Verranno descritti di seguito brevemente gli algoritmi di calcolo utilizzati per l interpretazione nei tre metodi inseriti all interno del programma.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Verranno descritti di seguito brevemente gli algoritmi di calcolo utilizzati per l interpretazione nei tre metodi inseriti all interno del programma."

Transcript

1 3. Teoria Verranno descritti di seguito brevemente gli algoritmi di calcolo utilizzati per l interpretazione nei tre metodi inseriti all interno del programma. 3.1 Metodo convenzionale (metodo del tempo di ritardo - delay time) Questo metodo, di semplice applicazione, è utilizzabile nel caso di strati orizzontali o con inclinazione uniforme e in presenza di una superficie topografica, almeno lungo lo stendimento, orizzontale. Si parte inoltre dal presupposto che la velocità dei rifrattori aumenti con la profondità. In pratica si dovrà verificare che la velocità delle onde P nel primo strato sia minore della velocità delle onde P nel secondo, a sua volta inferiore a quella del terzo, ecc. (<V2<V3) Strati con interfaccia orizzontale Consideriamo il caso di due strati con profilo orizzontale, caratterizzati dalle velocità e V2. Se S è la sorgente di energia e G è il geofono ricevitore il tempo necessario, perché il segnale copra la distanza SG (= x) viaggiando nel primo strato (onde dirette) sarà: t = Oltre alle onde dirette, al geofono giungeranno anche le onde rifratte dal secondo strato. In questo caso il tempo necessario perché il segnale rifratto venga ricevuto è: x t x 2h = cosα V

2 dove h è lo spessore dello strato e α è l angolo limite di incidenza. La quantità h cosα12 viene detto tempo di ritardo o delay time. Tempi V2 ti Xc Distanza Ponendo su grafico in ascissa la distanza dei geofoni dello stendimento dalla sorgente e in ordinata i tempi di arrivo del segnale ai singoli ricevitori, si ottengono due segmenti retti (dromocrone), con il secondo tratto meno inclinato del primo. I reciproci dei coefficienti angolari delle due dromocrone corrispono alle velocità delle onde P nei due strati ( e V2). Il rapporto fra le due fornisce il valore dell angolo limite: 58

3 α12 = arcsen V 2 La profondità del secondo strato può essere ricavata attraverso la determinazione del tempo intecetto del secondo strato o dell ascissa del punto ginocchio. Il tempo intercetto si ottiene estrapolando la dromocrona fino ad intercettare l asse dei tempi. In pratica corriponde al tempo di arrivo del segnale rifratto per x=0: 2h t i = cosα e quindi è uguale al doppio del tempo di ritardo. Quindi lo spessore è dato da: 12 ti h = 2cosα12 Il punto ginocchio corrisponde alla distanza alla quale arrivano contemporaneamente le onde dirette e le onde rifratte. Nel grafico coincide all ascissa in cui giace l intersezione delle due dromocrone. Noto x c lo spessore del primo strato si ricava dalla relazione: xc V 2 h = 2 V 2 + Nel caso di più di due strati la procedura è analoga. Il tempo di arrivo al geofono G delle onde rifratte dall interfaccia dello strato n è fornito dalla relazione x 2h 2h n 1 1 t n = + cosα n 1, n cosα1, n Vn Vn 1 59

4 Anche in questo caso le velocità dei singoli rifrattori si ottengono, calcolando il reciproco del coefficiente angolare di ogni dromocrona e i Vn valori degli angoli limite dal rapporto delle velocità ( α = 1 n 1, n arcsen ). Vn Per il calcolo degli spessori dei singoli strati si procede come indicato di seguito: si stimano i tempi intercetti di ogni dromocrona; t1 si calcola lo spessore del primo strato con la relazione: h 1 =, 2cosα12 dove t 1 è il tempo intercetto della dromocrona relativa al secondo rifrattore; Tempi t2 V3 V2 t1 Distanza si calcola lo spessore del secondo strato con la relazione t2v 2 2h1 h2 = cosα13, dove h 1 è lo spessore del primo strato, 2cosα 23 ricavato in precedenza, e t 2 il tempo intercetto del terzo rifrattore; 60

5 si procede analogamente per gli strati rimanenti Strati con interfaccia inclinata Nel caso il limite fra due strati non sia orizzontale, si introduce nel calcolo una nuova incognita, l angolo β che il piano di strato forma con l orizzontale. In questa situazione bisogna operare con due sorgenti (S e S ) posizionate agli estremi opposti dello stendimento. Si otterrano quindi, nel grafico distanza-tempi, due serie di dromocrone: quelle relative alle onde che viaggiano da S verso S (tiro diretto) e quelle corrispondenti al percorso inverso (da S a S tiro coniugato). Tempi V2c V2d t1 t1 Distanza 61

6 Le formula che fornisce il tempo di arrivo delle onde rifratte, viste nel paragrafo precedente, è ancora valida, ma, nel caso di due strati, va riscritta come segue x Z + z t = cos β + cosα V 2 dove Z è la distanza minima fra la sorgente S e la base del primo strato e z, analogamente, la distanza minima fra la sorgente S e la base del primo strato. Z e z quindi non corrispondono alle profondità del rifrattore. I reciproci dei coefficienti angolari delle dromocrone delle onde rifratte lungo l interfaccia del secondo strato non forniscono le velocità reali dei rifrattori; sono però collegate ad esse dalle relazioni: 12 V d = e sen 2 ( α β ) V2 c = sen ( α + β ) Queste due formule combinate permettono di ricavare le grandezze β e α, essendo nota. Dalla relazione senα = è possibile quindi ricavare V 2 V2. I tempi intercetti delle dromocrone relative allo strato 2 possono essere espresse dalle formule: 2Z t 1 = cosα (tiro diretto) e cosα ' 2z t 1 = (tiro coniugato) Le grandezze Z e z possono essere ricavate quindi dalle espressioni: t 1 Z = e cosα t 1' 1 z = V cosα Noto β, H e h (spessore del primo strato in corrispondenza di S e S ) possono essere ricavate infine con le relazioni: 62

7 Z H = e cos β z cos β La procedura esposta può ovviamente essere estesa al caso di n strati, con i passaggi già visti per il caso di rifrattori orizzontali. h = 3.2 Metodo reciproco generalizzato (G.R.M.). Nel caso in cui la morfologia del rifrattore sia irregolare è possibile utilizzare il metodo reciproco generalizzato (G.R.M.) (Palmer, 1980). Questa metodologia interpretativa consente di ricostruire l andamento di strati di forma qualsiasi, anche nel caso di variazioni laterali di velocità. Questa maggiore versatilità però ha come prezzo una superiore complessità operativa, richiedendo un maggior numero di sorgenti di energia, posizionate ai due estremi e internamente allo stendimento. Infatti, per poter ricostruire l andamento dell interfaccia di strato lungo tutto lo stendimento, è necessario che i segnali provenienti dal singolo rifrattore siano ricevuti da tutti i geofoni messi in opera. Il grafico distanza-tempi che si ottiene è considerevolmente più complesso rispetto al caso del metodo convenzionale. L interpretazione del grafico distanza-tempi prevede due passaggi: 1. la ricostruzione delle dromocrone relative ai singoli strati; 2. la stima delle velocità e delle profondità di ogni sinoglo rifrattore. 63

8 Curve distanza - tempo S1 S2 S3 S4 S5 S6 S7 S8 S Te mp 100 o di arri 90 vo del80 seg nal70 e (m 60 s) Distanza (m) Program Geo-Via Tosio, Brescia Ricostruzione delle dromocrone Compito principale dell operatore sarà quello di ricostruire la dromocrona relativa ad ogni strato, seguendola, se possibile, da un estremo all altro dello stendimento, assemblando quindi insieme tratti di dromocrone relative a sorgenti differenti, ma i cui segnali provengono dallo stesso rifrattore. Ciò andrà fatto sia per il tiro diretto che per quello coniugato. Questo lavoro di ricostruzione è la parte più delicata dell interpretazione, in quanto l attribuzione di dromocrone appartenenti ad un rifrattore ad un altro può dare origine a grossolani errori nel modello finale del terreno. Esistono comunque alcune semplici regole che possono guidare l operatore nella scelta. Dromocrone appartenti allo stesso rifrattore devono avere un andamento subparallelo, cioè la distanza verticale fra esse deve rimanere più o meno costante. 64

9 Tempi Distanza Le due dromocrone ricostruite per un dato rifrattore, quella relativa al tiro diretto e quella corrispondente al tiro coniugato, dovranno avere tempi di estremità identici, con uno scarto massimo di pochi punti percentuali (Te=Te ); per tempo di estremità s intende il tempo di arrivo del segnale associato al rifrattore considerato all estremità opposta dello stendimento. 65

10 Tempi Te Te Distanza I tempi intercetti delle dromocrone ricostruite relative al rifrattore considerato devono essere gli stessi Stima delle velocità e delle profondità dei rifrattori Con il metodo reciproco generalizzato si parte dall ipotesi che esista una distanza intergeofonica XY ottimale, distanza che fornisce il maggior dettaglio possibile nella ricostruzione della morfologia del rifrattore. Per determinare la distanza XY ottimale in pratica si deve procedere come indicato di seguito. Si fa variare XY da un valore minimo corrispondente alla spaziatura reale fra i geofoni fino a un valore massimo di 9-10 volte tale distanza; quindi se, per esempio, i geofoni sono spaziati di 3 m, si dovranno prendere in considerazione intervalli di XY uguali a 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 m. Per ogni valore di XY scelto si stima, con un passo di calcolo uguale a XY, la funzione velocità: 66

11 T v = ( T T + T ) sy s1x ss1 2 dove T sy è il tempo necessario al segnale proveniente dalla sorgente S per giungere al punto Y, T s1x è il tempo che impiega il segnale per arrivare nel punto X partendo dalla sorgente S1 e T ss1 è il tempo di estremità. G è il geofono virtuale posto a metà della distanza XY. S X G Y S1 Nel diagramma distanza - funzione velocità ottenuto si individua il valore XY ottimale, corrispondente alla curva che meglio approssima una retta. 67

12 Grafico funzione velocità: strato 3 PROGRAM GEO - SismaCon XY=0 XY=3 XY=6 XY=9 XY=12 XY=15 XY=18 XY=21 XY=24 XY=27 Funzione velocità (ms) Distanza (m) Program Geo-Via Tosio, Brescia Si stima V n, la velocità delle onde P nel rifrattore, posta uguale al reciproco del coefficiente angolare della curva funzione velocità selezionata. In corrispondenza di ogni valore di XY si stima, sempre con un passo di calcolo uguale a XY, la funzione tempo-profondità: T g = T sy XY T s x Tss + Vn 2 68

13 Grafico funzione tempo - profondità: strato 3 PROGRAM GEO - SismaCon XY=0 XY=3 XY=6 XY=9 XY=12 XY=15 XY=18 XY=21 XY=24 XY=27 Funzione tempo-profondità (ms) Distanza (m) Program Geo-Via Tosio, Brescia Si controlla che per al valore di XY scelto corrisponda la funzione tempo-profondità con maggiore articolazione. Infine, in corrispondenza di ogni geofono virtuale, posto nei punti XY/2, si calcola la distanza minima geofono-rifrattore: h min = T g V n XY 2T g 3.3 Metodo reciproco di Hawkins. Può essere visto come un caso particolare del metodo reciproco generalizzato, in cui si ponga XY=0. Questa semplificazione comporta due limitazioni significative: 1. la morfologia del rifrattore può avere un andamento irregolare, ma i singoli tratti non devono avere inclinazioni eccessive (in pratica non superiori a 20 ); 2. non è possibile individuare variazioni laterali di velocità all interno dello stesso rifrattore. 69

14 Rispetto al G.R.M. il metodo ha comunque il vantaggio di essere di più rapida e semplice applicazione, in quanto non risulta più necessario passare per la determinazione del valore XY ottimale. 70

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)

CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t) CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare

Dettagli

Indagine sismica. MASW - Multichannel Analysis of Surface Waves

Indagine sismica. MASW - Multichannel Analysis of Surface Waves Indagine sismica MASW - Multichannel Analysis of Surface Waves relativa alla determinazione della stratigrafia sismica VS e del parametro VS30 in un'area di Sestri Levanti NS rif 09140SA Dott. Geol. Franco

Dettagli

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante

La pista del mio studio Riflettiamo sulla pista. Guida per l insegnante Riflettiamo sulla pista Guida per l insegnante Obiettivi educativi generali Compito di specificazione - possiede capacità progettuale - è in grado di organizzare il proprio tempo e di costruire piani per

Dettagli

GEOMETRIA DELLE MASSE

GEOMETRIA DELLE MASSE 1 DISPENSA N 2 GEOMETRIA DELLE MASSE Si prende in considerazione un sistema piano, ossia giacente nel pian x-y. Un insieme di masse posizionato nel piano X-Y, rappresentato da punti individuati dalle loro

Dettagli

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE

~ Copyright Ripetizionando - All rights reserved ~ http://ripetizionando.wordpress.com STUDIO DI FUNZIONE STUDIO DI FUNZIONE Passaggi fondamentali Per effettuare uno studio di funzione completo, che non lascia quindi margine a una quasi sicuramente errata inventiva, sono necessari i seguenti 7 passaggi: 1.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2004 ESAME DI STAT DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. 004 Il candidato risolva uno dei due problemi e 5 dei 0 quesiti in cui si articola il questionario. PRBLEMA Sia la curva d equazione: ke ove k e

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R

Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R Studio di funzione Per studio di funzione intendiamo un insieme di procedure che hanno lo scopo di analizzare le proprietà di una funzione f ( x) R R : allo scopo di determinarne le caratteristiche principali.

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

Soluzione di equazioni quadratiche

Soluzione di equazioni quadratiche Soluzione di equazioni quadratiche Soluzione sulla Retta Algebrica Inseriamo sulla Retta Algebrica le seguenti espressioni polinomiali x e x 3 e cerchiamo di individuare i valori di x per i quali i punti

Dettagli

G3. Asintoti e continuità

G3. Asintoti e continuità G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano

Prof. Silvio Reato Valcavasia Ricerche. Il piano cartesiano Il piano cartesiano Per la rappresentazione di grafici su di un piano si utilizza un sistema di riferimento cartesiano. Su questo piano si rappresentano due rette orientate (con delle frecce all estremità

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.

LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3. 7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,

Dettagli

Usando il pendolo reversibile di Kater

Usando il pendolo reversibile di Kater Usando il pendolo reversibile di Kater Scopo dell esperienza è la misurazione dell accelerazione di gravità g attraverso il periodo di oscillazione di un pendolo reversibile L accelerazione di gravità

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:

Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1

LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 LA TRASMISSIONE DELLE INFORMAZIONI QUARTA PARTE 1 I CODICI 1 IL CODICE BCD 1 Somma in BCD 2 Sottrazione BCD 5 IL CODICE ECCESSO 3 20 La trasmissione delle informazioni Quarta Parte I codici Il codice BCD

Dettagli

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile

La propagazione delle onde luminose può essere studiata per mezzo delle equazioni di Maxwell. Tuttavia, nella maggior parte dei casi è possibile Elementi di ottica L ottica si occupa dello studio dei percorsi dei raggi luminosi e dei fenomeni legati alla propagazione della luce in generale. Lo studio dell ottica nella fisica moderna si basa sul

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare kπ/ [cos] al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della funzione

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

DALLE CARTE ALLE SEZIONI GEOLOGICHE

DALLE CARTE ALLE SEZIONI GEOLOGICHE DALLE CARTE ALLE SEZIONI GEOLOGICHE PROFILO TOPOGRAFICO Il profilo topografico, detto anche profilo altimetrico, è l intersezione di un piano verticale con la superficie topografica. Si tratta quindi di

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

FUNZIONE REALE DI UNA VARIABILE

FUNZIONE REALE DI UNA VARIABILE FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A

Dettagli

Giuseppe Ruffo. Fisica: lezioni e

Giuseppe Ruffo. Fisica: lezioni e Giuseppe Ruffo Fisica: lezioni e problemi Unità A2 - La rappresentazione di dati e fenomeni 1. Le rappresentazioni di un fenomeno 2. I grafici cartesiani 3. Le grandezze direttamente proporzionali 4. Altre

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

LA RETTA. Retta per l'origine, rette orizzontali e verticali

LA RETTA. Retta per l'origine, rette orizzontali e verticali Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia

Dettagli

Premessa: Nella traccia non è specificato cosa accade se si effettuano per esempio 2,3 minuti di conversazione.

Premessa: Nella traccia non è specificato cosa accade se si effettuano per esempio 2,3 minuti di conversazione. Esame di stato 5 - Proposta di risoluzione del problema Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di euro al mese, più centesimi per

Dettagli

Vademecum studio funzione

Vademecum studio funzione Vademecum studio funzione Campo di Esistenza di una funzione o dominio: Studiare una funzione significa determinare gli elementi caratteristici che ci permettono di disegnarne il grafico, a partire dalla

Dettagli

Indagine di Tomografia Elettrica

Indagine di Tomografia Elettrica Indagine di Tomografia Elettrica 1. DESCRIZIONE DEL METODO La tomografia elettrica è utilizzata a supporto di altri metodi geofisici nell investigazione delle strutture sepolte e nella ricerca di acque

Dettagli

(a cura di Francesca Godioli)

(a cura di Francesca Godioli) lezione n. 12 (a cura di Francesca Godioli) Ad ogni categoria della variabile qualitativa si può assegnare un valore numerico che viene chiamato SCORE. Passare dalla variabile qualitativa X2 a dei valori

Dettagli

DIAGRAMMA CARTESIANO

DIAGRAMMA CARTESIANO DIAGRAMMA CARTESIANO Imparerai ora a costruire con excel un diagramma cartesiano. Inizialmente andremo a porre sul grafico un solo punto, lo vedremo cambiare di posizione cambiando i valori nelle celle

Dettagli

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello.

CURVE DI LIVELLO. Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. CURVE DI LIVELLO Per avere informazioni sull andamento di una funzione f : D IR n IR può essere utile considerare i suoi insiemi di livello. Definizione. Si chiama insieme di livello k della funzione f

Dettagli

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ

LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ LA MASSIMIZZAZIONE DEL PROFITTO ATTRAVERSO LA FISSAZIONE DEL PREZZO IN FUNZIONE DELLE QUANTITÀ In questa Appendice mostreremo come trovare la tariffa in due parti che massimizza i profitti di Clearvoice,

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo.

Aprile (recupero) tra una variazione di velocità e l intervallo di tempo in cui ha luogo. Febbraio 1. Un aereo in volo orizzontale, alla velocità costante di 360 km/h, lascia cadere delle provviste per un accampamento da un altezza di 200 metri. Determina a quale distanza dall accampamento

Dettagli

Nell esempio verrà mostrato come creare un semplice documento in Excel per calcolare in modo automatico la rata di un mutuo a tasso fisso conoscendo

Nell esempio verrà mostrato come creare un semplice documento in Excel per calcolare in modo automatico la rata di un mutuo a tasso fisso conoscendo Nell esempio verrà mostrato come creare un semplice documento in Excel per calcolare in modo automatico la rata di un mutuo a tasso fisso conoscendo - la durata del mutuo in anni - l importo del mutuo

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Metodi risolutivi per le disequazioni algebriche

Metodi risolutivi per le disequazioni algebriche Metodi risolutivi per le disequazioni algebriche v.scudero Una disequazioni algebrica si presenta in una delle quattro forme seguenti: () P( () P( (3) P( () P( essendo P( un polinomio in. Noi studieremo

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare

L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare L EQUILIBRIO UNIVERSALE dalla meccanica celeste alla fisica nucleare Cap.4 giroscopio, magnetismo e forza di Lorentz teoria del giroscopio Abbiamo finora preso in considerazione le condizionidi equilibrio

Dettagli

Esercitazione 5 Dinamica del punto materiale

Esercitazione 5 Dinamica del punto materiale Problema 1 Un corpo puntiforme di massa m = 1.0 kg viene lanciato lungo la superficie di un cuneo avente un inclinazione θ = 40 rispetto all orizzontale e altezza h = 80 cm. Il corpo viene lanciato dal

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE

REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE REGOLAZIONE (E TASSAZIONE OTTIMALE) DI UN MONOPOLIO CON PIÙ LINEE DI PRODUZIONE Nella Sezione 16.5 abbiamo visto come un regolatore che voglia fissare il prezzo del monopolista in modo da minimizzare la

Dettagli

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S

Epoca k Rata Rk Capitale Ck interessi Ik residuo Dk Ek 0 S 0 1 C1 Ik=i*S Dk=S-C1. n 0 S L AMMORTAMENTO Gli ammortamenti sono un altra apllicazione delle rendite. Il prestito è un operazione finanziaria caratterizzata da un flusso di cassa positivo (mi prendo i soldi in prestito) seguito da

Dettagli

STUDIO DEL SEGNO DI UNA FUNZIONE

STUDIO DEL SEGNO DI UNA FUNZIONE STUDIO DEL SEGNO DI UNA FUNZIONE Quando si studia una funzione! " #$%&' (funzione reale di variabile reale) è fondamentale conoscere il segno, in altre parole sapere per quali valori di &( #$%&'$è positiva,

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

Laboratorio di Fisica 3 Ottica 2. Studenti: Buoni - Giambastiani - Leidi Gruppo: G09

Laboratorio di Fisica 3 Ottica 2. Studenti: Buoni - Giambastiani - Leidi Gruppo: G09 Laboratorio di Fisica 3 Ottica 2 Studenti: Buoni - Giambastiani - Leidi Gruppo: G09 24 febbraio 2015 1 Lunghezza d onda di un laser He-Ne 1.1 Scopo dell esperienza Lo scopo dell esperienza è quello di

Dettagli

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. Energia potenziale elettrica e potenziale 0. Premessa In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. 1. La forza elettrostatica è conservativa Una o più cariche ferme

Dettagli

Dispositivi di rete. Ripetitori. Hub

Dispositivi di rete. Ripetitori. Hub Ripetitori Dispositivi di rete I ripetitori aumentano la distanza che può essere ragginta dai dispositivi Ethernet per trasmettere dati l'uno rispetto all'altro. Le distanze coperte dai cavi sono limitate

Dettagli

MAPPE DI KARNAUGH. Nei capitoli precedenti si è visto che è possibile associare un circuito elettronico o elettrico ad una funzione logica.

MAPPE DI KARNAUGH. Nei capitoli precedenti si è visto che è possibile associare un circuito elettronico o elettrico ad una funzione logica. MAPPE DI KARNAUGH 1. Generalità Nei capitoli precedenti si è visto che è possibile associare un circuito elettronico o elettrico ad una funzione logica. E ovvio che più semplice è la funzione e più semplice

Dettagli

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto

Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Capitolo 2 - Teoria della manutenzione: classificazione ABC e analisi di Pareto Il presente capitolo continua nell esposizione di alcune basi teoriche della manutenzione. In particolare si tratteranno

Dettagli

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0.

Analisi Complessa. Prova intermedia del 7 novembre 2002 - Soluzioni. (z 11 1) 11 1 = 0. Analisi Complessa Prova intermedia del 7 novembre 2002 - Soluzioni Esercizio. Si consideri l equazione z 0. Quante soluzioni distinte esistono in C? Quante di esse sono contenute all interno del disco

Dettagli

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1

Economia Applicata ai sistemi produttivi. 06.05.05 Lezione II Maria Luisa Venuta 1 Economia Applicata ai sistemi produttivi 06.05.05 Lezione II Maria Luisa Venuta 1 Schema della lezione di oggi Argomento della lezione: il comportamento del consumatore. Gli economisti assumono che il

Dettagli

T = Da questa relazione si può ricavare quella inversa con cui si ottiene il tempo impiegato a percorrere un determinato spazio: S

T = Da questa relazione si può ricavare quella inversa con cui si ottiene il tempo impiegato a percorrere un determinato spazio: S Logica Numerica Approfondimento 2 E. Barbuto pazio, Tempo e Velocità I quesiti sulle distanze mettono alla prova il senso pratico e l acume logico del candidato ed, in generale, non riciedono un grande

Dettagli

B. Vogliamo determinare l equazione della retta

B. Vogliamo determinare l equazione della retta Risoluzione quesiti ordinamento Quesito N.1 Indicata con α la misura dell angolo CAB, si ha che: 1 Area ( ABC ) = AC AB sinα = 3 sinα π 3 sinα = 3 sinα = 1 α = Il triangolo è quindi retto in A. La misura

Dettagli

a) Determinare i numeri indice a base fissa del fatturato con base 2007=100 e commentare i risultati ottenuti per gli anni 2008 e 2012

a) Determinare i numeri indice a base fissa del fatturato con base 2007=100 e commentare i risultati ottenuti per gli anni 2008 e 2012 ESERCIZIO 1 Nella tabella che segue sono riportate le variazioni percentuali, rispetto all anno precedente, del fatturato di un azienda. Sulla base dei dati contenuti in tabella a) Determinare i numeri

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO

UNIVERSITÀ DEGLI STUDI DI TERAMO UNIVERSITÀ DEGLI STUDI DI TERAMO CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA (Classe 7) Corso di Matematica per l Economia (Prof. F. Eugeni) TEST DI INGRESSO Teramo, ottobre 00 SEZIONE

Dettagli

Lenti sottili/1. Menisco convergente. Menisco divergente. Piano convessa. Piano concava. Biconcava. Biconvessa. G. Costabile

Lenti sottili/1. Menisco convergente. Menisco divergente. Piano convessa. Piano concava. Biconcava. Biconvessa. G. Costabile Lenti sottili/1 La lente è un sistema ottico costituito da un pezzo di materiale trasparente omogeneo (vetro, policarbonato, quarzo, fluorite,...) limitato da due calotte sferiche (o, più generalmente,

Dettagli

Esercizi di Ricerca Operativa II

Esercizi di Ricerca Operativa II Esercizi di Ricerca Operativa II Raffaele Pesenti January 12, 06 Domande su utilità 1. Determinare quale è l utilità che un giocatore di roulette assegna a 100,00 Euro, nel momento che gioca tale cifra

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Inserimento di distanze e di angoli nella carta di Gauss

Inserimento di distanze e di angoli nella carta di Gauss Inserimento di distanze e di angoli nella carta di Gauss Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a. 2006-2007 Inserimento della distanza reale misurata nella carta di Gauss (passaggio

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

Microeconomia, Esercitazione 3 Effetto reddito, sostituzione, variazione compensativa, domanda di mercato, surplus del consumatore.

Microeconomia, Esercitazione 3 Effetto reddito, sostituzione, variazione compensativa, domanda di mercato, surplus del consumatore. Microeconomia, Esercitazione 3 Effetto reddito, sostituzione, variazione compensativa, domanda di mercato, surplus del consumatore. Dott. Giuseppe Francesco Gori Domande a risposta multipla ) Se nel mercato

Dettagli

Forze come grandezze vettoriali

Forze come grandezze vettoriali Forze come grandezze vettoriali L. Paolucci 23 novembre 2010 Sommario Esercizi e problemi risolti. Per la classe prima. Anno Scolastico 2010/11 Parte 1 / versione 2 Si ricordi che la risultante di due

Dettagli

Lezione 7 (BAG cap. 5)

Lezione 7 (BAG cap. 5) Lezione 7 (BAG cap. 5) I mercati dei beni e i mercati finanziari: il modello IS-LM Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia 1. Il mercato dei beni e la curva IS L equilibrio sul mercato

Dettagli

Determinazione del pka per un acido moderatamente debole per via potenziometrica C.Tavagnacco - versione 02.02.05

Determinazione del pka per un acido moderatamente debole per via potenziometrica C.Tavagnacco - versione 02.02.05 Determinazione del pka per un acido moderatamente debole per via potenziometrica C.Tavagnacco - versione 02.02.05 Dall equazione di Henderson-Hasselbalch (H-H), ph = pka + log ([A - ]/[HA]) si ricava che

Dettagli

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso

ELASTICITÀ. Sarebbe conveniente per il produttore aumentare ulteriormente il prezzo nella stessa misura del caso Esercizio 1 Data la funzione di domanda: ELASTICITÀ Dire se partendo da un livello di prezzo p 1 = 1.5, al produttore converrà aumentare il prezzo fino al livello p 2 = 2. Sarebbe conveniente per il produttore

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

ESEMPIO 1: eseguire il complemento a 10 di 765

ESEMPIO 1: eseguire il complemento a 10 di 765 COMPLEMENTO A 10 DI UN NUMERO DECIMALE Sia dato un numero N 10 in base 10 di n cifre. Il complemento a 10 di tale numero (N ) si ottiene sottraendo il numero stesso a 10 n. ESEMPIO 1: eseguire il complemento

Dettagli

Cenni di geografia astronomica. Giorno solare e giorno siderale.

Cenni di geografia astronomica. Giorno solare e giorno siderale. Cenni di geografia astronomica. Tutte le figure e le immagini (tranne le ultime due) sono state prese dal sito Web: http://www.analemma.com/ Giorno solare e giorno siderale. La durata del giorno solare

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Domanda e Offerta - Elasticità Dott. ssa Sabrina Pedrini

Domanda e Offerta - Elasticità Dott. ssa Sabrina Pedrini Microeconomia, Esercitazione 1 (19/02/2015) Domanda e Offerta - Elasticità Dott. ssa Sabrina Pedrini Domande a risposta multipla 1) Siamo di fronte a uno shock positivo di offerta se: a) in corrispondenza

Dettagli

LE FINESTRE E L ISOLAMENTO ACUSTICO

LE FINESTRE E L ISOLAMENTO ACUSTICO LE FINESTRE E L ISOLAMENTO ACUSTICO Roberto Malatesta. William Marcone Ufficio Tecnico (giugno 2008) LA PROTEZIONE DAL RUMORE DEGLI EDIFICI, LA NORMATIVA NAZIONALE La maggior sensibilità delle persone

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Lo studio di unzione Ing. Alessandro Pochì Appunti di analisi Matematica per la Classe VD (a.s. 011/01) Schema generale per lo studio di una unzione Premessa Per Studio unzione si intende, generalmente,

Dettagli

Studio grafico analitico delle funzioni reali a variabile reale y = f(x)

Studio grafico analitico delle funzioni reali a variabile reale y = f(x) Studio grafico analitico delle funzioni reali a variabile reale y = f() 1 Ecco i passi utili allo studio di una funzione reale: Determinare il dominio della funzione Ricercare l eventuale intersezione

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli