Lezione 15 - Onde. Fisica 1 - R. De Renzi - Onde 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Lezione 15 - Onde. Fisica 1 - R. De Renzi - Onde 1"

Transcript

1 Lezione 15 - Onde onde su una corda, sulla superficie dell acqua lunghezza d onda, periodo, vettor d onda, frequenza funzione d onda equazione delle onde e velocità dell onda esempio di equazione delle onde: la corda principio di sovrapposizione onda progressiva e regressiva, stazionaria battimenti 1

2 Onde su una corda v. links in Onde

3 Onde su una corda 3

4 Onda su una corda Fissiamo una corda ad un estremo e, mantenendola tesa, solleviamo bruscamente l altro estremo wave-on-a-string_en 4

5 Onde sulla superficie: fotografia λ lunghezza d onda Fotografia dell onda vista di profilo lungo la linea rossa: istantanea dell onda nello spazio 5

6 Onde sulla superficie: fotografia λ ( f (x )=A sin π x π λ ) Fotografia dell onda vista di profilo lungo la linea rossa: istantanea dell onda nello spazio Questa onda si propaga 6

7 Immagine puntuale di un onda Nel filmato di vede l onda che si propaga. Cosa vuol dire? Consideriamo un punto come oscilla nel tempo mentre passa l'onda 7

8 Immagine puntuale di un onda Nel filmato di vede l onda che si propaga. Cosa vuol dire? Consideriamo un punto come oscilla nel tempo mentre passa l'onda 8

9 Immagine puntuale di un onda Nel filmato di vede l onda che si propaga. Cosa vuol dire? Consideriamo un punto come oscilla nel tempo T periodo 9

10 Immagine puntuale di un onda Nel filmato di vede l onda che si propaga. Cosa vuol dire? Consideriamo un punto come oscilla nel tempo T ( f (x )=A sin π t π + T ) 10

11 Funzione d onda λ T x t ( [ f (x, t )=A sin π t x ± T λ Funzione d onda: forma dell onda nel tempo e nello spazio ]) ω= k= ct-x 11

12 Funzione d onda λ T x t ( [ f ( x,t )=A sin π t x ± T λ ]) =A sin ( ω t ±k x ) =A sin k [ ω t ±x ] k ( ) 1

13 Funzione d onda 13

14 Appendice matematica Abbiamo scritto una funzione di due variabili, x e t. Cosa vuol dire? A tempo fisso t è solo funzione di x f (x, t )=A sin(ω t ±k x ) Sappiamo calcolarne anche la derivata e la indicheremo come f (x,t ) x A posizione fissa x f (x, t )=A sin(ω t ±k x ) e potremo calcolarne la derivata f (x,t ) t 14

15 Equazione delle onde La scrisse D Alembert ( ). Se c = velocità delle creste c f (x, t ) f (x, t ) c = x t Controlliamo con la soluzione che conosciamo già f (x,t )=A sin π [ t x ± T λ 15 ]

16 Equazione delle onde La scrisse D Alembert ( ). Se c = velocità delle creste c f (x, t ) f (x, t ) c = x t Controlliamo con la soluzione che conosciamo già f (x,t )=A sin π Ne risulta che [ t x ± T λ ω=c k 16 ]

17 Equazione della corda τ (x+dx) Equilibrio di una corda: tensione uguale ai capi di ogni suo pezzetto θ dh L altezza di ogni punto è la funzione d onda h(x,t) τ (x) h(x+dx,t) h(x,t) dx Se la corda oscilla le due tensioni non sono opposte Forza risultante: df =τ 0 [tan θ(x +dx ) tan θ(x )] τ0 tan θ(x) τ0 df τ0 dh τ0 tan θ(x+dx) dx 17

18 Equazione della corda Forza dh df =τ 0 (tan θ tan θ1 ) h (x ) h =tanθ x h (x +dx )=h (x )+dh Massa =μ Equazione del moto: 18

19 Riassunto h τ 0 h =μ t x τ c = μ0 con velocità di fase Ricordando che c = λ =λ ν= ω T k la soluzione è del tipo f (x,t )=h 0 sin(ωt ±kx ) 19

20 Principio di sovrapposizione Le onde si sommano: la somma di due onde è un onda, ossia è anche essa soluzione dell equazione delle onde h (x,t )=h 1 (x,t )+h (x,t ) con allora h 1 t =c h1 x h e t =c h x h h =c t x 0

21 Onde di superficie e di volume Onda su una corda (stazionaria) Onda di superficie (e di volume) da terremoto 1

22 Onde progressive e regressive Due soluzioni A t=0 h ± (x,t )=h 0 cos [ k (ct ±x ) ] =h 0 cos [ ωt ±kx ] h + (x,0)=h 0 cos kx h ( x,0)=h 0 cos( kx ) h+ h-

23 Onde progressive e regressive Due soluzioni h ± ( x,t )=h 0 cos[k (ct ±x )]=h 0 cos(ωt ±kx ) Dopo dt h + (x,dt )=h 0 cos(ωdt +k x ) regressiva h (x, dt )=h 0 cos(ω dt k x ) progressiva h+ h- 3

24 Onde progressive e regressive Due soluzioni h ± (x,t )=h 0 cos[k (ct ±x )]=h 0 cos(ωt ±kx ) Dopo dt h + (x,dt )=h 0 cos(ω dt +k x ) regressiva h ( x,dt )=h 0 cos (ω dt k x ) progressiva h+ h- 4

25 Onda stazionaria h (x,t )=h (x,t ) h + (x, t )=h 0 [cos (ω t kx ) cos(ω t +kx )] 5

26 Onda stazionaria h (x,t )=h (x,t ) h + (x, t )=h 0 [cos (ω t kx ) cos(ωt +kx )] h (x,t )=h0 sinω t sinkx somma di una onda progressiva e di una onda regressiva nodi 6

27 Onda stazionaria h (x,t )=h (x,t ) h + (x, t )=h 0 [cos(ω t kx ) cos(ωt +kx )] 7

28 Onda stazionaria somma di una onda progressiva e di una onda regressiva 8

29 Battimenti Come si sentono due frequenze (vicine) cos(k 1 x +ω1 t )+cos(k x +ω t ) x =0 ω1 + ω ω= ω 1 ω Δ ω= 9

Principio di sovrapposizione.

Principio di sovrapposizione. Principio di sovrapposizione. Il principio di sovrapposizione si applica ogni volta che due (o più) onde viaggiano nello stesso mezzo nello stesso tempo. Le onde si attraversano senza disturbarsi. In ogni

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Le onde ci sono familiari - onde marine,

Dettagli

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE)

Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Corso di Laurea in LOGOPEDIA FISICA ACUSTICA ONDE (ARMONICHE) Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Le onde ci sono familiari - onde marine,

Dettagli

ONDA. Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico.

ONDA. Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico. ONDA Il concetto di onda, assieme a quello di particella, è fondamentale nella descrizione classica del mondo fisico. Una qualsiasi perturbazione (originata da una sorgente), impulsiva o periodica, che

Dettagli

Fisica Generale T2 - Prof. Mauro Villa CdL in Ingegneria Elettronica e Telecomunicazioni 11 Gennaio 2018 Scritto - Onde

Fisica Generale T2 - Prof. Mauro Villa CdL in Ingegneria Elettronica e Telecomunicazioni 11 Gennaio 2018 Scritto - Onde Fisica Generale T - Prof. Mauro Villa CdL in Ingegneria Elettronica e Telecomunicazioni 11 Gennaio 018 Scritto - Onde Esercizi: 1) Un onda armonica viaggia lungo una corda, lunga L = 3.7 m e di massa m

Dettagli

Lezione 22: Sistemi a più gradi di libertà: sistemi continui (2)

Lezione 22: Sistemi a più gradi di libertà: sistemi continui (2) Lezione : Sistemi a più gradi di libertà: sistemi continui () Federico Cluni 19 maggio 015 Esempi Si determinano le costanti di integrazione A, B, C e D per alcune condizioni di vincolo tipiche. Trave

Dettagli

ONDE. Propagazione di energia senza propagazione di materia. Una perturbazione viene trasmessa ma l acqua non si sposta

ONDE. Propagazione di energia senza propagazione di materia. Una perturbazione viene trasmessa ma l acqua non si sposta ONDE Propagazione di energia senza propagazione di materia Una perturbazione viene trasmessa ma l acqua non si sposta Le onde meccaniche trasferiscono energia propagando una perturbazione in un mezzo.

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche n Equazione delle onde per i campi n Corda vibrante n Onde piane n Polarizzazione n Energia e quantita` di moto - vettore di Poynting n Velocita` di fase e di gruppo Equazione delle

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

Misure con circuiti elettrici

Misure con circuiti elettrici Misure con circuiti elettrici Samuele Straulino Laboratorio di Fisica II - S.S.I.S. 2008 2009 http://hep.fi.infn.it/ol/samuele/dida.php Descriverò in particolare questi aspetti: comportamento a regime

Dettagli

Le onde. F. Soramel Fisica per Medicina 1

Le onde. F. Soramel Fisica per Medicina 1 Le onde a) onda sonora: le molecole si addensano e si rarefanno b) onda all interfaccia liquido-aria: le particelle oscillano in alto e in basso c) onda in una corda d) onda in una molla e) onda sismica

Dettagli

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà

Circuiti RC. i(t = 0) = V 0. Negli istanti successivi l equazione per i potenziali risulterà Circuiti C Carica e scarica del condensatore (solo le formule) Consideriamo un condensatore di capacità C collegato in serie ad una resistenza di valore. I due elementi sono collegati ad una batteria che

Dettagli

Formulario di Onde. 2(1 + ν) 3(1 2ν) V V. O.2 Equazione delle onde (equazione di d Alembert) in tre dimensioni

Formulario di Onde. 2(1 + ν) 3(1 2ν) V V. O.2 Equazione delle onde (equazione di d Alembert) in tre dimensioni Formulario di Onde O.1 Proprietà elastiche dei solidi (per piccole deformazioni) Legge di Hooke: F = k l Energia potenziale elastica: U = 1 2 k( l)2 Carico specifico o sforzo: σ = F A, la forza F è applicata

Dettagli

ENERGIA DI UN ONDA. INTENSITA

ENERGIA DI UN ONDA. INTENSITA ENEGIA DI UN ONDA. INTENSITA O- 1 Un onda si propaga perche ogni parte del mezzo comunica il moto alle parti adiacenti Poiche iene fatto del laoro, iene trasferita energia Quanta energia si sposta per

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Le onde. Rappresentazione delle onde Classificazione delle onde Propagazione delle onde

Le onde. Rappresentazione delle onde Classificazione delle onde Propagazione delle onde Le onde Rappresentazione delle onde Classificazione delle onde Propagazione delle onde Definizione di onda Le onde sono perturbazioni locali di un mezzo continuo che si ripetono, nel tempo e/o nello spazio,

Dettagli

Lezione 11 Funzioni sinusoidali e onde

Lezione 11 Funzioni sinusoidali e onde Lezione 11 Funzioni sinusoidali e onde 1/18 Proprietà delle funzioni seno e coseno sono funzioni periodiche di periodo 2π sin(α + 2π) = sin α cos α + 2π = cos α a Sin a Cos a a a 2/18 Funzione seno con

Dettagli

1 Richiami sulla meccanica ondulatoria

1 Richiami sulla meccanica ondulatoria 1 Richiami sulla meccanica ondulatoria 1.1 Introduzione al concetto di onda L'onda è un formalismo matematico che descrive la propagazione di una perturbazione. Alcuni esempi di onde sono: le onde sonore;

Dettagli

Approfondimenti. Rinaldo Rui. ultima revisione: 31 maggio 2019

Approfondimenti. Rinaldo Rui. ultima revisione: 31 maggio 2019 Approfondimenti Rinaldo Rui ultima revisione: 31 maggio 019 5 Oscillazioni e Onde 5. Lezione #1 5..1 Equazione Differenziale delle Onde In tutti i casi analizzati precedentemente si osserva che le onde

Dettagli

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore

Enrico Silva - diritti riservati - Non è permessa, fra l altro, l inclusione anche parziale in altre opere senza il consenso scritto dell autore Onde Definizione Tipi di onde Anatomia : Onde: richiami frequenza Enrico e Silva periodo - proprietà intellettuale non ceduta Non lunghezza è permessa, d onda in particolare, e numero d onda la riproduzione

Dettagli

sono presenti ovunque onde marine onde sonore onde sismiche luce onde radio microonde onde umane?

sono presenti ovunque onde marine onde sonore onde sismiche luce onde radio microonde onde umane? ONDE sono presenti ovunque onde marine onde sonore onde sismiche luce onde radio microonde onde umane? CARATTERISTICHE DELLE ONDE Oscillazioni in ogni punto dello spazio Una qualche grandezza fisica si

Dettagli

Onde acustiche. Esempi

Onde acustiche. Esempi Onde acustiche Anche il suono si propaga come onde non solo in aria ma in ogni gas, liquido Il fluido si sposta di distanza s x, t = s & cos(kx ωt) nella direzione della propagazione: onda longitudinale

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

FM210 - Fisica Matematica I

FM210 - Fisica Matematica I Corso di laurea in Matematica - Anno Accademico 212/13 FM21 - Fisica Matematica I Soluzioni della Seconda Prova Pre-esonero [9-1-213] Esercizio 2 (a) Osserviamo che il sistema è conservativo e il potenziale

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA)

Equazioni di Maxwell. I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) Equazioni di Maxwell I campi elettrici e magnetici (nel vuoto) sono descritti dalle equazioni di Maxwell (in unità MKSA) E = ϱ ɛ 0 (1) E = B (2) B = 0 (3) E B = µ 0 j + µ 0 ɛ 0 (4) La forza che agisce

Dettagli

Equazioni del moto in 1 dimensione:

Equazioni del moto in 1 dimensione: Equazioni del moto in 1 dimensione: O Velocità media come rapporto incrementale tra spazio percorso e tempo In generale la velocità varia istante per istante 1 Velocità istantanea: limite del rapporto

Dettagli

Indice. A Richiami 1 A.1 Richiami di semplici espressioni matematiche... 1 A.2 Richiami di onde piane... 2 A.3 Sovrapposizione di onde piane...

Indice. A Richiami 1 A.1 Richiami di semplici espressioni matematiche... 1 A.2 Richiami di onde piane... 2 A.3 Sovrapposizione di onde piane... Indice Indice i A Richiami 1 A.1 Richiami di semplici espressioni matematiche........... 1 A.2 Richiami di onde piane........................ 2 A.3 Sovrapposizione di onde piane.................... 3 i

Dettagli

Circuito a costanti concentrate

Circuito a costanti concentrate Circuito a costanti concentrate periodo Il contributo dei cavetti di collegamento a resistenza, capacita' ed induttanza del circuito e' trascurabile: resistenza, capacita' (ed induttanza) sono solo quelle

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

L α. α d. 1. calcolare la velocità con cui il corpo raggiunge la sommità del piano [8 punti]

L α. α d. 1. calcolare la velocità con cui il corpo raggiunge la sommità del piano [8 punti] Problema E1 Una molla di costante elastica 500 Nm 1 e di lunghezza a riposo l 0 10 cm si trova in fondo ad un piano lungo L m, con coefficiente di attrito trascurabile e inclinato di un angolo α 30 o rispetto

Dettagli

FENOMENI ONDOSI E MODI

FENOMENI ONDOSI E MODI Corso di Laurea in LOGOPEDIA FISICA ACUSTICA FENOMENI ONDOSI E MODI Fabio Romanelli Department of Mathematics & Geosciences University of Trieste Email: romanel@units.it Sovrapposizione di onde stazionarie

Dettagli

Cap Moti oscillatori

Cap Moti oscillatori N.Giglietto A.A. 005/06- Cap 16.1- Moti oscillatori - 1 Cap 16.1- Moti oscillatori Alcuni tipi di forze o alcune situazioni danno luogo a dei moti di tipo oscillante ovvero a dei moti che si ripetono regolarmente.

Dettagli

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9.

Indice slides. 1 Oscillatore semplice 5. 2 Equazione caratteristica 6. 3 Radici complesse 7. 4 Integrale generale 8. 5 Forza Peso 9. Moto di Oscillatori Pietro Pantano Dipartimento di Matematica Università della Calabria Slides 1 di 27 Slides 2 di 27 1 Oscillatore semplice 5 2 Equazione caratteristica 6 3 Radici complesse 7 4 Integrale

Dettagli

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ).

Lavori e Forze Fisica Natali Mattia. della forza rispetto al tempo nell intervallo considerato: I t 1. I ( t 1. ( ) Q ( t 1 ). Impulso e quantità di moto: Lavori e Forze Impulso: l impulso di una forza variabile in un certo intervallo di tempo è definito come l integrale della forza rispetto al tempo nell intervallo considerato:

Dettagli

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H)

Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) Soluzioni Esame di Fisica Corso di laurea in Biotecnologie Linea II (gruppi E-H) 25 giugno 2001 Teoria 1. L energia potenziale é la funzione U tale che ovvero F = du dx U = F dx essendo F una forza che

Dettagli

Cinematica: derivate e integrali che ci servono: appunti

Cinematica: derivate e integrali che ci servono: appunti 1. Cinematica: derivate e integrali che ci servono: appunti Primo esempio: moto uniforme Iniziamo con le derivate. Supponiamo una legge oraria del tipo: x(t) a+bt, dove a, b sono dei coefficienti costanti.

Dettagli

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà)

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà) Foglio di Esercizi 7 Meccanica Razionale a.a. 018/19 Canale A-L P. Buttà Esercizio 1. Sia {O; x, y, z} un sistema di riferimento ortonormale con l asse z diretto secondo la verticale ascendente. Un punto

Dettagli

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda.

R è definita infine dall insieme delle curve percorse da ogni singolo punto della corda. 1. Problema della corda vibrante Si consideri una corda monodimensionale, di sezione nulla avente densità per unità di lunghezza ρ e modulo elastico lineare E. Una corda reale approssima quella ideale

Dettagli

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 9/01/2013.

Fisica Generale 1 per Ing. Gestionale e Chimica (Prof. F. Forti) A.A. 2011/12 Appello del 9/01/2013. Fisica Generale per Ing. Gestionale e Chimica (Prof. F. Forti).. 2/2 ppello del 9//23. Tempo a disposizione: 2h3. Scrivere solamente su fogli forniti Modalità di risposta: spiegare sempre il procedimento

Dettagli

Misure di polarizzazione mediante ricevitori differenziali a microonde

Misure di polarizzazione mediante ricevitori differenziali a microonde Misure di polarizzazione mediante ricevitori differenziali a microonde Aniello Mennella Università degli Studi di Milano Dipartimento di Fisica Corso di laboratorio di strumentazione spaziale I A. Mennella

Dettagli

RUDIMENTI DI TEORIA DELLE ONDE

RUDIMENTI DI TEORIA DELLE ONDE RUDIMENTI DI TEORIA DELLE ONDE Indice 1. Equazione delle onde 1 1.1. Principio di sovrapposizione 1.. Onde elettromagnetiche e la corda vibrante. Soluzione per separazione delle variabili 4.1. Equazione

Dettagli

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye 1 / 5 Corso:Fisica moderna/calore specifico dei solidi/modello di Debye Debye riprende l intero modello di Planck per il corpo nero: non solo la quantizzazione dell energia ma anche l idea che vi siano

Dettagli

Dinamica del punto materiale

Dinamica del punto materiale Dinamica del punto materiale Formule fondamentali L. P. 5 Aprile 2010 N.B.: Le relazioni riportate sono valide in un sistema di riferimento inerziale. Princìpi della dinamica Secondo principio della dinamica

Dettagli

Oscillazioni. Definizioni Mo/ armonici Propagazione delle onde

Oscillazioni. Definizioni Mo/ armonici Propagazione delle onde Oscillazioni Definizioni Mo/ aronici Propagazione delle onde Il oto aronico e il oto circolare unifore sinωt La curva a destra dello schizzo è una sinusoide. Abbiao diviso l asse x in parti uguali di angoli

Dettagli

Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e

Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e Le equazioni di Maxwell danno una descrizione completa delle relazioni tra i campi elettromagnetici, le cariche e le distribuzioni di correnti e costituiscono il modello matematico della teoria elettromagnetica.

Dettagli

FM210 - Fisica Matematica 1 Tutorato 11 ( )

FM210 - Fisica Matematica 1 Tutorato 11 ( ) Corso di laurea in atematica - Anno Accademico 3/4 F - Fisica atematica Tutorato (--) Esercizio. Si calcolino i momenti principali di inerzia dei seguenti corpi rigidi rispetto al loro centro di massa:.

Dettagli

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo;

2. calcolare l energia cinetica del corpo e tracciare il suo andamento nel tempo; 1 Esercizio (tratto dal Problea 4.29 del Mazzoldi 2) Un corpo di assa = 1.5 Kg è agganciato ad una olla di costante elastica k = 2 N/, di lunghezza a riposo = 50 c, fissata ad una parete verticale in x

Dettagli

Compito di Meccanica Razionale

Compito di Meccanica Razionale Compito di Meccanica Razionale Corso di Laurea in Ingegneria Aerospaziale 30 Gennaio 207 (usare fogli diversi per esercizi diversi) Primo Esercizio Si fissi in un piano un sistema di riferimento Oxy. In

Dettagli

Esercizio: pendoli accoppiati. Soluzione

Esercizio: pendoli accoppiati. Soluzione Esercizio: pendoli accoppiati Si consideri un sistema di due pendoli identici, con punti di sospensione posti alla stessa quota in un piano verticale. I due pendoli sono collegati da una molla di costante

Dettagli

Prima prova intercorso giovedì 20 aprile 2006

Prima prova intercorso giovedì 20 aprile 2006 Prima prova intercorso giovedì 0 aprile 006 aurea in Scienza e Ingegneria dei Materiali anno accademico 005-006 Istituzioni di Fisica della Materia - Prof. orenzo Marrucci Tempo a disposizione: ore e 0

Dettagli

ONDE SONORE. Fluidi: onde di pressione (densità) longitudinali Frequenze: Udibile (human range) 20 Hz-20 khz Separa Infra/Ultra-suoni

ONDE SONORE. Fluidi: onde di pressione (densità) longitudinali Frequenze: Udibile (human range) 20 Hz-20 khz Separa Infra/Ultra-suoni ONDE SONORE Fluidi: onde di pressione (densità) longitudinali Frequenze: Udibile (human range) 20 Hz-20 khz Separa Infra/Ultra-suoni FENOMENI SONORI Propagazione: - Riflessione e rifrazione (ma non in

Dettagli

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo

Ricordiamo ora che a è legata ad x (derivata seconda) ed otteniamo Moto armonico semplice Consideriamo il sistema presentato in figura in cui un corpo di massa m si muove lungo l asse delle x sotto l azione della molla ideale di costante elastica k ed in assenza di forze

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1.

7. Forze elastiche. Nella figura 1 il periodo è T = 2s e corrisponde ad un moto unidimensionale limitato tra i valori x = 0 ed x = 1. 1 Moti periodici 7. Forze elastiche Un caso particolare di moto accelerato è un moto periodico. In figura 1 è riportato un esempio di moto periodico unidimensionale. Un moto periodico si ripete identicamente

Dettagli

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:...

es.1 es.2 es.3 es.4 es.5 somma Analisi Matematica 2: Primo Parziale, , Versione A Cognome e nome:...matricola:... es. es. es. es.4 es.5 somma 5 4 8 8 5 Analisi Matematica : Primo Parziale,.4.7, Versione A Cognome e nome:....................................matricola:.......... Calcolare la lunghezza della curva di

Dettagli

Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3)

Lezione 23: Sistemi a più gradi di libertà: sistemi continui (3) Lezione 3: Sistemi a più gradi di libertà: sistemi continui 3) Federico Cluni maggio 5 Oscillazioni forzate Si è visto che, nel caso di oscillazioni libere, il moto della trave è dato dalla funzione vx,

Dettagli

Fondamenti di fisica

Fondamenti di fisica Fondamenti di fisica Elettromagnetismo: 6-7 Circuiti in corrente alternata Tensioni e correnti alternate Vettori di fase, valori quadratici medi Potenza media Sicurezza nei circuiti domestici Circuiti

Dettagli

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt

cos( ωt + ϕ)= Re v t = V o e jωt cos ωt + ϕ vt ()=V o e jϕ che è un numero complesso costante, di modulo V O ed e jωt = cos ωt + j sinωt . METODO SIMBOLIO, O METODO DEI FASORI..Introduzione Questo metodo applicato a reti lineari permanenti consente di determinare la soluzione in regime sinusoidale solamente per quanto attiene il regime

Dettagli

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com

Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una  a antonio.pierro[at]gmail.com Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,

Dettagli

Lezione 5 Dinamica del punto

Lezione 5 Dinamica del punto ezione 5 Dinamica del punto rgomenti della lezione avoro Potenza Energia cinetica avoro forza peso avoro forza d attrito avoro Studiando cosa succede integrando la forza nel tempo siamo arrivati alla definizione

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del sesto appello, 16 luglio 2018 Testi 1 Scritto del sesto appello, 6 luglio 208 Testi Prima parte, gruppo.. Trovare α [0, 2π) per cui vale l identità trigonometrica sin(x π/3) = cos(x + α). 2. Trovare il polinomio di Taylor (in 0) di ordine

Dettagli

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale

FAM. F y G z F z G y. z G x x G z x G y y G x. 2. La norma del vettore di Poynting, che corrisponde all intensità dell onda, vale Serie 36: Soluzioni FAM C Ferrari Esercizio Un identità utile Abbiamo F G = e quindi, applicando la regola di Leibnitz, F y G z F z G y F z G x F x G z F x G y F y G x F G = ( x F y )G z +F y x G z ( x

Dettagli

Le onde sismiche. La sismologia implica l analisi del moto del suolo provocato da una sorgente di energia posta all interno della Terra.

Le onde sismiche. La sismologia implica l analisi del moto del suolo provocato da una sorgente di energia posta all interno della Terra. Le onde sismiche La sismologia implica l analisi del moto del suolo provocato da una sorgente di energia posta all interno della Terra. L energia liberata a8raversa il mezzo Terra mediante la propagazione

Dettagli

Note sui circuiti a corrente alternata

Note sui circuiti a corrente alternata Note sui circuiti a corrente alternata Versione provvisoria. Novembre 018 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Indice 1 Corrente alternata 1.1 Circuito

Dettagli

x(t) = R 0 + R(t) dx(t) dt v(t) = = dr(t) dt Moto circolare uniforme Principi della dinamica

x(t) = R 0 + R(t) dx(t) dt v(t) = = dr(t) dt Moto circolare uniforme Principi della dinamica Il moto con velocità scalare costante si dice moto. La traiettoria è una circonferenza, caratterizzata dunque da un punto centrale e da un raggio, e giacente su un piano. Si tratta quindi di un moto bidimensionale.

Dettagli

Prova scritta di metà corso martedì 7 aprile 2009

Prova scritta di metà corso martedì 7 aprile 2009 Prova scritta di metà corso martedì 7 aprile 29 Laurea in Scienza e ngegneria dei Materiali anno accademico 28-29 stituzioni di Fisica della Materia - Prof. Lorenzo Marrucci Tempo a disposizione: 1 ora

Dettagli

Esperienza 13: il Tubo di. Kundt. Laboratorio di Fisica 1 (Modulo 2) A. Baraldi, M. Riccò. Università di Parma. a.a. 2011/2012. Copyright M.

Esperienza 13: il Tubo di. Kundt. Laboratorio di Fisica 1 (Modulo 2) A. Baraldi, M. Riccò. Università di Parma. a.a. 2011/2012. Copyright M. Esperienza 13: il Tubo di Università di Parma Kundt a.a. 011/01 Laboratorio di Fisica 1 (Modulo ) A. Baraldi, M. Riccò Copyright M.Solzi Onde progressive a.a. 011/1 y(,) x t = f ( x vt) y(,) x t = f (

Dettagli

Fisica 1, a.a : Oscillatore armonico

Fisica 1, a.a : Oscillatore armonico Fisica 1, a.a. 2014-2015: Oscillatore aronico Anna M. Nobili 1 Oscillatore aronico in una diensione senza dissipazione e in assenza di forze esterne Ad una olla di assa trascurabile, costante elastica

Dettagli

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale

Soluzioni Prova Scritta di di Meccanica Analitica. 17 aprile Un punto di massa unitaria si muove lungo una retta soggetto al potenziale Soluzioni Prova Scritta di di Meccanica Analitica 17 aprile 15 Problema 1 Un punto di massa unitaria si muove lungo una retta soggetto al potenziale V x = exp x / a Tracciare il grafico del potenziale

Dettagli

Onde. ONDA: Perturbazione di una grandezza fisica che si propaga nello spazio.

Onde. ONDA: Perturbazione di una grandezza fisica che si propaga nello spazio. Onde ONDA: Perturbazione di una grandezza fisica che si propaga nello spazio. La propagazione di onde meccaniche aiene attraerso un mezzo materiale che ne determina caratteristiche e elocità. Esempi: Onde

Dettagli

ONDE E IMPULSI. L origine dell onda è una vibrazione. Es. Quando si dà una scossa ad una corda tesa, si produce una gobba che viaggia lungo la corda.

ONDE E IMPULSI. L origine dell onda è una vibrazione. Es. Quando si dà una scossa ad una corda tesa, si produce una gobba che viaggia lungo la corda. ONDE ONDE E IMPULSI Un ONDA ELASTICA rappresenta la propagazione di una perturbazione con trasporto di energia e quantità di moto e NON di materia. Le ONDE MECCANICHE consistono nella propagazione di vibrazioni

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

Oscillazioni. Definizione Moto circolare uniforme Moto armonico

Oscillazioni. Definizione Moto circolare uniforme Moto armonico Oscillazioni Definizione Moto circolare unifore Moto aronico Moto aronico e oto circolare unifore sinωt La curva a destra dello schizzo è una sinusoide. Abbiao diviso l asse x in parti uguali di angoli

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ

Dettagli

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo;

3. Determinare la velocità media nell intervallo [0.5 s; 1.0 s] e confrontarla con la velocità istantanea nel punto medio di tale intervallo; Esercizio Una particella si muove lungo una retta seguendo la legge oraria con u 3 m/s e 4 s.. Determinare in quali istanti la particella si trova nell origine;. Disegnare la legge oraria; x(t) u t ( sin

Dettagli

Fisica 2C. 3 Novembre Domande

Fisica 2C. 3 Novembre Domande Fisica 2C 3 Novembre 2006 Domande ˆ i) Si consideri un oscillatore armonico smorzato e forzato da una sollecitazione sinusoidale esterna, la cui equazione é tipicamente s + 2γṡ + ω0s 2 = F cos ωt m 1)

Dettagli

FAM. Determina la velocità e l accelerazione e confronta con quanto fatto nel primo biennio.

FAM. Determina la velocità e l accelerazione e confronta con quanto fatto nel primo biennio. Serie 8: Meccanica I FAM C. Ferrari Esercizio 1 Moto accelerato 1. Per un MRUA (problema 1D) generale l evoluzione temporale è data da x(t) = x(t 0 )+v(t 0 )(t t 0 )+ 1 2 a 0(t t 0 ) 2. Determina la velocità

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 4 Onde elettromagnetiche Sommario

Dettagli

Forza centrifuga. Funi e molle. Equazioni del moto

Forza centrifuga. Funi e molle. Equazioni del moto La forza è un particolare tipo di forza apparente, presente quando il sistema non inerziale (SNI) è in moto rototraslatorio rispetto ad un sistema di riferimento inerziale (SI). Nel moto rototraslatorio

Dettagli

Sistemi continui oscillanti unidimensionali (corde vibranti)

Sistemi continui oscillanti unidimensionali (corde vibranti) Edoardo Milotti 4/10/2005 Sistemi continui oscillanti unidimensionali (corde vibranti Consideriamo due oscillatori armonici accoppiati linearmente. Fisicamente ciò si può realizzare, ad esempio, con due

Dettagli

# $$ % % # & ' # $ $$ % ( # ( % % $

# $$ % % # & ' # $ $$ % ( # ( % % $ !" # $$% % # & ' # $$$% # % %$ !" # X F = f x ˆ ι F = f = f x x F x F x >, f x < F = k xιˆ F = k r F = k r r # * +*,-+. /, $! x k k x + x = pongo ω = > Equazione oraria x t = l cos ωt + φ +l -l

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici Sergio Benenti Prima versione settembre 2013 Revisione settembre 2017? ndice 21 Circuito elettrico elementare

Dettagli

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6

Analisi Matematica 1 Ingegneria Informatica Gruppo 4, canale 6 Analisi Matematica Ingegneria Informatica Gruppo 4, canale 6 Argomenti 5 ottobre 07 I simboli i, j, k, m, n indicano sempre numeri naturali variabili. I simboli p, q, r, s, t,..., x, y, z indicano numeri

Dettagli

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE Nel paragrafo 4 del capitolo «e onde elastiche» sono presentate le equazioni e y = acos T t +0l (1) y = acos x+0l. () a prima descrive l oscillazione di

Dettagli

Tabella 4: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale:

Tabella 4: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale: Tabella 4: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 30 Meccanica Razionale 1: Scritto Generale: 21.09.2011 Cognome e nome:....................................matricola:.........

Dettagli

Formulario di onde e oscillazioni

Formulario di onde e oscillazioni Formulario di onde e oscillazioni indice ------------------- Sistema massa-molla ------------------- ------------------- Pendolo semplice ------------------- 3 ------------------- Moto armonico Smorzamento

Dettagli

LEZIONE DEL OTTOBRE

LEZIONE DEL OTTOBRE INGEGNERIA GESTIONALE corso di Fisica Generale Prof. E. Puddu LEZIONE DEL 21 22 OTTOBRE 2008 Moti oscillatori 1 Moto armonico Consideriamo una molla di costante elastica k a cui è collegato un corpo di

Dettagli

Meccanica Dinamica del punto materiale

Meccanica Dinamica del punto materiale Meccanica 18-19 Dinamica del punto materiale 8 Dinamica del punto materiale Legge fondamentale della dinamica: d r ma m dt Tipi di forza: orza peso Reazione vincolare orza di attrito radente (statico,

Dettagli

Cosa si intende per onda?

Cosa si intende per onda? Fenomeni Ondulatori Cosa si intende per onda? si definisce onda una perturbazione che si propaga non si ha propagazione di materia ma solo di energia onde meccaniche (mezzo) onde elettromagnetiche (vuoto,

Dettagli

Fisica 2 per biotecnologie Prova scritta (in itinere): 11 Aprile 2011

Fisica 2 per biotecnologie Prova scritta (in itinere): 11 Aprile 2011 Fisica 2 per biotecnologie Prova scritta (in itinere): 11 Aprile 2011 Testo A per superare la prova è necessario accumulare almeno 18 punti 1. Alcune specie di pesci sono in grado di avvertire campi elettrici

Dettagli

ONDE SUPERFICIALI effetti della superficie libera

ONDE SUPERFICIALI effetti della superficie libera ONDE SUPERFICIALI Alla superficie libera di un mezzo elastico si realizzano condizioni particolari nel campo di sforzi, essendo nulli gli sforzi di taglio. Nel caso della Terra, dal momento che le misure

Dettagli

Prova Scritta di di Meccanica Analitica. 11 febbraio Problema 1

Prova Scritta di di Meccanica Analitica. 11 febbraio Problema 1 Prova Scritta di di Meccanica Analitica 11 febbraio 019 Problema 1 Si consideri un punto materiale P di massa m vincolato a muoversi su una retta orizzontale e connesso mediante una molla di costante elastica

Dettagli

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del terzo appello, 19 febbraio 2018 Testi 1

Analisi Matematica I per Ingegneria Gestionale, a.a Scritto del terzo appello, 19 febbraio 2018 Testi 1 Scritto del terzo appello, 9 febbraio 208 Testi Prima parte, gruppo.. Per ciascuno dei seguenti punti dare le coordinate (polari o cartesiane) che mancano: a) = 0, = ; r = α = b) = 3, = 3; r = α = c) r

Dettagli

Lez.21 Circuiti dinamici di ordine due. 1. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 21 Pagina 1

Lez.21 Circuiti dinamici di ordine due. 1. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 21 Pagina 1 Lez.21 Circuiti dinamici di ordine due. 1 Università di Napoli Federico II, CdL Ing. Meccanica, A.A. 2017-2018, Elettrotecnica. Lezione 21 Pagina 1 Circuito RLC serie All istante t=0 inseriamo il generatore

Dettagli

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione

Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercizi di Fisica LB - Ottica: polarizzazione e diffrazione Esercitazioni di Fisica LB per ingegneri - A.A. 2003-2004 Esercizio 1 Calcolare la larghezza della frangia centrale della figura di interferenza

Dettagli

TRAMISSIONE su linea metallica a RF. Prof. Nadia Carpi as 03-04

TRAMISSIONE su linea metallica a RF. Prof. Nadia Carpi as 03-04 TRAMISSIONE su linea metallica a RF Prof. Nadia Carpi as 3-4 Linea di trasmissione GENERATORE CARICO ENERGIA EL/INFORMAIONE frequenza bassa energia elettrica centrali radiofrequenza informazioni utenze

Dettagli