Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cognome Nome: Matricola: Corso di Laurea: Fondamenti di Controlli Automatici - A.A. 2011/12 20 settembre Domande Teoriche"

Transcript

1 Fondamenti di Controlli Automatici - A.A. / settembre - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si ritengono giuste. In ogni quiz almeno una affermazione è corretta.. A partire dalla risposta al gradino mostrata in figura è possibile stimare la posizione dei poli dominanti del sistema? no; sì, p 3±j; sì, p ±j5; sì, p 6±j; Amplitude Step Response Time (sec). Se al sistema ẏ(t)+4y(t) = 4u(t) si applica l ingresso u(t) = sin(4t), a regime l uscita sarà: y(t) = sin(4t+45 o ) y(t) = sin(4t 45 o ) y(t) = 4 sin(4t+45 o ) y(t) = 4 sin(4t 45 o ) 3. Sia L[f(t)] = F(s) la trasformata di Laplace della funzione f(t). Vale la relazione: L [ ] df dt = s F(s) f( ) L [ df dt] = sf(s) L [ df dt] = sf(s) f( ) L [ ] df dt = F(s) s 4. Il diagramma di Bode delle ampiezze di figura corrisponde alla funzione di trasferimento (supposta a fase minima): 56(s+) (s+.)(s +3.s+64) 56(s+.) (s+)(s +3.s+64) 45(s+.) (s+)(s +3.s+64) 45(s+) (s+.)(s +3.s+64) db ampiezza 4 rad/sec 5. Il valore iniziale della risposta al gradino unitario del sistema G(s) = 3s3 +s + 4s 3 +5s +s+ 3/4; ; ;. è pari a:

2 6. Dato il sistema G(s) = stabile) risulta (s+3) s (s +4s+5) errore a regime nullo per ingresso a gradino errore a regime limitato ma non nullo per ingresso a rampa errore a regime nullo per ingresso a rampa errore a regime nullo per ingresso a parabola posto in retroazione unitaria negativa (che si suppone 7. Il diagramma di Bode delle ampiezze del sistema G(s) = (s+z )(s z ) s(s+p )(s+p ) con < z < z < p < p, per ω presenta: pendenza di - db/decade pendenza di -4 db/decade pendenza di -6 db/decade pendenza di -8 db/decade 8. Si consideri un equazione caratteristica nella quale compaiono solamente le potenze pari di s. Utilizzando il criterio di Routh è possibile affermare che l equazione caratteristica: ha soluzioni simmetriche rispetto all origine ha lo stesso numero di radici a parte reale strettamente positiva e strettamente negativa ha un polo nell origine ha tutti le radici a parte reale positiva 9. Il margine di fase del sistema G(s) = s : vale vale π/ vale π non è definibile. Il sistema G(s) =, τ >, di cui in figura è riportato il diagramma di Nyquist per valori s (+τs) positivi delle ω, posto in retroazione negativa con un guadagno k: sarà stabile k sarà stabile k > sarà stabile k < sarà sempre instabile Imaginary Axis Nyquist Diagram Real Axis

3 Fondamenti di Controlli Automatici - A.A. / settembre - Esercizi Cognome Nome: Matricola: Corso di Laurea: a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali temporali x i (t): x (t) = δ(t) +sin(t/)e t, x (t) = +t e 5t +cos ( 3(t+ π )) b) Calcolare la risposta impulsiva g i (t) delle seguenti funzioni di trasferimento G i (s): G (s) = 9s +8s+5 s 3 +s +s, G (s) = s +9s+6 (s+4) (s ) c) Data la funzione di trasferimento G(s) = (+.s)(s+5) (s +6s+34)(s+)(+s) c.) Disegnare l andamento qualitativo della risposta y(t) a un gradino in ingresso di ampiezza 4, x(t) = 4. c.) Calcolare il valore a regime y dell uscita y(t) del sistema. c.3) Stimare qualitativamente il tempo di assestamento T a del sistema e il periodo T ω dell eventuale oscillazione smorzata. d) Dato il seguente schema a blocchi: C X(s) A B Y(s) utilizzando la formula di Mason calcolare la funzione di trasferimento G(s) che lega l ingresso X(s) all uscita Y(s): G(s) = Y(s) X(s) =

4 e) Sia dato il seguente sistema retroazionato: r(t) e(t) K G(s) (5 s)(+s) s (s +3s+) y(t) e.) Determinare per quali valori del parametro K il sistema retroazionato è asintoticamente stabile. e.) Disegnare qualitativamente il diagramma di Nyquist completo della funzione G(s). Calcolare esattamente la posizione di eventuali asintoti e, se esistono, le intersezioni con l asse reale. e.3) Calcolare, in funzione di K, l errore a regime e (t) per ingresso a parabola r(t) = t. e.4) Posto K =, tracciare(nello schema fornito in allegato) i diagrammi di Bode asintotici delle ampiezze e della fasi del guadagno di anello K G(s). Indicare sui diagrammi il margine di ampiezza e il margine di fase. Infine, fornire una stima della larghezza di banda del sistema retroazionato. f) Non è richiesto lo svolgimento di questo esercizio agli iscritti ad Ingegneria Ambientale. Con riferimento al sistema descritto nell esercizio e), tracciare qualitativamente il luogo delle radici del sistema retroazionato per valori negativi del parametro K. Determinare esattamente gli asintoti, le intersezioni ω con l asse immaginario e i corrispondenti valori K del guadagno.

5 Fondamenti di Controlli Automatici - A.A. / settembre - Domande Teoriche Cognome Nome: Matricola: Corso di Laurea: Per ciascuno dei test a soluzione multipla segnare con una crocetta tutte le affermazioni che si ritengono giuste. In ogni quiz almeno una affermazione è corretta.. A partire dalla risposta al gradino mostrata in figura è possibile stimare la posizione dei poli dominanti del sistema? no; sì, p 3±j; sì, p ±j5; sì, p 6±j; Amplitude Step Response Time (sec). Se al sistema ẏ(t)+4y(t) = 4u(t) si applica l ingresso u(t) = sin(4t), a regime l uscita sarà: y(t) = sin(4t+45 o ) y(t) = sin(4t 45 o ) y(t) = 4 sin(4t+45 o ) y(t) = 4 sin(4t 45 o ) 3. Sia L[f(t)] = F(s) la trasformata di Laplace della funzione f(t). Vale la relazione: L [ ] df dt = s F(s) f( ) L [ df dt] = sf(s) [ L df dt] = sf(s) f( ) L [ ] df dt = F(s) s 4. Il diagramma di Bode delle ampiezze di figura corrisponde alla funzione di trasferimento (supposta a fase minima): G(s) = 56(s+) (s+.)(s +3.s+64) 56(s+.) (s+)(s +3.s+64) 45(s+.) (s+)(s +3.s+64) 45(s+) (s+.)(s +3.s+64) db ampiezza 4 rad/sec 5. Il valore iniziale della risposta al gradino unitario del sistema G(s) = 3s3 +s + 3/4; 4s 3 +5s +s+ è pari a: ; ;.

6 (s+3) 6. Dato il sistema G(s) = posto in retroazione unitaria negativa (che si suppone s (s +4s+5) stabile) risulta errore a regime nullo per ingresso a gradino errore a regime limitato ma non nullo per ingresso a rampa errore a regime nullo per ingresso a rampa errore a regime nullo per ingresso a parabola 7. Il diagramma di Bode delle ampiezze del sistema G(s) = (s+z )(s z ) s(s+p )(s+p ) con < z < z < p < p, per ω presenta: pendenza di - db/decade pendenza di -4 db/decade pendenza di -6 db/decade pendenza di -8 db/decade 8. Si consideri un equazione caratteristica nella quale compaiono solamente le potenze pari di s. Utilizzando il criterio di Routh è possibile affermare che l equazione caratteristica: ha soluzioni simmetriche rispetto all origine ha lo stesso numero di radici a parte reale strettamente positiva e strettamente negativa ha un polo nell origine ha tutti le radici a parte reale positiva 9. Il margine di fase del sistema G(s) = s : vale vale π/ vale π non è definibile. Il sistema G(s) =, τ >, di cui in figura è riportato il diagramma di Nyquist per valori s (+τs) positivi delle ω, posto in retroazione negativa con un guadagno k: sarà stabile k sarà stabile k > sarà stabile k < sarà sempre instabile Imaginary Axis 5 5 Nyquist Diagram Real Axis

7 Fondamenti di Controlli Automatici - A.A. / settembre - Esercizi Cognome Nome: Matricola: Corso di Laurea: a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali temporali x i (t): Soluzione: x (t) = δ(t) +sin(t/)e t, x (t) = +t e 5t +cos ( 3(t+ π )) X (s) = + [ ], X (s+) + (s) = s + 4 (s+5) + s 3 s s +3 eπ b) Calcolare la risposta impulsiva g i (t) delle seguenti funzioni di trasferimento G i (s): G (s) = 9s +8s+5 s 3 +s +s, G (s) = s +9s+6 (s+4) (s ) Soluzione: La funzione G (s) può essere scomposta in fratti semplici nel seguente modo G (s) = 5 s + +j s+ 3j + j s++3j di conseguenza la risposta impulsiva (ovvero l anti-trasformata di Laplace) risulta g (t) = 5+ 5e t cos(3t+.4636rad) = 5+ 5e t cos(3t+6.56 ) La funzione G (s) può essere riscritta come G (s) = di conseguenza la sua risposta impulsiva risulta c) Data la funzione di trasferimento G(s) = 3 (s+4) + (s ) g (t) = 3te 4t +e t (+.s)(s+5) (s +6s+34)(s+)(+s) c.) Disegnare l andamento qualitativo della risposta y(t) a un gradino in ingresso di ampiezza 4, x(t) = 4. Soluzione: Il sistema ha un polo dominante reale p =. pertanto la risposta al gradino sarà di tipo aperiodico. In figura è riportata la risposta del sistema.

8 .3 y.5. y(t).5..5 T a c.) Calcolare il valore a regime y dell uscita y(t) del sistema. Soluzione: La risposta a regime al gradino di ampiezza A = 4 risulta y = AG() = 4.74 =.96. c.3) Stimare qualitativamente il tempo di assestamento T a del sistema e il periodo T ω dell eventuale oscillazione smorzata. Soluzione: Il sistema ha un polo dominante reale con costante di tempo τ = per cui la risposta sarà aperiodica e con un tempo di assestamento d) Dato il seguente schema a blocchi: T a = 3τ = 3 s. t C X(s) A B Y(s) utilizzando la formula di Mason calcolare la funzione di trasferimento G(s) che lega l ingresso X(s) all uscita Y(s): G(s) = Y(s) X(s) = A+AB +C +AB +A+C

9 e) Sia dato il seguente sistema retroazionato: r(t) e(t) K G(s) (5 s)(+s) s (s +3s+) y(t) e.) Determinare per quali valori del parametro K il sistema retroazionato è asintoticamente stabile. Soluzione: L equazione caratteristica del sistema retroazionato è: + K(5 s)(+s) s (s +3s+) = s4 +3s 3 +( K)s +9Ks+5K =. La tabella di Routh ha la seguente struttura: 4 K 5K 3 3 9K 5K + 3 5K 9K( 5K +3) 45K 5K Dalla riga e dalla riga si ricavano i seguenti vincoli: K < 3 =, K >. 5 Dalla riga si ottiene la seguente disequazione: 35K +655 > K < = 9.67 = K. Quindi il sistema retroazionato è asintoticamente stabile per: < K < K = La pulsazione ω corrispondente al valore limite K è: ω = 3K = 59 = e.) Disegnare qualitativamente il diagramma di Nyquist completo della funzione G(s). Calcolare esattamente la posizione di eventuali asintoti e, se esistono, le intersezioni con l asse reale. Soluzione: Il diagramma di Nyquist qualitativo della funzione G(s) è riportato in figura. Nyquist Diagram.5.5 Imaginary Axis Real Axis

10 Le funzioni approssimanti G (s) e G (s) per ω ed ω sono le seguenti: G (s) = s, G (s) = s. Le corrispondenti fasi ϕ e ϕ hanno il seguente valore: ϕ = π, ϕ = π. Il diagramma parte all infinito con fase iniziale ϕ = π e giunge nell origine con fase finale ϕ = π. Il parametro τ vale τ = =.77 > pertanto il diagramma parte in anticipo rispetto alla fase iniziale ϕ. Il parametro p vale p = 5 +3 = 7.5 > pertanto il diagramma arriva in anticipo rispetto alla fase finale ϕ. Lo sfasamento complessivo è ϕ = π. Essendo il sistema di tipo, il diagramma di Nyquist non presenta asintoti verticali. Dal diagramma risulta inoltre esistere un intersezione con l asse reale negativo, che in virtù dell analisi svolta con Routh al primo punto risulta essere pari a σ = /K = /9.67 =.5 e.3) Calcolare, in funzione di K, l errore a regime e (t) per ingresso a parabola r(t) = t. Il sistema G(s) è tipo per cui segnale di ingresso r(t) = t t = R solo con errore a regime non nullo: e (t) = R K a = 4 5K = 8 K. può essere inseguito e.4) Posto K =, tracciare(nello schema fornito in allegato) i diagrammi di Bode asintotici delle ampiezze e della fasi del guadagno di anello K G(s). Indicare sui diagrammi il margine di ampiezza e il margine di fase. Infine, fornire una stima della larghezza di banda del sistema retroazionato. Soluzione: I diagrammi di Bode delle ampiezze e delle fasi della funzione G(s) sono mostrati in Fig.. Sul diagramma asintotico delle ampiezze, il guadagno β in corrispondenza della pulsazione ω =.5 e il guadagno γ in corrispondenza della pulsazione ω = sono: β = 5 4dB, γ = 5 34dB. Il coefficiente di smorzamento della coppia di poli complessi coniugati è δ =.5 da cui si ricava M ωm = = dB. δ Il margine di ampiezza risulta : M a = 9.7(= 5.9dB) per ω = 7.68 rad/s, e il margine di fase: M f =. o per ω =.35 rad/s. La banda del sistema retroazionato può essere stimata sulla base della pulsazione di incrocio del sistema in catena aperta e sarà quindi [,.] rad/s. f) Non è richiesto lo svolgimento di questo esercizio agli iscritti ad Ingegneria Ambientale. Con riferimento al sistema descritto nell esercizio e), tracciare qualitativamente il luogo delle radici del sistema retroazionato per valori negativi del parametro K. Determinare esattamente gli asintoti, le intersezioni ω con l asse immaginario e i corrispondenti valori K del guadagno.

11 ampiezza db 5 5 rad/sec fase 5 gradi rad/sec Figura : Diagrammi di Bode della funzione G(s). Soluzione: Il guadagno della G(s) nella forma poli-zeri è negativo, pertanto il guadagno K = K quando K < sarà positivo. Pertanto il luogo delle radici verrà tracciato per K >. Gli asintoti sono, essendo il grado relativo, e il centro degli asintoti è il punto di ascissa σ a = ( ) = 3.75 Il luogo delle radici finale per valori positivi di K è riportato nella seguente figura. Dall analisi svolta mediante il criterio di Routh, risulta che il sistema per K < è instabile, come si può osservare nel luogo delle radici in cui un ramo uscente da uno dei due poli nell origine passa subito al semipiano destro.

12 Root Locus 4 3 Imaginary Axis Real Axis Figura : Luogo delle radici

13 Diagrammi di Bode Cognome Nome: Matricola: Corso di Laurea: Bode Plot argg(jω) G(jω)

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Fondamenti di Controlli Automatici - A.A. 7/8 4 Dicembre 7 - Esercizi Compito A Nr. Nome: Nr. Mat. Firma: a) Determinare la trasformata di Laplace X i (s) dei seguenti segnali temporali x i (t): x (t)

Dettagli

Nome: Nr. Mat. Firma:

Nome: Nr. Mat. Firma: Controlli Automatici - A.A. 1/11 Ingegneria Gestionale 13 Settembre 11 - Esercizi Nome: Nr. Mat. Firma: Rispondere alle seguenti domande. a) Calcolare la trasformata di Laplace X(s) dei seguenti segnali

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

Graficazione qualitativa del luogo delle radici

Graficazione qualitativa del luogo delle radici .. 5.3 1 Graficazione qualitativa del luogo delle radici Esempio. Si faccia riferimento al seguente sistema retroazionato: d(t) G(s) r(t) e(t) K 1(s 1) s(s + 1)(s + 8s + 5) y(t) Per una graficazione qualitativa

Dettagli

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità

Capitolo. Stabilità dei sistemi di controllo. 8.1 Generalità. 8.2 Criterio generale di stabilità. 8.3 Esercizi - Criterio generale di stabilità Capitolo 7 Stabilità dei sistemi di controllo 8.1 Generalità 8. Criterio generale di stabilità 8.3 Esercizi - Criterio generale di stabilità 8.4 Criterio di stabilità di Nyquist 8.5 Esercizi - Criterio

Dettagli

Prova scritta di Controlli Automatici - Compito A

Prova scritta di Controlli Automatici - Compito A Prova scritta di Controlli Automatici - Compito A 21 Marzo 27 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare quali sono le affermazioni vere. 1. Si consideri

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno

FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Prof. Matteo Corno POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA (Ingegneria Gestionale) Anno Accademico 2014/15 Seconda Prova in Itinere 12/02/2015 COGNOME... NOME... MATRICOLA... FIRMA.... Verificare che il fascicolo

Dettagli

SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE. ESERCIZI SUL CRITERIO DI BODE Completamente svolti

SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE. ESERCIZI SUL CRITERIO DI BODE Completamente svolti SISTEMI AUTOMATICI ED ORGANIZZAZIONE DELLA PRODUZIONE STABILITA DEI SISTEMI CRITERIO DI BODE ESERCIZI SUL CRITERIO DI BODE Completamente svolti A cura del prof. Michele ZIMOTTI 1 Esercizi sulla stabilità

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm CRITERIO DI ROUTH-HURWITZ

Dettagli

Prestazioni dei sistemi in retroazione

Prestazioni dei sistemi in retroazione Prestazioni dei sistemi in retroazione (ver..2). Sensitività e sensitività complementare Sia dato il sistema in retroazione riportato in Fig... Vogliamo determinare quanto è sensibile il sistema in anello

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA

ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANTITRASFORMATA DI LAPLACE MODI DI UN SISTEMA Ing. Federica Grossi Tel.

Dettagli

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura.

Per un corretto funzionamento dei sistema si progetta un controllo a retroazione secondo lo schema di figura. Tema di: SISTEMI ELETTRONICI AUTOMATICI Testo valevole per i corsi di ordinamento e per i corsi di progetto "SIRIO" - Indirizzo Elettronica e Telecomunicazioni 2001 Il candidato scelga e sviluppi una tra

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

Controlli Automatici T Regolatori PID

Controlli Automatici T Regolatori PID Parte 10bis Aggiornamento: Settembre 2010 Parte 3, 1 Regolatori PID Prof. Lorenzo Marconi DEIS-Università di Bologna Tel. 051 2093788 Email: lmarconi@deis.unibo.it URL: www-lar.deis.unibo.it/~lmarconi

Dettagli

Diagrammi di Bode. delle

Diagrammi di Bode. delle .. 3.2 delle Diagrammi di Bode La funzione di risposta armonica F(ω) = G(jω) può essere rappresentata graficamente in tre modi diversi: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols.

Dettagli

Prova scritta di Controlli Automatici e sistemi elettrici lineari

Prova scritta di Controlli Automatici e sistemi elettrici lineari Prova scritta di Controlli Automatici e sistemi elettrici lineari Corso di Laurea in Ingegneria Meccatronica, AA 202 203 7 Luglio 203 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta

Dettagli

Regolazione e Controllo dei Sistemi Meccanici

Regolazione e Controllo dei Sistemi Meccanici Regolazione e Controllo dei Sistemi Meccanici 01-07-2010 Si consideri il semplice schema di veicolo a trazione posteriore riportato in figura 1, il cui modello Figure 1: Modello cinematico del veicolo

Dettagli

Progetto del controllore

Progetto del controllore Parte 10, 1 - Problema di progetto Parte 10, 2 Progetto del controllore Il caso dei sistemi LTI a tempo continuo Determinare in modo che il sistema soddisfi alcuni requisiti - Principali requisiti e diagrammi

Dettagli

I Controllori PID (ver. 1.0)

I Controllori PID (ver. 1.0) I Controllori PID (ver..). Generalità dei controllori PID Una classe di controllori molto utilizzata in applicazioni industriali sono i controllori PID (o controllori standard). Essi elaborano il segnale

Dettagli

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo

SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html it/~lbiagiotti/sistemicontrollo html REGOLATORI STANDARD PID Ing. e-mail:

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Fondamenti di Automatica - I Parte Il progetto del controllore

Fondamenti di Automatica - I Parte Il progetto del controllore Fondamenti di Automatica - I Parte Il progetto del controllore Antonio Bicchi, Giordano Greco Università di Pisa 1 INDICE 2 Indice 1 Introduzione 3 2 Approssimazioni della f.d.t. in anello chiuso 5 3 Metodi

Dettagli

Prova scritta di Controlli Automatici

Prova scritta di Controlli Automatici Prova scritta di Controlli Automatici Corso di Laurea in Ingegneria Meccatronica, AA 2011 2012 10 Settembre 2012 Domande a Risposta Multipla Per ognuna delle seguenti domande a risposta multipla, indicare

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

I CONTROLLORI PID. Sono controllori molto utilizzati in applicazioni industriali. Elaborazione del segnale di ingresso attraverso 3 blocchi:

I CONTROLLORI PID. Sono controllori molto utilizzati in applicazioni industriali. Elaborazione del segnale di ingresso attraverso 3 blocchi: I CONTROLLORI PID Sono controllori molto utilizzati in applicazioni industriali. Elaborazione del segnale di ingresso attraverso 3 blocchi: Blocco Proporzionale Blocco Integrale Blocco Derivativo Funzione

Dettagli

LA FUNZIONE DI TRASFERIMENTO

LA FUNZIONE DI TRASFERIMENTO LA FUNZIONE DI TRASFERIMENTO Può essere espressa sia nel dominio della s che nel dominio della j Definizione nel dominio della s. è riferita ai soli sistemi con un ingresso ed un uscita 2. ha per oggetto

Dettagli

Soluzione del tema di: SISTEMI, AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE anno scolastico 2002 2003

Soluzione del tema di: SISTEMI, AUTOMAZIONE E ORGANIZZAZIONE DELLA PRODUZIONE anno scolastico 2002 2003 Soluzione del tema di: SISTEMI, AUTOMAZIONE E ORANIZZAZIONE DELLA PRODUZIONE anno scolastico 2002 2003 a cura di: V. Savi P. Nasuti. Tanzi Premessa Il sistema di regolazione proposto è evidentemente di

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale REGOLATORI STANDARD PID Ing. Luigi Biagiotti Tel. 51 29334 / 51 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Criteri di stabilità (ver. 1.2)

Criteri di stabilità (ver. 1.2) Criteri di stabilità (ver. 1.2) 1 1.1 Il concetto di stabilità Il concetto di stabilità è piuttosto generale e può essere definito in diversi contesti. Per i problemi di interesse nell area dei controlli

Dettagli

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0

LUOGO DELLE RADICI. G(s) H(s) 1+KG(s)H(s)=0 LUOGO DELLE RADICI Il progetto accurato di un sistema di controllo richiede la conoscenza dei poli del sistema in anello chiuso e dell influenza che su di essi hanno le variazioni dei più importanti parametri

Dettagli

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI

FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI FONDAMENTI DI AUTOMATICA / CONTROLLI AUTOMATICI Guida alla soluzione degli esercizi d esame Dott. Ing. Marcello Bonfè Esercizi sulla scomposizione di modelli nello spazio degli stati: Gli esercizi nei

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO

A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO A.S. 2008/2009 CLASSE 5BEA SISTEMI AUTOMATICI SINTESI DEL CORSO Sono stati trattati gli elementi base per l'analisi e il dimensionamento dei sistemi di controllo nei processi continui. E' quindi importante:

Dettagli

Riduzione degli schemi a blocchi

Riduzione degli schemi a blocchi 0.0..2 Riduzione degli scemi a blocci Spesso i sistemi complessi vengono rappresentati con scemi a blocci, i cui elementi anno ciascuno un solo ingresso e una sola uscita. I blocci elementari per la rappresentazione

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /33 SISEMI DIGIALI DI CONROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID

CONTROLLORI STANDARD PID. Guido Vagliasindi Controlli Automatici A.A. 06/07 Controllori Standard PID ONTROLLORI STANDARD PID Guido Vagliasindi ontrolli Automatici A.A. 6/7 ontrollori Standard PID MODELLO DEI REGOLATORI PID Tra le ragioni del vastissimo utilizzo dei regolatori PID nella pratica dell automazione

Dettagli

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE

ANALISI FREQUENZIALE E PROGETTO NEL DOMINIO DELLE FREQUENZE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI FREQUENZIALE E PROGETTO

Dettagli

La formula di Mason. l ingresso X all uscita Y: P i i T = Y X = 1

La formula di Mason. l ingresso X all uscita Y: P i i T = Y X = 1 0.0. 5. La formula di Mason Dato uno scema a blocci, un ingresso X e un uscita Y, la formula di Mason permette di calcolare in modo semplice e diretto il coefficiente di trasmittanza T = Y (ovvero la funzione

Dettagli

Realizzazione digitale di controllori analogici

Realizzazione digitale di controllori analogici Realizzazione digitale di controllori analogici Digitalizzazione di un controllore analogico Sistema di controllo r(t) uscita + - desiderata e(t) segnale di errore C(s) controllore analogico u(t) ingresso

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: stabilità, errore a regime e luogo delle radici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail:

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale TRASFORMATE DI LAPLACE Ing. Luigi Biagiotti Tel. 051 2093034 / 051 2093068 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO

SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO SPECIFICHE DI UN SISTEMA IN ANELLO CHIUSO Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G P

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it]

Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3. Danilo Caporale [caporale@elet.polimi.it] Laboratorio di Fondamenti di Automatica Ingegneria Elettrica Sessione 2/3 Danilo Caporale [caporale@elet.polimi.it] Outline 2 Funzione di trasferimento e risposta in frequenza Diagrammi di Bode e teorema

Dettagli

Controllo di velocità angolare di un motore in CC

Controllo di velocità angolare di un motore in CC Controllo di velocità angolare di un motore in CC Descrizione generale Il processo è composto da un motore in corrente continua, un sistema di riduzione, una dinamo tachimetrica ed un sistema di visualizzazione.

Dettagli

Esercizi proposti di Fondamenti di Automatica - Parte 4

Esercizi proposti di Fondamenti di Automatica - Parte 4 Esercizi proposti di Fondamenti di Automatica - Parte 4 2 Aprile 26 Sia dato il sistema di controllo a controreazione di Fig. 1, in cui il processo ha funzione di trasferimento P (s) = 1 (1 +.1s)(1 +.1s).

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stabilità dei sistemi di controllo in retroazione Margini di stabilità Indicatori di robustezza della stabilità Margine di guadagno Margine di fase Stabilità regolare e marginale ed estensioni delle definizioni

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Funzioni di trasferimento: robustezza e prestazioni Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it

Dettagli

Sistemi di controllo industriali

Sistemi di controllo industriali Sistemi di controllo industriali Regolatori PID: funzionamento e taratura Modello, funzionamento e realizzazione pratica Metodi di taratura in anello chiuso Metodi di taratura in anello aperto Un esempio

Dettagli

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva.

Una definizione di stabilità più completa di quella precedentemente introdotta fa riferimento ad una sollecitazione impulsiva. 2. Stabilità Uno dei requisiti più importanti richiesti ad un sistema di controllo è la stabilità, ossia la capacita del. sistema di raggiungere un stato di equilibrio dopo la fase di regolazione. Per

Dettagli

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2

Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione

Dettagli

Funzioni Pari e Dispari

Funzioni Pari e Dispari Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della

Dettagli

Scuola universitaria professionale della Svizzera italiana. Dipartimento di informatica ed elettrotecnica. Esercizi - E2A. Ing.

Scuola universitaria professionale della Svizzera italiana. Dipartimento di informatica ed elettrotecnica. Esercizi - E2A. Ing. Scuola universitaria professionale della Svizzera italiana Dipartimento di informatica ed elettrotecnica Esercizi - E2A Ing. Roberto Bucher 3 maggio 20 Esercizi - E2A 2 Copyright 2007 Roberto Bucher 3

Dettagli

REGOLATORI STANDARD O PID

REGOLATORI STANDARD O PID REGOLATORI STANDARD O ID Consideriamo il classico esempio di compensazione in cascata riportato in figura, comprendente il plant o sistema controllato con funzione di trasferimento G (s), il regolatore

Dettagli

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema

Modello fisico. Capitolo 1. 1.1 Descrizione del sistema Introduzione Lo scopo di questa trattazione è quello di analizzare un sistema fisico (veicolo a trazione elettrica) e progettare un adeguato sistema di controllo. Per cercare di ottenere risultati simili

Dettagli

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE

FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE FEDELTÀ DELLA RISPOSTA DEI SISTEMI DI CONTROLLO IN RETROAZIONE: ANALISI DELLA PRECISIONE IN REGIME PERMANENTE Nello studio dei sistemi di controllo in retroazione spesso si richiede che l uscita segua

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

Diagrammi polari, di Nyquist e di Nichols

Diagrammi polari, di Nyquist e di Nichols Diagrammi polari, di Nyquist e di Nichols Definizione (1/2) Il diagramma di Nichols (DdNic) di una fdt consiste nella rappresentazione grafica di G(s) s= jω = G(jω) = M( ω)e jϕ( ω), per ω (, ) sul piano

Dettagli

Tecnologie dei Sistemi di Automazione

Tecnologie dei Sistemi di Automazione Facoltà di Ingegneria Tecnologie dei Sistemi di Automazione Prof. Gianmaria De Tommasi Lezione 5 Regolatori PID industriali: Taratura dei guadagni e problemi implementativi Corso di Laurea Codice insegnamento

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

CONTROLLO NEL DOMINIO DELLA FREQUENZA

CONTROLLO NEL DOMINIO DELLA FREQUENZA SISTEMI DI CONTROLLO Ingegneria Meccanica e Ingegneria del Veicolo http://www.dii.unimore.it/~lbiagiotti/sistemicontrollo.html CONTROLLO NEL DOMINIO DELLA FREQUENZA Ing. Luigi Biagiotti e-mail: luigi.biagiotti@unimore.it

Dettagli

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6

Introduzione. Margine di ampiezza... 2 Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di Bode... 6 ppunti di Controlli utomatici Capitolo 7 parte II Margini di stabilità Introduzione... Margine di ampiezza... Margine di fase... 5 Osservazione... 6 Margini di stabilità e diagrammi di ode... 6 Introduzione

Dettagli

NUMERI COMPLESSI. Test di autovalutazione

NUMERI COMPLESSI. Test di autovalutazione NUMERI COMPLESSI Test di autovalutazione 1. Se due numeri complessi z 1 e z 2 sono rappresentati nel piano di Gauss da due punti simmetrici rispetto all origine: (a) sono le radici quadrate di uno stesso

Dettagli

REGOLATORI PID. Modello dei regolatori PID. Realizzazione dei regolatori PID. Metodi di taratura automatica

REGOLATORI PID. Modello dei regolatori PID. Realizzazione dei regolatori PID. Metodi di taratura automatica REGOLATORI PID Modello dei regolatori PID Realizzazione dei regolatori PID Metodi di taratura automatica Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 MODELLO DEI REGOLATORI

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Controlli Automatici: Raccolta di Esercitazioni Risolte con TFI. Elena Zattoni

Controlli Automatici: Raccolta di Esercitazioni Risolte con TFI. Elena Zattoni Controlli Automatici: Raccolta di Esercitazioni Risolte con TFI Elena Zattoni Premessa Questo volumetto è rivolto agli allievi dei corsi di Controlli Automatici e raccoglie una serie di esercitazioni risolte

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Orlando Allocca Regolatori standard

Orlando Allocca Regolatori standard A09 159 Orlando Allocca Regolatori standard Copyright MMXII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06) 93781065 ISBN 978-88-548-4882-7

Dettagli

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.

1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0. D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di

Dettagli

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi

FONDAMENTI DI AUTOMATICA. Michele Basso, Luigi Chisci e Paola Falugi FONDAMENTI DI AUTOMATICA Michele Basso, Luigi Chisci e Paola Falugi 22 novembre 26 2 Indice 1 Analisi in frequenza di sistemi LTI 5 1.1 Introduzione............................. 5 1.2 Analisi armonica..........................

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

Proprieta` dei sistemi in retroazione

Proprieta` dei sistemi in retroazione Proprieta` dei sistemi in retroazione Specifiche di controllo: errore a regime in risposta a disturbi costanti errore di inseguimento a regime quando il segnale di riferimento e` di tipo polinomiale sensibilita`

Dettagli

Regolatori PID. Gianmaria De Tommasi 1. detommas@unina.it. Ottobre 2012 Corsi AnsaldoBreda

Regolatori PID. Gianmaria De Tommasi 1. detommas@unina.it. Ottobre 2012 Corsi AnsaldoBreda Regolatori PID Gianmaria De Tommasi 1 1 Università degli Studi di Napoli Federico II detommas@unina.it Ottobre 2012 Corsi AnsaldoBreda G. De Tommasi (UNINA) Regolatori PID Napoli - Ottobre 2012 1 / 38

Dettagli

Funzioni di secondo grado

Funzioni di secondo grado Definizione della funzione di secondo grado 1 Funzioni di secondo grado 1 Definizione della funzione di secondo grado f: R R, = a +b +c dove a, b, c ǫ R e a definisce una funzione di secondo grado. A seconda

Dettagli

Esercizi sui sistemi trifase

Esercizi sui sistemi trifase Esercizi sui sistemi trifase Esercizio : Tre carichi, collegati ad una linea trifase che rende disponibile una terna di tensioni concatenate simmetrica e diretta (regime C, frequenza 50 Hz, valore efficace

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici

Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Comportamento a regime dei sistemi di controllo in retroazione Appunti di Controlli Automatici Versione 1.0 Ing. Alessandro Pisano SOMMARIO Introduzione 3 1. Stabilità a ciclo chiuso e teorema del valore

Dettagli

SISTEMI DIGITALI DI CONTROLLO

SISTEMI DIGITALI DI CONTROLLO Sistemi Digitali di Controllo A.A. 9- p. /3 SISTEMI DIGITALI DI CONTROLLO Prof. Alessandro De Luca DIS, Università di Roma La Sapienza deluca@dis.uniroma.it Lucidi tratti dal libro C. Bonivento, C. Melchiorri,

Dettagli

Progetto di un sistema di controllo nel dominio della frequenza

Progetto di un sistema di controllo nel dominio della frequenza Contents Progetto di un sistema di controllo nel dominio della frequenza 3. Le specifiche del progetto nel dominio della frequenza......... 3.2 Sintesi del controllore........................... 6.3 Determinazione

Dettagli

Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno

Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno Id Corso Formazione Professionale Data.. Nome e Cognome Tipo Prova Domanda 1 Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno M010755 Una impresa edile

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ).

ESPONENZIALI E LOGARITMI. chiameremo logaritmica (e si legge il logaritmo in base a di c è uguale a b ). ESPONENZIALI E LOGARITMI Data una espressione del tipo a b = c, che chiameremo notazione esponenziale (e dove a>0), stabiliamo di scriverla anche in un modo diverso: log a c = b che chiameremo logaritmica

Dettagli

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi)

2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) 2. APPUNTI SUI FASCI DI CIRCONFERENZE (raccolti dal prof. G. Traversi) La circonferenza è la curva di 2^ grado che viene individuata univocamente da tre punti non allineati e possiede la seguente proprietà:

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica

Dettagli

Sistema dinamico a tempo continuo

Sistema dinamico a tempo continuo Sistema dinamico a tempo continuo Un sistema è un modello matematico di un fenomeno fisico: esso comprende le cause e gli effetti relativi al fenomeno, nonché la relazione matematica che li lega. X INGRESSO

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A. 2006-07 DIAGRAMMI DEL MOTO SEMPLIFICATI

CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A. 2006-07 DIAGRAMMI DEL MOTO SEMPLIFICATI POLITECNICO DI BARI II FACOLTA DI INGEGNERIA CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A. 2006-07 DIAGRAMMI DEL MOTO SEMPLIFICATI Diagrammi del moto semplificati slide 1 di 21 DESCRIZIONE DEL MOTO DI

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA EQUAZIONI E DISEQUAZIONI DI SECONDO GRADO Dr. Erasmo Modica erasmo@galois.it EQUAZIONI DI SECONDO GRADO Definizione: Dicesi

Dettagli