2016/ Esercizi 2 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE AA 2016/2017 1 Esercz 2 Regme d sconto commercale Eserczo 1 Per quale durata una somma a scadenza S garantsce lo stesso valore

Dettagli

() t. B = insieme di segnali. M = { s 1 (t),, s i (t),, s m (t) } 1 b 1 (t) = 0 ) 2 b 2 (t) = 0 ) Lo spazio dei segnali. Lo spazio dei segnali

() t. B = insieme di segnali. M = { s 1 (t),, s i (t),, s m (t) } 1 b 1 (t) = 0 ) 2 b 2 (t) = 0 ) Lo spazio dei segnali. Lo spazio dei segnali Lo spazo e segnal Lo spazo e segnal Inroucao una rappresenazone veorale e segnal ella cosellazone M Serve a seplfcare proble n rcezone, ove nvece lavorare con le fore ona s (), è pù seplce lavorare con

Dettagli

Page 1. u S i S I on + Accensione: diodo ideale. U off. i D. Snubber. tfu

Page 1. u S i S I on + Accensione: diodo ideale. U off. i D. Snubber. tfu Accensone: dodo deale OO I ELETTONIA INUTIALE u n u - n nubber - fu Fnchè s < n l dodo resa n conduzone e la ensone sull nerruore rmane cosane al valore Accensone: poenza dsspaa u u fu P = U I on off on

Dettagli

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo

{ 1, 2,..., n} Elementi di teoria dei giochi. Giovanni Di Bartolomeo Università degli Studi di Teramo Element d teora de goch Govann D Bartolomeo Unverstà degl Stud d Teramo 1. Descrzone d un goco Un generco goco, Γ, che s svolge n un unco perodo, può essere descrtto da una Γ= NSP,,. Ess sono: trpla d

Dettagli