FORNI PER TRATTAMENTI TERMICI DEI SINTERIZZATI. TIPOLOGIE E CAPABILITY. Elio Gianotti. Trattamenti Termici Ferioli & Gianotti SpA. Rivoli-Torino.

Documenti analoghi
TRATTAMENTI TERMOCHIMICI

TEMPRA DI INGRANAGGI AD INDUZIONE CON DOPPIA FREQUENZA. Elio Gianotti. Trattamenti Termici Ferioli e Gianotti. Rivoli - Torino

DISSOCIAZIONE DEGLI OSSIDI METALLICI NEI FORNI A VUOTO. Elio Gianotti - Trattamenti termici Ferioli & Gianotti S.p.A.

TRATTAMENTI TERMICI DEI MATERIALI FERROSI

struttura interna composizione chimica meccaniche e tecnologiche

NOTA TECNICA : Spessori di indurimento totale ed efficace per trattamenti termochimici e di tempra superficiale

TRATTAMENTI TERMICI 1

TRATTAMENTI TERMOCHIMICI DI DIFFUSIONE (o di indurimento superficiale)

Tempra laser di acciai sinterizzati basso-legati

Profili laminati di alta qualità

(X100CrMoV5-1)

Matteo Strano - Tecnologia Meccanica Processi di fonderia - 2 FONDERIA

TITANIO E SUE LEGHE. TRATTAMENTI TERMICI Ti 6Al 4V

LA TEMPRA LASER DEGLI ACCIAI

I vantaggi del trattamento termico a induzione

FORNI DA NITRURAZIONE

Profili laminati di alta qualità

L acciaio pre-bonificato per stampi di piccolo spessore

Proprietà meccaniche e microstruttura indotte da tempra laser nell acciaio

Nel nostro Webshop potete Lunghezza: mm

L incremento naturale della. Produttività

BONOMI ACCIAI: LE RICOTTURE

FORNI DA PRERISCALDO MATRICI

L acciaio pre-bonificato con temprabilità e lavorabilità migliorata

Algoritmo per il calcolo della diffusione del carbonio nella cementazione nei forni a vuoto.

L acciaio pre-bonificato per le più severe esigenze dello stampaggio della plastica

CUOCITORE CONTINUO A VITE E SBOLLENTATORE

Introduzione ai trattamenti termici

L incremento naturale della. Produttività

Tempra laser di 40CrMnMo7 pre-nitrurato in plasma Influenza delle condizioni di trattamento

Dott. Ing. Ramona Sola Tel.:

La sublimazione rappresenta il passaggio di una sostanza dallo stato. solido direttamente allo stato vapore senza formazione dell'intermedio

gke Batch control system Sistema per il monitoraggio della sterilità del lotto mediante vapore

CLASSIFICAZIONE DEI PROCESSI DI FORMATURA PLASTICA

F. Lenzi 1, G. Campana 1, A. Zanotti 2

La fase che segue la formatura è quella dell essiccazione, necessaria per rimuovere i liquidi presenti nel verde. Il processo è assai delicato sia

FORNI DA CEMENTAZIONE

freeformer Freeforming di materie plastiche

DECADIMENTO DELLA DUREZZA SUPERFICIALE NELLE NITRURAZIONI GASSOSE LUNGHE. Gianotti Elio. Trattamenti Termici Ferioli & Gianotti SpA Rivoli (Torino)

4 Seminario Tecnico LCA Reggio Emilia, 11 Aprile 2018

Crogioli. Crogioli. Porcellana Haldenwanger. Crogioli. In metallo - quarzo. Filtranti. Accessori

Lavorazioni non convenzionali

L acciaio pre-bonificato per lo stampaggio della plastica

La fase che segue la formatura è quella dell essiccazione, necessaria per rimuovere i liquidi presenti nel verde. Il processo è assai delicato sia

alternativi di grandi dimensioni Fabio FRANCO, Design Manager Design Team, Technical Service Service Wärtsilä Italia S.p.A TORINO, 05/11/2008

Caldaie e stufe a pellet

1. RISCALDAMENTO ad una T < Ac 1

CONDIZIONI GENERALI DI FORNITURA DI TRATTAMENTO TERMICO

(90MnCrV8)

FRAGILITA INDOTTA DA CARBURAZIONE E DA IDROGENAZIONE NELLA BULLONERIA A.R.

VALUTAZIONE DELLO SPESSORE DI NITROCARBURAZIONE CON METODO NON DISTRUTTIVO

Il trasporto a temperatura controllata

RAPPORTO DI PROVA R

Percorso di istruzione di II livello, indirizzo Meccanica Meccatronica ed Energia articolazione Meccanica Meccatronica

Cenni sulla produzione degli acciai

Spoglia superiore negativa Considerazioni tecniche

Vachrom / Vachrom TFB 1

MATERIALI. Perché così tanti materiali diversi?

per panifici di grandi dimensioni

CONFEZIONATRICI A VASCHETTA

STATICA DEI FLUIDI. 3 ) fino ad una distanza di 5 cm dall orlo. Nei due rami del

Il cono d affilatura nelle punte elicoidali. Riprendendo la figura N 1 della descrizione generale, si possono dare le seguenti definizioni:

LE SCHIUME METALLICHE

LA CELLULA ECOJET. introduzione

Sistemi di asciugatura professionali

CAPITOLO 2 CICLO BRAYTON TURBINE A GAS

SPECIFICHE Pagina 1 di 12 DI FORNITURA Emissione 01 TRATTAMENTO TERMICO Revisione 05 I N D I C E 3. RESPONSABILITÀ 7. CAMPO DI APPLICAZIONE

CUOCITORE / SCOTTATORE TRASPORTATORE

Carica batterie NiCd

DUREZZA Nelle prime prove scala empirica qualitativa Mohs


Hot & warm steel forgings

CAPITOLO 2 CICLO BRAYTON TURBINE A GAS FLUIDO: MONOFASE

Problemi ad alta temperatura: Creep (scorrimento viscoso a caldo) Ossidazione

T T9325. Qualità di tornitura di nuova generazione. Gamma T9300 con rivestimento MT-CVD

FONDERIA. Corso di Tecnologie Speciali I prof. Luigi Carrino

TRATTAMENTI TERMICI CRIOGENICI Incremento delle prestazioni di utensili da taglio

(16MnCr5) (21MnCr5)

Il nuovo acciaio per stampi di piccole dimensioni

Frigorifero CICLO FRIGORIFERO-TEORIA L = Q C - Q F. Coefficiente di prestazione

CAMPIONAMENTO fondamentale analisi campionamento omogenei stessa composizione variazione l abilità persona variabilità metodo analitico realtà

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

TECHNICAL TOOLS VERNICIATURA A POLVERE SU VETRO. Informazioni: 1. Versatilità dei prodotti vernicianti. 2. Metodo e tecnica di verniciatura su vetro

Introduzione alle macchine a stati (non definitivo)

Effetti del fuoco (incendio) sul calcestruzzo armato

La rugosità superficiale

Norma CEI e Guida CEI Costruzioni elettriche per atmosfere esplosive per la presenza di gas Classificazione dei luoghi pericolosi

UTILIZZO CERAMICO DI SCARTI DI LAVORAZIONI INDUSTRIALI. Studio di fattibilità

La Qualità Todesco Trattamenti Termici Todesco UNI EN ISO 9001.

Piastre di scorrimento autolubrificanti P1303

Diversi sono i metodi di rinforzo del vetro basati su processi chimici.

Verifica dei Concetti 11.1

PRINCIPALI LAVORAZIONI MECCANICHE

SmartRad. Ventilconvettori per il riscaldamento intelligente

Molti ceramici sono sempre più utilizzati nel settore dell elettrotecnica e dell elettronica. La conducibilità di tipo elettronica o ionica può

LA COTTURA VARI METODI PER LA COTTURA DELLA CERAMICA

ALLEGATO 1 FALORNI GIANFRANCO SRL. Obiettivo 1

Transcript:

FORNI PER TRATTAMENTI TERMII DEI SINTERIZZATI. TIPOLOGIE E APABILITY Elio Gianotti. Trattamenti Termici Ferioli & Gianotti SpA. RivoliTorino. INTRODUZIONE L espansione della tecnologia dei sinterizzati in acciaio, dovuta alle notevoli economie che permette di realizzare, ha coinvolto sempre di più l uso di trattamenti termici sia massivi che superficiali di indurimento che ne ampliano ancora il campo di utilizzo. Si è assistito in questi ultimi anni all utilizzo di tutti i processi tradizionali: la tempra, la carburazione, la carbonitrurazione, la nitrurazione nelle fasi liquida, gassosa e plasma e la tempra ad induzione. Essendo il sinterizzato un pezzo a dimensione finita il trattamento termico andrà sempre in forni ad atmosfera controllata, con potenziala di controllabile, od in bagni di sali, ed inoltre tale trattamento non dovrà indurre deformazioni oltre la tolleranza ammissibile per il pezzo finito. Queste due condizioni valgono anche per i pezzi non da polvere, ma per i sinterizzati sono più difficili da controllare per la natura porosa del sinterizzato. Alcune cause di deformazione possono essere legate alla morfologia del pezzo, per es., diversità di porosità nello stesso pezzo dovuto a sottosquadri o a masse molto diverse, oppure diversità fra un pezzo e l altro dovute alla variazione di temperatura di sinterizzazione. Altre cause possono essere legate al trattamento termico di indurimento per es., riscaldo o raffreddamento non uniforme nei forni a lotti, in questo caso i pezzi al centro della carica subiscono cicli termici diversi da quelli posti all esterno. Oppure se i pezzi non vengono caricati in strati unici, ma sovrapposti, i pezzi caricati sotto gli altri possono subire deformazioni plastiche dovute al carico che devono sopportare. Nel caso dei trattamenti di indurimento superficiale, come carburazione o nitrurazione, la diversità di porosità porta anche ad una penetrazione diversa degli elementi arricchenti con aumenti di volumi disuniformi. Da queste considerazioni si possono già trarre alcune indicazioni su come operare con il trattamento termico dei sinterizzati. Innanzitutto è necessario lavorare per lotti, intendendo per lotto, la quantità di produzione fatta dal sinterizzatore, senza interruzione, utilizzando gli stessi lotti di polveri, la stessa pressa, stampo, lo stesso forno di sinterizzazione e la stessa pressa di coniatura. Se per un motivo qualsiasi una macchina dovesse fermarsi o avere delle anomalie, quando riprende a lavorare, si dovrà segnalare un lotto diverso. Operando in queste condizioni si ha una elevata probabilità di omogeneità morfologica del lotto ed eventuali deformazioni dopo trattamento termico, fra un pezzo e l altro, sono con buona probabilità attribuibili a disuniformità del trattamento termico stesso. Naturalmente la disuniformità di porosità nello stesso pezzo porta a delle deformazioni asimmetriche, nello stesso pezzo, non imputabili al trattamento termico. Diventa quindi molto complicato capire cause ed effetti quando le anomalie si sommano perché un tipo di deformazione può compensare oppure aumentare l altro tipo e portare quindi a risultati non più statisticamente catalogabili. Una condizione irrinunciabile da pretendere quindi, prima di iniziare il trattamento termico, è la lavorazione del sinterizzato per lotti omogenei. di 7

FORNI ONTINUI Sono generalmente utilizzati forni a tappeto ad atmosfera con potenziale di controllato e, naturalmente, con la temperatura di riscaldo del forno e dell olio di tempra controllate e costanti. (vedi fig.). Il forno continuo ha il grosso vantaggio di ricevere i pezzi distribuiti su di un unico strato sul tappeto e fa subire quindi, in modo rigorosamente uniforme, lo stesso ciclo termico a tutti i pezzi. La disuniformità di deformazione o di durezza, ottenuta con un trattamento in un forno continuo rigorosamente controllato, fanno dedurre che non sia omogeneo il lotto dei pezzi consegnato dal sinterizzatore. È già stato affermato che le deformazioni del sinterizzato devono essere uniformi, sottintendendo con ciò che comunque le deformazioni avvengono. Si tratta quindi di cercare i parametri del trattamento termico che riducono al minimo tali deformazioni. In questa ricerca bisogna operare su: temperatura di riscaldo; tempo di permanenza in temperatura; temperatura dell olio; potenziale di e di Azoto dell atmosfera. Tenendo conto che, tendenzialmente, la temperatura del forno e la permanenza devono essere le più basse possibili e la temperatura dell olio la più alta possibile, compatibilmente con le durezze finali richieste sul sinterizzato. Una volta trovati i parametri ottimali sarà necessario utilizzarli per tutto il lotto. Tali parametri saranno presi come base di partenza per la messa a punto del lotto successivo. ome già detto il forno a tappeto è quello che dà le maggiori garanzie di uniformità del trattamento termico ma come è facilmente intuibile, è competitivo economicamente solo se i lotti hanno la consistenza di almeno qualche centinaio di Kg. Altrimenti la produzione persa per cercare i parametri ottimali sulle campionature incide troppo pesantemente sul costo finale. di 7

FORNI a LOTTI Normalmente vengono utilizzati forni sealed quench nei quali la carica viene temprata senza dover passare attraverso l aria (vedi fig.). Mentre nel forno a tappeto esiste una ottima probabilità di omogeneità di trattamento termico, nel forno a lotti tale caratteristica è da verificare con il calcolo della capacità del forno (capability). Prima di procedere alla ricerca dei parametri di trattamento termico più idonei a ridurre al minimo le deformazioni come per il forno a tappeto, è necessario procedere alla valutazione della uniformità di comportamento dei pezzi all interno della carica del forno. Qui di seguito riassumiamo una metodologia per tale ricerca, che è stata messa a punto presso una nostra Azienda che lavora da parecchi anni nel campo dei sinterizzati, utilizzando forni Pacemaker della Lindberg. aratteristica discriminante del forno a lotti è la capacità di produrre contemporaneamente una quantità notevole di pezzi, la cosiddetta infornata. Dando per scontato che con i moderni mezzi di regolazione elettronica possa essere considerata uniforme la regolazione della temperatura, e nel caso dei forni ad atmosfera controllata, la regolazione dei potenziali carburanti o nitruranti, si devono prendere in considerazione agli effetti del livello di uniformità delle caratteristiche da ottenere, la dislocazione dei vari pezzi nell infornata. Agli effetti della classificazione delle varie zone del forno si possono considerare critiche le zone difficili da tenere sotto controllo e secondarie le altre. Si deve ancora considerare che il lotto o l infornata viene quasi sempre estratto dal forno e temprato senza che venga scomposto e l uniformità di tempra sarà a sua volta condizionata dalla distribuzione dei pezzi nel lotto costituente l infornata. Si può allora tentare di dare una classificazione puramente intuitiva delle criticità delle zone come risulta dalla fig.3. A questa fase di impostazione è necessario far seguire una serie di controlli mirati, trattando una sequenza di lotti omogenei in un forno da esaminare. 3 di 7

Nell esempio della fig.4 è stata presa come caratteristica da controllare la profondità di cementazione di perni diametro 40 mm aventi lunghezza 80 mm in acciaio 6Mnr5. La profondità di cementazione richiesta è di 8.5 :.5 decimi di mm. ome forno da controllare è stato scelto un forno a camera con vasca di spegnimento incorporata, con capacità di carica di 000 Kg e dimensioni di mm 00 x 750 x 700. ZONE PORTA SUOLA IELO FONDO LATI DX E SIN. ENTRO ARIA SPIGOLI FASE EMENTAZIONE Ordine d importanza 7 6 5 3 4 FASE TEMPRA Ordine d importanza Fig.3 Identificazione intuitiva della criticità del lotto Simboli = ritica = Secondaria ZONE SUOLA PORTA ENTRO ARIA FONDO IELO PROFONDITA EMENTAZIONE 9,, 8,5,0 8,5, 9,0, 9,,0 RITIITA 4 3 5 Fig.4 Identificazione pratica della criticità del lotto In una serie di 5 infornate sono stati eseguiti controlli di profondità di cementazione nelle varie zone del forno e le escursioni sono state riportate nella tabella di fig.4. Dal loro esame risulta che la zona più critica è il centro della carica e non la suola come si era previsto nella classificazione intuitiva. È possibile quindi stabilire, in base alle prove pratiche, una tabella di criticità delle varie zone del forno preso in esame (fig.5). ZONE ENTRO ARIA PORTA FONDO SUOLA IELO RITIITA 3 4 5 Fig.5 lassificazione della criticità delle zone lassificate le zone del forno è necessario calcolare la tolleranza naturale di ogni zona per verificare se esistono zone del forno che non danno garanzie di lavorare nei limiti statisticamente prescritti. 4 di 7

Per questo controllo sarà bene fare prelievi più numerosi nelle zone di maggiore criticità. Se si riscontrano zone nelle quali il forno non è in grado di garantire la richiesta tolleranza si dovrà intervenire per tentare di farle rientrare nei limiti accettabili. Gli interventi possono essere di varia natura: a) Evitare il caricamento dei pezzi nelle zone critiche; b) Modificare il forno aumentando l agitazione dell atmosfera e la tenuta delle porte; c) lassificare il forno non capace e non adottarlo per il trattamento termico dei particolari in questione. Quando il forno ha tutte le zone che rientrano nei limiti di tolleranza si può procedere al controllo della tolleranza naturale dell intera infornata. In questo caso si dovrà ricalcolare lo scarto tipo assumendo come campionatura i dati di tutti i pezzi prelevati nelle varie zone, o adottare la formula dello scarto tipo medio: S + S + S3 n dove S, S, S n sono gli scarti tipo di ogni zona esaminata del forno. on lo scarto tipo dell intera infornata si calcola la tolleranza naturale dell intero lotto e se tale tolleranza dà una capacità del forno accettabile (>.33) l impianto si può considerare adatto alla produzione e le infornate possono essere considerate alla stregua di un lotto unico. FORNI a VUOTO a SARIA IONIA e BAGNI di SALI I forni a scarica ionica o plasma sono gli ultimi arrivati nel campo della tecnologia del trattamento termico (vedi fig.6). 5 di 7

Hanno il grosso svantaggio di costare almeno il triplo degli impianti tradizionale con la stessa potenzialità, ma hanno d altro canto dei grossi vantaggi: estrema ripetibilità e costanza dei risultati, in quanto sono totalmente computerizzati, impatto ambientale quasi nullo e, nel caso di sinterizzati, risolvono il grosso problema delle difficoltà create dalla presenza dei pori. La scarica ionica, quando avviene in opportune condizioni di pressione parziale dei gas e di valori di corrente, non penetra nelle cavità con dimensioni al di sotto di determinati valori, che possono essere orientativamente quantificati in 0. mm. on i trattamenti tradizionali in atmosfera controllata, sia che si operi a temperature di circa 500 600, in presenza di NH 3 e gas vari contenenti carbonio, per nitrurare o nitrocarburare i pezzi; sia che si operi a temperature di 800 900 per cementare o carbonitrurare, i pezzi sinterizzati diventano molto fragili; tanto fragili che a volte basta lasciare cadere un pezzo perché si frantumi come vetro. Tale comportamento è legato alla capacità dei gas di processo di penetrare attraverso i pori dei prodotti sinterizzati fino al cuore degli stessi. Il problema è stato superato utilizzando i bagni di sale. La penetrazione del sale è limitata alla superficie del pezzo ed il fenomeno di fragilità è evitato. Nasce però un altro inconveniente dovuto al trasudamento del sale sulla superficie del pezzo anche a distanza di alcuni mesi dal trattamento termico. Per evitarlo occorrono costosi cicli di decapaggio e lavaggio che non sempre offrono una buona affidabilità. La cementazione in plasma ha tutti i presupposti per ovviare sia all inconveniente del trattamento in gas che infragilizza il pezzo, sia al trasudamento con relativo arrugginimento, dovuto al trattamento in sale. Parecchi studi sono stati condotti a livello di ricerca ed alcune applicazioni sono state realizzate a livello industriale, sul trattamento di nitrurazione o nitrocarburazione ionica dei prodotti sinterizzati. Il trattamento avviene normalmente a temperature di 500 600 seguito da un raffreddamento in azoto nello stesso forno in cui è avvenuto il processo. I buoni risultati dichiarati sono però dovuti all utilizzo di polveri di acciai prelegati; generalmente contenenti r e Mo. Nel caso di sinterizzati ottenuti da polveri di ferro, con aggiunte di piccole quantità di polveri di umo e, che sono la stragrande maggioranza di sinterizzati commerciali, le durezze ottenibili sono normalmente di soli 50350 HV, contro i 600700 HV ottenuti con polveri prelegate, e quindi, non sufficienti. Purtroppo però il sinterizzato si è sviluppato sul mercato in quanto prodotto competitivo e cioè a basso prezzo per cui è necessario ottenere buone caratteristiche di durezza senza dover passare attraverso le costose polveri prelegate. La soluzione è rappresentata dal forno di cementazione ionica. Si tratta di carburare o nitrocarburare i pezzi in plasma previo opportuno decapaggio a temperatura più bassa di quella di esercizio, operando a temperature di 800850 e facendo seguire alla cementazione la tempra in olio, naturalmente in un forno dotato di vasca. Fra i vantaggi già elencati di questo sistema vanno aggiunti i seguenti: immergendo il pezzo in olio proveniente dalla camera del vuoto, si ha una totale impregnazione del pezzo, inoltre la scarica ionica non risente delle eventuali differenze di porosità, diminuendo le deformazioni durante la tempra. Per pezzi particolarmente delicati, con necessità di contenimento delle deformazioni, si può adottare la tecnica collaudata della carbonitrurazione intorno al punto A (700 70 ). Tale tecnica, già applicata nei trattamenti in sale ed in gas di particolari di micromeccanica, è particolarmente adatta all esecuzione nei forni a plasma. In questo caso le trasformazioni allotropiche non riguardano il cuore del pezzo ma solo la superficie che, essendo arricchita in e N, ha il punto A a temperatura notevolmente più bassa del cuore. Essendo il fenomeno di tempra limitato ai pochi decimi di mm. della superficie, le deformazioni saranno molto contenute. 6 di 7

Fig.7 Esempio di microstruttura 500x che si ottiene su di un acciaio 0 carbonitrurato a temperatura intorno A (700 70 ) e temprato. Si può notare la coltre bianca con la zona di diffusione martensitica, ed al di sotto ferrite e perlite non modificate dalla tempra. 7 di 7