MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario"

Transcript

1 MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S = euro in legge esponenziale con tasso semestrale pari al 6.2%. Si calcoli il tempo T, in anni, necessari per triplicare l investimento e il tasso interno di rendimento dell operazione di investimento per T anni, esprimendolo in forma percentuale e su base annua. T = anni i = % Si risponda alla medesima domanda nel caso in cui l investimento avvenga in regime di interessi semplici allo stesso tasso semestrale. T = anni i = % Esercizio 2. Sul mercato, sono quotati un TCN a 6 mesi, con facciale 100 e prezzo 99, e un TCF a un anno con cedola semestrale, tasso nominale annuo del 3%, facciale 100 e prezzo 100. Si calcoli il tasso interno del rendimento del TCN, del TCF e del portafoglio formato da una quota del TCN e una del TCF, esprimendoli in forma percentuale su base annua. i TCN = % i TCF = % i TCN+TCF = %

2 Esercizio 3. Si consideri un mutuo non standard, acceso per una somma S = euro, con 4 rate semestrali posticipate al tasso annuo i = 3%, con le seguenti caratteristiche: le prime due rate sono uguali tra loro le ultime due rate sono uguali tra loro e sono la metà delle prime due. Si compili il piano di ammortamento. rata n. rata quota capitale quota interesse debito residuo

3 Esercizio 4. Nel mercato telebond ad un certo istante si osservano le seguenti quotazioni: a) il TCN a pronti a due anni è quotato 95 euro per ogni 100 di nominale; b) il TCF a pronti con durata 3 anni e cedola annuale del 2% è quotato 98 euro per ogni 100 di nominale; c) il TCN a termine con scadenza 2 anni e pagamento del prezzo a 1 anno è quotato 97 euro per ogni 100 di nominale. Determinare la struttura per scadenza dei tassi a pronti e dei tassi a termine in vigore sul mercato in quell istante, esprimendo i tassi in forma percentuale e in base annua. i(0, 1) = % i(0, 2) = % i(0, 3) = % i(0, 0, 1) = % i(0, 1, 2) = % i(0, 2, 3) = % In quello stesso istante e nello stesso mercato il TCN a 3 anni non ha una quotazione. Determinare per questo titolo un prezzo a termine P, da pagarsi al tempo 1 anno, che sia coerente con i prezzi dei rimanenti 3 titoli, esprimendolo in riferimento a 100 euro di nominale e motivando la risposta. P = euro Motivo: Esercizio 5. Nel mercato eurobond sono disponibili due titoli: a) un titolo a cedola nulla con scadenza sei mesi; b) una rendita perpetua con rata semestrale. La struttura per scadenza dei tassi di interesse in vigore su questo mercato è piatta, di tasso annuo i = 3%. Si calcolino le duration D a e D b, rispettivamente, dei due titoli, esprimendole in anni D a = anni D b = anni Il sig. Rossi ha un portafoglio con valore euro e duration 5 anni e vuole investire altri euro in questo mercato, in modo tale che la duration del suo portafoglio non cambi. Si determini come deve ripartire i euro fra i due titoli, indicando con V a l investimento nel primo titolo e con V b l investimento nel secondo. V a = euro V b = euro

4 Esercizio 6. Sul mercato flbond sono quotati i seguenti titoli a tasso variabile perfettamente indicizzati e senza spread: 1. titolo x con cedola annuale e scadenza 5 anni e mezzo, nominale 100 euro, prossima cedola 3 euro e prezzo euro. 2. titolo y con cedola semestrale e scadenza 7 anni e tre mesi, nominale 100 euro, prossima cedola 1 euro e prezzo euro. Si determinino le duration D x e D y (in anni) dei due titoli, nonché il prezzo P e la duration V di un titolo a tasso variabile perfettamente indicizzato appena emesso, con nominale 4 euro, cedola trimestrale, durata sei mesi e spread di 110 punti base ( = 1.10%) su ogni cedola. D x = anni D y = anni V = euro D = anni

5 MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S = euro in legge esponenziale con tasso semestrale pari al 6.4%. Si calcoli il tempo T, in anni, necessari per triplicare l investimento e il tasso interno di rendimento dell operazione di investimento per T anni, esprimendolo in forma percentuale e su base annua. T = anni i = % Si risponda alla medesima domanda nel caso in cui l investimento avvenga in regime di interessi semplici allo stesso tasso semestrale. T = anni i = % Esercizio 2. Sul mercato, sono quotati un TCN a 6 mesi, con facciale 100 e prezzo 99, e un TCF a un anno con cedola semestrale, tasso nominale annuo del 5%, facciale 100 e prezzo 100. Si calcoli il tasso interno del rendimento del TCN, del TCF e del portafoglio formato da una quota del TCN e una del TCF, esprimendoli in forma percentuale su base annua. i TCN = % i TCF = % i TCN+TCF = %

6 Esercizio 3. Si consideri un mutuo non standard, acceso per una somma S = euro, con 4 rate semestrali posticipate al tasso annuo i = 4%, con le seguenti caratteristiche: le prime due rate sono uguali tra loro le ultime due rate sono uguali tra loro e sono la metà delle prime due. Si compili il piano di ammortamento. rata n. rata quota capitale quota interesse debito residuo

7 Esercizio 4. Nel mercato telebond ad un certo istante si osservano le seguenti quotazioni: a) il TCN a pronti a due anni è quotato 95.5 euro per ogni 100 di nominale; b) il TCF a pronti con durata 3 anni e cedola annuale del 2% è quotato 98.5 euro per ogni 100 di nominale; c) il TCN a termine con scadenza 2 anni e pagamento del prezzo a 1 anno è quotato 97.5 euro per ogni 100 di nominale. Determinare la struttura per scadenza dei tassi a pronti e dei tassi a termine in vigore sul mercato in quell istante, esprimendo i tassi in forma percentuale e in base annua. i(0, 1) = % i(0, 2) = % i(0, 3) = % i(0, 0, 1) = % i(0, 1, 2) = % i(0, 2, 3) = % In quello stesso istante e nello stesso mercato il TCN a 3 anni non ha una quotazione. Determinare per questo titolo un prezzo a termine P, da pagarsi al tempo 1 anno, che sia coerente con i prezzi dei rimanenti 3 titoli, esprimendolo in riferimento a 100 euro di nominale e motivando la risposta. P = euro Motivo: Esercizio 5. Nel mercato eurobond sono disponibili due titoli: a) un titolo a cedola nulla con scadenza sei mesi; b) una rendita perpetua con rata semestrale. La struttura per scadenza dei tassi di interesse in vigore su questo mercato è piatta, di tasso annuo i = 4%. Si calcolino le duration D a e D b, rispettivamente, dei due titoli, esprimendole in anni D a = anni D b = anni Il sig. Rossi ha un portafoglio con valore euro e duration 5 anni e vuole investire altri euro in questo mercato, in modo tale che la duration del suo portafoglio non cambi. Si determini come deve ripartire i euro fra i due titoli, indicando con V a l investimento nel primo titolo e con V b l investimento nel secondo. V a = euro V b = euro

8 Esercizio 6. Sul mercato flbond sono quotati i seguenti titoli a tasso variabile perfettamente indicizzati e senza spread: 1. titolo x con cedola annuale e scadenza 6 anni e mezzo, nominale 100 euro, prossima cedola 3 euro e prezzo euro. 2. titolo y con cedola semestrale e scadenza 8 anni e tre mesi, nominale 100 euro, prossima cedola 1 euro e prezzo euro. Si determinino le duration D x e D y (in anni) dei due titoli, nonché il prezzo P e la duration V di un titolo a tasso variabile perfettamente indicizzato appena emesso, con nominale 5 euro, cedola trimestrale, durata sei mesi e spread di 120 punti base ( = 1.20%) su ogni cedola. D x = anni D y = anni V = euro D = anni

9 MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S = euro in legge esponenziale con tasso semestrale pari al 6.6%. Si calcoli il tempo T, in anni, necessari per triplicare l investimento e il tasso interno di rendimento dell operazione di investimento per T anni, esprimendolo in forma percentuale e su base annua. T = anni i = % Si risponda alla medesima domanda nel caso in cui l investimento avvenga in regime di interessi semplici allo stesso tasso semestrale. T = anni i = % Esercizio 2. Sul mercato, sono quotati un TCN a 6 mesi, con facciale 100 e prezzo 99, e un TCF a un anno con cedola semestrale, tasso nominale annuo del 7%, facciale 100 e prezzo 100. Si calcoli il tasso interno del rendimento del TCN, del TCF e del portafoglio formato da una quota del TCN e una del TCF, esprimendoli in forma percentuale su base annua. i TCN = % i TCF = % i TCN+TCF = %

10 Esercizio 3. Si consideri un mutuo non standard, acceso per una somma S = euro, con 4 rate semestrali posticipate al tasso annuo i = 5%, con le seguenti caratteristiche: le prime due rate sono uguali tra loro le ultime due rate sono uguali tra loro e sono la metà delle prime due. Si compili il piano di ammortamento. rata n. rata quota capitale quota interesse debito residuo

11 Esercizio 4. Nel mercato telebond ad un certo istante si osservano le seguenti quotazioni: a) il TCN a pronti a due anni è quotato 96 euro per ogni 100 di nominale; b) il TCF a pronti con durata 3 anni e cedola annuale del 2% è quotato 99 euro per ogni 100 di nominale; c) il TCN a termine con scadenza 2 anni e pagamento del prezzo a 1 anno è quotato 97.5 euro per ogni 100 di nominale. Determinare la struttura per scadenza dei tassi a pronti e dei tassi a termine in vigore sul mercato in quell istante, esprimendo i tassi in forma percentuale e in base annua. i(0, 1) = % i(0, 2) = % i(0, 3) = % i(0, 0, 1) = % i(0, 1, 2) = % i(0, 2, 3) = % In quello stesso istante e nello stesso mercato il TCN a 3 anni non ha una quotazione. Determinare per questo titolo un prezzo a termine P, da pagarsi al tempo 1 anno, che sia coerente con i prezzi dei rimanenti 3 titoli, esprimendolo in riferimento a 100 euro di nominale e motivando la risposta. P = euro Motivo: Esercizio 5. Nel mercato eurobond sono disponibili due titoli: a) un titolo a cedola nulla con scadenza sei mesi; b) una rendita perpetua con rata semestrale. La struttura per scadenza dei tassi di interesse in vigore su questo mercato è piatta, di tasso annuo i = 5%. Si calcolino le duration D a e D b, rispettivamente, dei due titoli, esprimendole in anni D a = anni D b = anni Il sig. Rossi ha un portafoglio con valore euro e duration 5 anni e vuole investire altri euro in questo mercato, in modo tale che la duration del suo portafoglio non cambi. Si determini come deve ripartire i euro fra i due titoli, indicando con V a l investimento nel primo titolo e con V b l investimento nel secondo. V a = euro V b = euro

12 Esercizio 6. Sul mercato flbond sono quotati i seguenti titoli a tasso variabile perfettamente indicizzati e senza spread: 1. titolo x con cedola annuale e scadenza 7 anni e mezzo, nominale 100 euro, prossima cedola 3 euro e prezzo euro. 2. titolo y con cedola semestrale e scadenza 9 anni e tre mesi, nominale 100 euro, prossima cedola 1 euro e prezzo euro. Si determinino le duration D x e D y (in anni) dei due titoli, nonché il prezzo P e la duration V di un titolo a tasso variabile perfettamente indicizzato appena emesso, con nominale 6 euro, cedola trimestrale, durata sei mesi e spread di 130 punti base ( = 1.30%) su ogni cedola. D x = anni D y = anni V = euro D = anni

13 MATEMATICA FINANZIARIA Appello del 9 ottobre 2015 appello straordinario Cognome e Nome C.d.L Matricola n Firma Cattedra: prof. Pacati (SI) prof. Renò (SI). Fornire le risposte richieste utilizzando esclusivamente gli spazi nelle caselle; eventuali punti decimali e/o segni negativi occupano una casella. Non consegnare fogli aggiuntivi. Scrivere con chiarezza i passi essenziali del procedimento negli appositi spazi. Esercizio 1. Si consideri l investimento di una somma S = euro in legge esponenziale con tasso semestrale pari al 6.8%. Si calcoli il tempo T, in anni, necessari per triplicare l investimento e il tasso interno di rendimento dell operazione di investimento per T anni, esprimendolo in forma percentuale e su base annua. T = anni i = % Si risponda alla medesima domanda nel caso in cui l investimento avvenga in regime di interessi semplici allo stesso tasso semestrale. T = anni i = % Esercizio 2. Sul mercato, sono quotati un TCN a 6 mesi, con facciale 100 e prezzo 99, e un TCF a un anno con cedola semestrale, tasso nominale annuo del 9%, facciale 100 e prezzo 100. Si calcoli il tasso interno del rendimento del TCN, del TCF e del portafoglio formato da una quota del TCN e una del TCF, esprimendoli in forma percentuale su base annua. i TCN = % i TCF = % i TCN+TCF = %

14 Esercizio 3. Si consideri un mutuo non standard, acceso per una somma S = euro, con 4 rate semestrali posticipate al tasso annuo i = 6%, con le seguenti caratteristiche: le prime due rate sono uguali tra loro le ultime due rate sono uguali tra loro e sono la metà delle prime due. Si compili il piano di ammortamento. rata n. rata quota capitale quota interesse debito residuo

15 Esercizio 4. Nel mercato telebond ad un certo istante si osservano le seguenti quotazioni: a) il TCN a pronti a due anni è quotato 96.5 euro per ogni 100 di nominale; b) il TCF a pronti con durata 3 anni e cedola annuale del 2% è quotato 99.5 euro per ogni 100 di nominale; c) il TCN a termine con scadenza 2 anni e pagamento del prezzo a 1 anno è quotato 98 euro per ogni 100 di nominale. Determinare la struttura per scadenza dei tassi a pronti e dei tassi a termine in vigore sul mercato in quell istante, esprimendo i tassi in forma percentuale e in base annua. i(0, 1) = % i(0, 2) = % i(0, 3) = % i(0, 0, 1) = % i(0, 1, 2) = % i(0, 2, 3) = % In quello stesso istante e nello stesso mercato il TCN a 3 anni non ha una quotazione. Determinare per questo titolo un prezzo a termine P, da pagarsi al tempo 1 anno, che sia coerente con i prezzi dei rimanenti 3 titoli, esprimendolo in riferimento a 100 euro di nominale e motivando la risposta. P = euro Motivo: Esercizio 5. Nel mercato eurobond sono disponibili due titoli: a) un titolo a cedola nulla con scadenza sei mesi; b) una rendita perpetua con rata semestrale. La struttura per scadenza dei tassi di interesse in vigore su questo mercato è piatta, di tasso annuo i = 6%. Si calcolino le duration D a e D b, rispettivamente, dei due titoli, esprimendole in anni D a = anni D b = anni Il sig. Rossi ha un portafoglio con valore euro e duration 5 anni e vuole investire altri euro in questo mercato, in modo tale che la duration del suo portafoglio non cambi. Si determini come deve ripartire i euro fra i due titoli, indicando con V a l investimento nel primo titolo e con V b l investimento nel secondo. V a = euro V b = euro

16 Esercizio 6. Sul mercato flbond sono quotati i seguenti titoli a tasso variabile perfettamente indicizzati e senza spread: 1. titolo x con cedola annuale e scadenza 8 anni e mezzo, nominale 100 euro, prossima cedola 3 euro e prezzo euro. 2. titolo y con cedola semestrale e scadenza 10 anni e tre mesi, nominale 100 euro, prossima cedola 1 euro e prezzo euro. Si determinino le duration D x e D y (in anni) dei due titoli, nonché il prezzo P e la duration V di un titolo a tasso variabile perfettamente indicizzato appena emesso, con nominale 7 euro, cedola trimestrale, durata sei mesi e spread di 140 punti base ( = 1.40%) su ogni cedola. D x = anni D y = anni V = euro D = anni

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 18 marzo 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 18 marzo 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 10 febbraio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015

MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 MATEMATICA FINANZIARIA Appello del 22 gennaio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 20 gennaio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 20 gennaio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 13 06 2008. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 13 06 2008 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli

MATEMATICA FINANZIARIA Appello del 26 gennaio 2009. Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli MATEMATICA FINANZIARIA Appello del 26 gennaio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento MATEMATICA FINANZIARIA Appello del 22 gennaio 2004 studenti vecchio ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 14 luglio 2015

MATEMATICA FINANZIARIA Appello del 14 luglio 2015 MATEMATICA FINANZIARIA Appello del 14 luglio 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 24 settembre 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 24 marzo 2015

MATEMATICA FINANZIARIA Appello del 24 marzo 2015 MATEMATICA FINANZIARIA Appello del 24 marzo 2015 Cognome.................................. Nome.................................. C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 4 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 4 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello dell 11 settembre 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello dell 11 settembre 2013 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento

MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento MATEMATICA FINANZIARIA Appello del 2 marzo 2010 programma vecchio ordinamento Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 6 luglio 2011. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 6 luglio 2011 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002

MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 MATEMATICA FINANZIARIA Appello del 28 gennaio 2002 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR).

MATEMATICA FINANZIARIA Appello del 10 luglio 2013. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR) dott. Riccarelli (AR). MATEMATICA FINANZIARIA Appello del 10 luglio 2013 Cognome e Nome.......................................................................... C.d.L....................... Matricola n...................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 16 giugno 2014

MATEMATICA FINANZIARIA Appello del 16 giugno 2014 MATEMATICA FINANZIARIA Appello del 16 giugno 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 settembre 2015

MATEMATICA FINANZIARIA Appello del 23 settembre 2015 MATEMATICA FINANZIARIA Appello del 23 settembre 2015 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR).

MATEMATICA FINANZIARIA Appello del 12 febbraio 2014. Cattedra: prof. Pacati (SI) prof. Renò (SI) dott. Quaranta (GR). MATEMATICA FINANZIARIA Appello del 12 febbraio 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti MATEMATICA FINANZIARIA Appello dell 8 ottobre 2010 programma a.a. precedenti Cognome e Nome........................................................................... C.d.L....................... Matricola

Dettagli

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014

MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 MATEMATICA FINANZIARIA Appello dell 8 ottobre 2014 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento

MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento MATEMATICA FINANZIARIA Appello del 23 giugno 2003 studenti nuovo ordinamento Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma...

MATEMATICA FINANZIARIA Appello del 26 febbraio 2009. Cognome e Nome... C.d.L... Matricola n... Firma... MATEMATICA FINANZIARIA Appello del 26 febbraio 2009 Cognome e Nome... C.d.L.... Matricola n.... Firma... Cattedra: prof. Pacati prof. Renò dott. Quaranta dott. Falini dott. Riccarelli Fornire le risposte

Dettagli

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo?

Per motivi di bilancio, la Banca può scegliere di finanziare una sola delle due imprese. Quale sceglierà, e per quale motivo? MATEMATICA FINANZIARIA Prova intermedia dell 11/11/2014 Pacati Renò non iscritto Cognome e Nome..................................................................... Matricola...................... Fornire

Dettagli

MATEMATICA FINANZIARIA Appello del 10 luglio 2000

MATEMATICA FINANZIARIA Appello del 10 luglio 2000 MATEMATICA FINANZIARIA Appello del 10 luglio 2000 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

Esercizi svolti in aula

Esercizi svolti in aula Esercizi svolti in aula 23 maggio 2012 Esercizio 1 (Esercizio 1 del compito di matematica finanziaria 1 (CdL EA) del 16-02-10) Un individuo vuole accumulare su un conto corrente la somma di 10.000 Euro

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno commerciale (360 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu Prova del 22 Gennaio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Calcolo Finanziario Esercizi proposti Gli esercizi contrassegnati con (*) è consigliato svolgerli con il foglio elettronico, quelli

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Università degli Studi di Siena Facoltà di Economia Esercizi di Matematica Finanziaria relativi ai capitoli I-IV del testo Claudio Pacati a.a. 1998 99 c Claudio Pacati tutti i diritti riservati. Il presente

Dettagli

Matematica Finanziaria Soluzione della prova scritta del 15/05/09

Matematica Finanziaria Soluzione della prova scritta del 15/05/09 Matematica Finanziaria Soluzione della prova scritta del 15/05/09 ESERCIZIO 1 Il valore in t = 60 semestri dei versamenti effettuati dall individuo è W (m) = R(1 + i 2 ) m + R(1 + i 2 ) m 1 +... R(1 +

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma...

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. Prova del 23 giugno 2009. Cognome Nome e matr... Anno di Corso... Firma... ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE Prova del 23 giugno 2009 Cognome Nome e matr..................................................................................

Dettagli

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale

MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr... Anno di Corso... Firma... Scelta dell appello per l esame orale MATEMATICA FINANZIARIA - 6 cfu Prova del 15 luglio 2014 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Nome e Cognome... Matricola...

Nome e Cognome... Matricola... Università degli Studi di Perugia Facoltà di Economia Corso di Laurea in Statistica e Informatica per la Gestione delle Imprese (SIGI) Anno accademico 2006-2007 Matematica Finanziaria (5 crediti) - Prova

Dettagli

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare:

Ipotizzando una sottostante legge esponenziale e considerando l anno solare (365 gg), determinare: MATEMATICA FINANZIARIA - 6 cfu quadrate, i punti che saranno assegnati se l esercizio è stato svolto in modo corretto. con le seguenti caratteristiche: prezzo di emissione: 99,467e, valore a scadenza 100e,

Dettagli

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti

Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti Esercizi di Matematica Finanziaria - Corso Part Time scheda 1 - Leggi finanziarie, rendite ed ammortamenti 1. Un capitale d ammontare 100 viene investito, in regime di interesse semplice, al tasso annuo

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 2007 2008 Prova del 4 luglio 2008 Nome Cognome Matricola Esercizio 1 (6 punti) Dato un debito di 20 000, lo si voglia rimborsare mediante il pagamento di 12 rate mensili posticipate

Dettagli

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare.

1b. [2] Stessa richiesta del punto 1a., con gli stessi dati salvo che la valutazione deve essere fatta rispetto alla legge lineare. MATEMATICA FINANZIARIA - 6 cfu Prova del 14 aprile 2015 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000

rata n. rata quota capitale quota interesse debito residuo 0 0 0 0 200 000 MATEMATICA FINANZIARIA Prova intermedia dell //05 Pacati Quaranta Esercizio. Anna è una giovane che ha appena ricevuto un eredità di 50 000 e decide di investirli in un conto di deposito fino a che non

Dettagli

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento.

3b. [2] Dopo aver determinato la rata esatta, scrivere il piano di ammortamento. MATEMATICA FINANZIARIA - 6 cfu Prova del 23 aprile 2014 - Riservata a studenti fuori corso Cognome Nome e matr.................................................................................. Anno di

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIARIA E. Michetti Esercitazioni in aula MOD. 2 E. Michetti (Esercitazioni in aula MOD. 2) MATEMATICA FINANZIARIA 1 / 18 Rendite Esercizi 2.1 1. Un flusso di cassa prevede la riscossione

Dettagli

IV Esercitazione di Matematica Finanziaria

IV Esercitazione di Matematica Finanziaria IV Esercitazione di Matematica Finanziaria 28 Ottobre 2010 Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 85 giorni, prezzo di acquisto (lordo) P = 97.40 euro e

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 27 maggio 2010 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 27 maggio 2010 Cognome Nome e matr..................................................................................

Dettagli

Soluzioni del Capitolo 5

Soluzioni del Capitolo 5 Soluzioni del Capitolo 5 5. Tizio contrae un prestito di 5.000 al cui rimborso provvede mediante il pagamento di cinque rate annue; le prime quattro rate sono ciascuna di importo.00. Determinare l importo

Dettagli

TRACCE DI MATEMATICA FINANZIARIA

TRACCE DI MATEMATICA FINANZIARIA TRACCE DI MATEMATICA FINANZIARIA 1. Determinare il capitale da investire tra tre mesi per ottenere, nel regime dello sconto commerciale, un montante di 2800 tra tre anni e tre mesi sapendo che il tasso

Dettagli

Corso di Matematica finanziaria

Corso di Matematica finanziaria Corso di Matematica finanziaria modulo "Fondamenti della valutazione finanziaria" Eserciziario di Matematica finanziaria Università degli studi Roma Tre 2 Esercizi dal corso di Matematica finanziaria,

Dettagli

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria.

1a. [2] Determinare il tasso annuo d interesse della legge lineare cui avviene l operazione finanziaria. MATEMATICA FINANZIARIA - 6 cfu Prova del 5 febbraio 2015 Cognome Nome e matr.................................................................................. Anno di Corso..........................................

Dettagli

Determinare l ammontare x da versare per centrare l obiettivo di costituzione.

Determinare l ammontare x da versare per centrare l obiettivo di costituzione. Esercizi di matematica finanziaria 1 VAN - DCF - TIR Esercizio 1.1. Un investitore desidera disporre tra 3 anni d un capitale M = 10000 euro. Investe subito la somma c 0 pari a 1/4 di M. Farà poi un ulteriore

Dettagli

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016

MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 MATEMATICA FINANZIARIA Appello del 14 gennaio 2016 Cognome e Nome............................................................. Matricola n....................... Cattedra: Pacati Quaranta Fornire le risposte

Dettagli

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005

Temi d esame di Matematica Finanziarie e Attuariale. Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 Temi d esame di Matematica Finanziarie e Attuariale Matematica Finanziaria ed Attuariale Prova scritta dell 8 aprile 2005 1. 7 pti Una somma di denaro raddoppia dopo 10 anni: qual è il tasso di rendimento?

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Sede di SULMONA Prova scritta di esame del 01 02-2011 Cognome Nome Matricola Esercizio 1 (punti 5) Nel regime dell interesse iperbolico e dell interesse composto, calcolare il tasso semestrale di interesse

Dettagli

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL

LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL LABORATORIO DI MATEMATICA RENDITE, AMMORTAMENTI, LEASING CON EXCEL ESERCITAZIONE GUIDATA: LE RENDITE 1. Il montante di una rendita immediata posticipata Utilizzando Excel, calcoliamo il montante di una

Dettagli

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia

Titoli indicizzati Definizioni Prezzo di un CCT. Titoli indicizzati. Flavio Angelini. Università di Perugia Titoli indicizzati Flavio Angelini Università di Perugia Titoli indicizzati Tra i principali titoli indicizzati del mercato monetario ci sono: Mutui a Tasso Variabile, Obbligazioni a Tasso Variabile, Forward

Dettagli

2. Scomporre la seconda rata in quota di capitale e quota d interesse.

2. Scomporre la seconda rata in quota di capitale e quota d interesse. Esercizi di matematica finanziaria Rate e ammortamenti Esercizio.. Un finanziamento di 0000 euro deve essere rimborsato con tre rate annue costanti d ammontare R. Il tasso contrattuale è 2% annuo (composto)..

Dettagli

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti

MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti MATEMATICA FINANZIARIA Schede Esercizi a.a. 2014-2015 Elisabetta Michetti 1 MODULO 1 1.1 Principali grandezze finanziarie 1. Si consideri una operazione finanziaria di provvista che prevede di ottenere

Dettagli

Formulario. Legge di capitalizzazione dell Interesse semplice (CS)

Formulario. Legge di capitalizzazione dell Interesse semplice (CS) Formulario Legge di capitalizzazione dell Interesse semplice (CS) Il montante M è una funzione lineare del capitale iniziale P. Di conseguenza M cresce proporzionalmente rispetto al tempo. M = P*(1+i*t)

Dettagli

Capitalizzazione composta, rendite, ammortamento

Capitalizzazione composta, rendite, ammortamento Capitalizzazione composta, rendite, ammortamento Paolo Malinconico 2 dicembre 2014 Montante Composto dove: C(t) = C(1+i) t C(t) = montante (o valore del capitale) al tempo t C = capitale impiegato (corrispondente

Dettagli

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014

Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Matricola: Cognome e Nome: Firma: Numero di identificazione: 1 MATEMATICA FINANZIARIA E ATTUARIALE (A-G) E (H-Z) - Prova scritta del 15 gennaio 2014 Avvertenze Durante lo svolgimento degli esercizi tenere

Dettagli

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO

PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO ESERCITAZIONE MATEMATICA FINANZIARIA 16/11/2013 1 PIANI DI AMMORTAMENTO, TIC, NUDA PROPRIETA E USUFRUTTO, TIR E ARBITRAGGIO Nuda proprietà e usufrutto Esercizio 1 2 ESERCIZIO 1 Una società prende in prestito

Dettagli

Esercizi Svolti di Matematica Finanziaria

Esercizi Svolti di Matematica Finanziaria Esercizi Svolti di Matematica Finanziaria Esercizio. Nel mercato obbligazionario italiano del 0 Novembre 009 si osservano i seguenti prezzi: - prezzo 96, per un titolo il cui valore a scadenza in T è 0,

Dettagli

( ) i. è il Fattore di Sconto relativo alla scadenza (futura) i-esima del Prestito

( ) i. è il Fattore di Sconto relativo alla scadenza (futura) i-esima del Prestito DURATA FINANZIARIA CORRISPONDENTE AL TASSO FINANZIARIAMENTE EQUIVALENTE Il calcolo della Durata Finanziaria Corrispondente (DFC) al Tasso Finanziariamente Equivalente del Prestito () ha come obiettivo

Dettagli

Metodi Matematici 2 B 28 ottobre 2010

Metodi Matematici 2 B 28 ottobre 2010 Metodi Matematici 2 B 28 ottobre 2010 1 Prova Parziale - Matematica Finanziaria TEST Cognome Nome Matricola Rispondere alle dieci domande sbarrando, nel caso di risposta multipla, la casella che si ritiene

Dettagli

PRESTITO SOCI BPC TASSO MISTO

PRESTITO SOCI BPC TASSO MISTO scheda prodotto PRESTITO SOCI BPC rilascio del 02.05.2014 FOGLIO INFORMATIVO PRESTITO SOCI BPC TASSO MISTO INFORMAZIONI SULLA BANCA Denominazione e forma giuridica BANCA POPOLARE DEL CASSINATE Società

Dettagli

MATEMATICA FINANZIARIA Appello del 15 luglio 2009

MATEMATICA FINANZIARIA Appello del 15 luglio 2009 MATEMATICA FINANZIARIA Appello del 15 luglio 2009 Cognome e Nome................................................................... C.d.L....................... Matricola n................................................

Dettagli

esercitazione EIF n 3 a.a. 2006-2007: CAMBI, TASSI SU MUTUI E PRESTITI, TITOLI DI STATO, OBBLIGAZIONI

esercitazione EIF n 3 a.a. 2006-2007: CAMBI, TASSI SU MUTUI E PRESTITI, TITOLI DI STATO, OBBLIGAZIONI esercitazione EIF n 3 a.a. 2006-2007: CAMBI, TASSI SU MUTUI E PRESTITI, TITOLI DI STATO, OBBLIGAZIONI 1 Cambi 2 Valuta: qualsiasi mezzo di pagamento utilizzabile negli scambi internazionali, es. banconote,

Dettagli

II Esercitazione di Matematica Finanziaria

II Esercitazione di Matematica Finanziaria II Esercitazione di Matematica Finanziaria Esercizio 1. Si consideri l acquisto di un titolo a cedola nulla con vita a scadenza di 90 giorni, prezzo di acquisto (lordo) P = 98.50 euro e valore facciale

Dettagli

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A

Matematica Finanziaria A - corso part time prova d esame del 21 Aprile 2010 modalità A prova d esame del 21 Aprile 2010 modalità A 1. Un tizio ha bisogno di 600 euro che può chiedere, in alternativa, a due banche: A e B. La banca A propone un rimborso a quote capitale costanti mediante tre

Dettagli

A cura della Segreteria Provinciale S.A.P.P.e di Novara

A cura della Segreteria Provinciale S.A.P.P.e di Novara A cura della Segreteria Provinciale S.A.P.P.e di Novara 1 COS E IL MUTUO INPDAP Il mutuo inpdap è un mutuo ipotecario per l'acquisto della prima casa erogato dall' Istituto Nazionale per i Dipendenti dell'

Dettagli

VI Esercitazione di Matematica Finanziaria

VI Esercitazione di Matematica Finanziaria VI Esercitazione di Matematica Finanziaria 2 Dicembre 200 Esercizio. Verificare la proprietà di scindibilità delle leggi del prezzo { v(t, s) = exp } 2 (s2 t 2 ) e v(t, s) = e t(s t) Soluzione. Possiamo

Dettagli

I PRODOTTI DI MUTUO OFFERTI. La nostra Banca offre alla propria clientela i seguenti mutui ipotecari per l acquisto dell abitazione principale:

I PRODOTTI DI MUTUO OFFERTI. La nostra Banca offre alla propria clientela i seguenti mutui ipotecari per l acquisto dell abitazione principale: Mutui garantiti da ipoteca per l acquisto dell abitazione principale Informativa di trasparenza ai sensi del D.L. n. 185/2008 convertito nella Legge n. 2/2009 Questo documento ha lo scopo di rendere un

Dettagli

PROSPETTO INFORMATIVO EUROPEO STANDARDIZZATO

PROSPETTO INFORMATIVO EUROPEO STANDARDIZZATO PROSPETTO INFORMATIVO EUROPEO STANDARDIZZATO Questo prospetto informativo è parte integrante del Codice volontario di condotta in materia di informativa precontrattuale relativa ai contratti di mutuo destinati

Dettagli

PROSPETTO INFORMATIVO EUROPEO STANDARDIZZATO

PROSPETTO INFORMATIVO EUROPEO STANDARDIZZATO PROSPETTO INFORMATIVO EUROPEO STANDARDIZZATO Questo prospetto informativo è parte integrante del Codice volontario di condotta in materia di informativa precontrattuale relativa ai contratti di mutuo destinati

Dettagli

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009

ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE. PROVA DI COMPLETAMENTO 22 maggio 2009 ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 22 maggio 2009 Cognome Nome e matr..................................................................................

Dettagli

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12

3. Determinare il numero di mesi m > 0 tale che i montanti generati dai due impieghi coincidano. M = 1000 1 + 0.1 9 ) = 1075 12 Esercizi di matematica finanziaria 1 Leggi finanziarie in una variabile Esercizio 1.1. Un soggetto può impiegare C o a interessi semplici con tasso annuo i oppure a interessi semplici anticipati con tasso

Dettagli

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005

Matematica finanziaria: svolgimento prova di esame del 5 luglio 2005 Matematica finanziaria: svolgimento prova di esame del 5 luglio 5. [5 punti cleai, 5 punti altri] Prestiamo e a un amico. Ci si accorda per un tasso di remunerazione del 6% annuale (posticipato), per un

Dettagli

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%.

1.a [3] Trovare quale importo può essere finanziato pagando una rata mensile posticipata di 1000e per 5 anni, al tasso semestrale del 5%. ELABORAZIONE AUTOMATICA DEI DATI PER LE DECISIONI ECONOMICHE E FINANZIARIE PROVA DI COMPLETAMENTO 16 maggio 2008 Cognome Nome e matr..................................................................................

Dettagli

AMMORTAMENTO. Generalità e Funzionamento dell applicativo

AMMORTAMENTO. Generalità e Funzionamento dell applicativo AMMORTAMENTO Generalità e Funzionamento dell applicativo Per ammortamento di un prestito (mutuo) indiviso si intende quel procedimento in base al quale un soggetto (unico) cede ad un tempo iniziale (es.

Dettagli

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12

M 1 + i = 1017.1 1.05 = 968.67 = 1000 968.67 0.05 12 3 12 Esercizi di matematica finanziaria 1 Titoli con cedola Esercizio 1.1. Un tesoriere d impresa considera la possibilità d impiego della somma C = 1000 nell acquisto d un titolo, rimborsato alla pari, con

Dettagli

CAPITOLATO SPECIALE CARATTERISTICHE DEI MUTUI A 15 ANNI E 20 ANNI

CAPITOLATO SPECIALE CARATTERISTICHE DEI MUTUI A 15 ANNI E 20 ANNI CAPITOLATO SPECIALE Servizio di erogazione alla Provincia di Genova di mutui o di sottoscrizione di prestiti obbligazionari in più emissioni parziali fino all importo complessivo di Euro 11.000.000,00

Dettagli

Corso di Asset and liability management. Il rischio di interesse sul banking book ESERCIZI

Corso di Asset and liability management. Il rischio di interesse sul banking book ESERCIZI Università degli Studi di Parma Corso di Asset and liability management Il rischio di interesse sul banking book ESERCIZI Prof.ssa Paola Schwizer Anno accademico 2010-2011 Riclassificazione del bilancio

Dettagli

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto)

Matematica finanziaria: svolgimento prova di esame del 21 giugno 2005 (con esercizio 1 corretto) Matematica finanziaria: svolgimento prova di esame del giugno 5 (con esercizio corretto). [6 punti cleai, 6 punti altri] Si possiede un capitale di e e lo si vuole impiegare per anni. Supponendo che eventuali

Dettagli

ALLEGATO A CAPITOLATO SPECIALE. Espletamento dei servizi finanziari relativi alla concessione di due mutui

ALLEGATO A CAPITOLATO SPECIALE. Espletamento dei servizi finanziari relativi alla concessione di due mutui CAPITOLATO SPECIALE Espletamento dei servizi finanziari relativi alla concessione di due mutui Art. 1 Oggetto Oggetto del presente capitolato è la regolamentazione delle condizioni per l espletamento di

Dettagli

I Titoli Obbligazionari. S. Corsaro Matematica Finanziaria a.a. 2007/08 1

I Titoli Obbligazionari. S. Corsaro Matematica Finanziaria a.a. 2007/08 1 I Titoli Obbligazionari S. Corsaro Matematica Finanziaria a.a. 2007/08 1 Obbligazione (bond) E emessa da un unità in deficit (un impresa, un Comune, lo Stato). Il flusso di cassa, dal punto di vista dell

Dettagli

Mutuo dedicato all acquisto, costruzione, ristrutturazione e ampliamento di immobili ad uso abitativo (anche non Prima Casa).

Mutuo dedicato all acquisto, costruzione, ristrutturazione e ampliamento di immobili ad uso abitativo (anche non Prima Casa). Foglio Comparativo con le informazioni generali dei Mutui casa rientranti nella gamma Mutui Facile aggiornamento n 56 del 1 Luglio 2015 LE AGEVOLAZIONI SUL TASSO E ALTRE CONDIZIONI RISERVATE AI SOCI (consumatori)

Dettagli

FOGLIO INFORMATIVO FINANZIAMENTO ECOENERGY A CONDOMINI

FOGLIO INFORMATIVO FINANZIAMENTO ECOENERGY A CONDOMINI INFORMAZIONI SULLA BANCA Offerta Fuori Sede Promotore Finanziario Nome e Cognome Nr. Iscrizione Albo CHE COS È IL FINANZIAMENTO Foglio Informativo Finanziamento Ecoenergy a Condomini SCHEDA N.5/bis (pag.

Dettagli

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08

Le Scelte Finanziarie. S. Corsaro Matematica Finanziaria a.a. 2007/08 Le Scelte Finanziarie 1 Tasso Interno di Rendimento Consideriamo un operazione finanziaria (t 0 =0): 0 x 0 t 1 t 2 t m...... x 1 x 2 x m Posto: x = x0, x1,, xm { } si definisce tasso interno di rendimento

Dettagli

La nostra Banca offre alla propria clientela i seguenti mutui ipotecari per l acquisto dell abitazione principale:

La nostra Banca offre alla propria clientela i seguenti mutui ipotecari per l acquisto dell abitazione principale: INFORMAZIONI GENERALI SULLE DIVERSE TIPOLOGIE DI MUTUI GARANTITI DA IPOTECA PER L ACQUISTO DELL ABITAZIONE PRINCIPALE (AI SENSI DEL D.L. N. 185/2008 LEGGE N. 2 DEL 28/01/2009) Sezione I- Informazioni sulla

Dettagli

Leggi di capitalizzazione

Leggi di capitalizzazione Leggi di capitalizzazione Introduzione Nel capitolo precedente abbiamo introdotto la definizione di fattore montante M(t,s)=V(s)/V(t) Quando M(t,s) viene vista come funzione di t e di s, si chiama legge

Dettagli

PRESTITO PERSONALE Il presente documento non è personalizzato ed ha la funzione di render note le condizioni dell offerta alla potenziale Clientela

PRESTITO PERSONALE Il presente documento non è personalizzato ed ha la funzione di render note le condizioni dell offerta alla potenziale Clientela PRESTITO PERSONALE Il presente documento non è personalizzato ed ha la funzione di render note le condizioni dell offerta alla potenziale Clientela 1. IDENTITA E CONTATTI DEL FINANZIATORE/INTERMEDIARIO

Dettagli

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce

Pertanto la formula per una prima approssimazione del tasso di rendimento a scadenza fornisce A. Peretti Svolgimento dei temi d esame di MDEF A.A. 015/16 1 PROVA CONCLUSIVA DI MATEMATICA per le DECISIONI ECONOMICO-FINANZIARIE Vicenza, 9/01/016 ESERCIZIO 1. Data l obbligazione con le seguenti caratteristiche:

Dettagli

CHE COS È IL MUTUO GARANTITO DA IPOTECA PER L ACQUISTO DELL ABITAZIONE PRINCIPALE

CHE COS È IL MUTUO GARANTITO DA IPOTECA PER L ACQUISTO DELL ABITAZIONE PRINCIPALE INFORMAZIONI SULLA BANCA Denominazione legale: - Sede legale e Amministrativa: Via Provinciale Lucchese, 125/b Tel.: 0573/91391 Fax: 0573/572442 Sito Internet: www.vibanca.it - E-mail: info@vibanca.it

Dettagli

Mutuo dedicato all acquisto, costruzione, ristrutturazione e ampliamento di immobili ad uso abitativo (anche non Prima Casa).

Mutuo dedicato all acquisto, costruzione, ristrutturazione e ampliamento di immobili ad uso abitativo (anche non Prima Casa). LE AGEVOLAZIONI SUL TASSO E ALTRE CONDIZIONI RISERVATE AI SOCI (consumatori) DELLA BANCA POPOLARE DI VICENZA SONO RIPORTATE NELL APPOSITO FOGLIO INFORMATIVO RELATIVO AI PRODOTTI E AGEVOLAZIONI PER I SOCI.

Dettagli

CAPITOLATO SPECIALE CARATTERISTICHE DEI MUTUI A 15 ANNI E 20 ANNI

CAPITOLATO SPECIALE CARATTERISTICHE DEI MUTUI A 15 ANNI E 20 ANNI CAPITOLATO SPECIALE Servizio di erogazione alla Provincia di Genova di mutui o di sottoscrizione di prestiti obbligazionari in più emissioni parziali fino all importo complessivo di Euro 20.000.000,00

Dettagli

Metodi matematici 2 21 settembre 2006

Metodi matematici 2 21 settembre 2006 Metodi matematici 1 settembre 006 TEST (Nuovo ordinamento) Cognome Nome Matricola Rispondere alle dieci domande sbarrando la casella che si ritiene corretta nel caso di risposta multipla (una sola risposta

Dettagli

www.alexpander.it TAEG Tasso Annuo Effettivo Globale TASSO GLOBALE

www.alexpander.it TAEG Tasso Annuo Effettivo Globale TASSO GLOBALE TAEG Tasso Annuo Effettivo Globale Costo totale del credito a carico del consumatore espresso in percentuale annua del credito concesso 1. Il TAEG, come indicato dall art. 122, d.lgs. 385/93, T.U. delle

Dettagli

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4

ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016. 1. Esercizi 4 ESERCIZI DI MATEMATICA FINANZIARIA DIPARTIMENTO DI ECONOMIA E MANAGEMENT UNIFE A.A. 2015/2016 1. Esercizi 4 Piani di ammortamento Esercizio 1. Un debito di 1000e viene rimborsato a tasso annuo i = 10%

Dettagli

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1

ISSIS DON MILANI LICEO ECONOMICO SOCIALE Corso di DIRITTO ed ECONOMIA POLITICA. Liceo Don Milani classe I ECONOMICO SOCIALE Romano di Lombardia 1 ISSIS DON MILANI LICEO Corso di DIRITTO ed ECONOMIA POLITICA 1 NEL MERCATO FINANZIARIO SI NEGOZIANO TITOLI CON SCADENZA SUPERIORE A 18 MESI AZIONI OBBLIGAZIONI TITOLI DI STATO 2 VALORE DEI TITOLI VALORE

Dettagli

i = ˆ i = 0,02007 i = 0,0201 ˆ "3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo

i = ˆ i = 0,02007 i = 0,0201 ˆ 3,02 non accett. Anno z Rata Quota interessi Quota capitale Debito estinto Debito residuo 1 Appello sessione estiva 2009/ 2010 (tassi equivalenti - ammortamento) 1 Parte Rispondere ai seguenti distinti quesiti in A) e in B). A) Il capitale C=10000 è stato impiegato in capitalizzazione composta

Dettagli

CONDIZIONI DEFINITIVE NOTA INFORMATIVA SUL PROGRAMMA

CONDIZIONI DEFINITIVE NOTA INFORMATIVA SUL PROGRAMMA CONDIZIONI DEFINITIVE alla NOTA INFORMATIVA SUL PROGRAMMA "B.C.C. DI FORNACETTE OBBLIGAZIONI A TASSO VARIABILE" Emissione n. 182 B.C.C. FORNACETTE 2007/2010 Euribor 6 mesi + 25 p.b. ISIN IT0004218829 Le

Dettagli

I TIPI DI MUTUO E I LORO RISCHI

I TIPI DI MUTUO E I LORO RISCHI FOGLIO COMPARATIVO DEI MUTUI CONTENENTE INFORMAZIONI GENERALI SULLE DIVERSE TIPOLOGIE DI MUTUI GARANTITI DA IPOTECA PER L ACQUISTO DELL ABITAZIONE PRINCIPALE (documento redatto ai sensi delle Disposizioni

Dettagli

ECONOMIA DEGLI STRUMENTI FINANZIARI E ASSICURATIVI/ TECNICA BANCARIA

ECONOMIA DEGLI STRUMENTI FINANZIARI E ASSICURATIVI/ TECNICA BANCARIA ECONOMIA DEGLI STRUMENTI FINANZIARI E ASSICURATIVI/ TECNICA BANCARIA Nome e cognome Matricola V.O. N.O. Tutti gli studenti devono rispondere alle domande: 1-9. Gli studenti del vecchio ordinamento devono

Dettagli