Impianti di climatizzazione ad acqua

Documenti analoghi
IMPIANTI RISCALDAMENTO Descrizione

IMPIANTI DI CLIMATIZZAZIONE

Impianti di riscaldamento convenzionali

CASE CON SISTEMI INNOVATIVI COMPARATIVA IMPIANTI RISCALDAMENTO

Gli impianti per la climatizzazione

Soluzioni impiantistiche per una riqualificazione energetica degli edifici esistenti. Dott. Ing. Pietro Marforio

IMPIANTI TERMICI. Gli impianti termici o di riscaldamento sono i sistemi più diffusi per modificare le condizioni di benessere

Lavori intelligenti per il risparmio energetico

Cos è una. pompa di calore?

METROLOGIA, DOMOTICA ED EFFICIENZA ENERGETICA. 14 luglio INRIM - Torino

BESST C.O.P. ~ 4,6 SERIE PECULIARITÀ. - Funzionamento invernale garantito fino a -15 C. con gas refrigerante ecologico R410A

Interventi sugli impianti di climatizzazione invernale ed estiva. Stima dei potenziali risparmi

DIVISIONE Efficientamento per gli impianti termici condominiali: da obbligo ad opportunità con Autogas Nord.

COSA E COSA E UNA POMP UNA

IL SISTEMA DRY TECNOCLIMA. i perchè di una tecnologia che ti conviene!

IL RISPARMIO ENERGETICO E GLI AZIONAMENTI A VELOCITA VARIABILE L utilizzo dell inverter negli impianti frigoriferi.

I CONSUMI ED IL RENDIMENTO

Esempi di ristrutturazione di edifici storici con sistemi radianti a bassa temperatura

Edifici Evoluti Bertelli Residenza via Mazzali

RIQUALIFICAZIONE ENERGETICA Scuola Elementare F.lli Rossetti Via San Zeno PROGETTO ESECUTIVO SOSTITUZIONE GENERATORE TERMICO

50 - IMPIANTI DI RISCALDAMENTO

Recuperatori di calore

Mynute Sinthesi Mynute Sinthesi

COMUNE DI LIZZANO. (Provincia di Taranto) Progetto di ristrutturazione edilizia per la realizzazione di una casa alloggio PROGETTO ETNICAMENTE A.

NORME ORDINATE PER ARGOMENTO

Produzione del caldo e del freddo: energia dal sole e dalla terra

CALDAIE E RISCALDAMENTO: Gli incentivi possibili. 06/05/2008 1

3 INCONTRO FORMATIVO. Gli impianti di produzione e distribuzione del calore. 09 dicembre Relatore arch. Giorgio Gallo

COMUNE DI RAGUSA OGGETTO: PROGETTO PER LA "RISTRUTTURAZIONE DEL COMPENDIO IMPIANTO DI CLIMATIZZAZIONE RELAZIONE TECNICA DESCRITTIVA

Convegno SOLAR COOLING

Impianto in pompa di calore tipo splittata in caldo e freddo con integrazione solare e produzione di acqua calda sanitaria:

S i s t e m i p e r l a P r o d u z i o n e

Marco Masoero Dipartimento di Energetica Politecnico di Torino

basso consumo energetico

RETE DI DISTRIBUZIONE

INTRODUZIONE AL TEMA

Lavoro d anno Corso di Energetica Industriale Professore: Antonio Ficarella

HERCULES 32 kw 120 l. Caldaie a basamento, a camera stagna e tiraggio forzato con Boiler in acciaio Inox da 120 litri

INDICE. 1. Premessa pag Principi di Funzionamento pag Modalità di installazione pag Edificio B3 pag. 3

corso di FISICA TECNICA modulo di IMPIANTI TECNICI Scheda 01

Caldaia a condensazione con sistema solare integrato PERFISOL HYBRID DUO

NORME ORDINATE PER ARGOMENTO

POMPE DI CALORE. Riscaldamento, produzione ACS istantanea e Raffrescamento con pompe di calore abbinate a un impianto fotovoltaico

GUIDA ALLA COMPILAZIONE DELL AUTODIAGNOSI

ARES Condensing 32 Caldaia a basamento, a condensazione, per solo riscaldamento

Miglioramenti Energetici Solare Termico. Aslam Magenta - Ing. Mauro Mazzucchelli Anno Scolastico

ixincondens 25T/IT (M) (cod )

TIPOLOGIE IMPIANTISTICHE

Il sistema radiante a soffitto e parete. Climalife

Generatori a Condensazione. Caldaie pensili e a basamento da 34 a 1100 kw

RELAZIONE DESCRITTIVA IMPIANTO RECUPERATORE DI CALORE E RAFFRESCAMENTO ESTIVO. Nuovo complesso edilizio. Via Selva Residence Quinzano.

DEUMIDIFICATORI CON INTEGRAZIONE E VENTILAZIONE MECCANICA CONTROLLATA

Termoregolazione e contabilizzazione degli impianti termici di ultima generazione

SISTEMA IBRIDO DUPLEX R4

CLASSIFICAZIONE DEGLI IMPIANTI

IL COLLEGAMENTO IDRAULICO RACCOMANDAZIONI ED ESEMPI DI IMPIANTO

Impianti di riscaldamento. Prof. Ing. P. Romagnoni Università IUAV di Venezia Dorsoduro 2206 Venezia

Il raffrescamento estivo con gli impianti radianti

Comuni di Sirolo e Numana

ristrutturazione centrali termiche comunali dei comuni di Trezzo d Adda (MI), Vaprio d Adda (MI), Pozzo d Adda (MI), Grezzago (MI) PROGETTO:

Caldaie a condensazione murali IDRA CONDENS 4100

LA CONDENSAZIONE LA CONDENSAZIONE CFP MANFREDINI ESTE (PD) Insegnante. Padovan Mirko 1

I collettori solari termici

Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica, sono i seguenti:

source Source X Performance NUOVI SISTEMI RADIANTI

Impianto Solare Termico

RIFERIMENTI NORMATIVI

NORME ORDINATE PER ARGOMENTO

COS'E' UN IMPIANTO FOTOVOLTAICO E COME FUNZIONA

IMPIANTI RISCALDAMENTO Corpi scaldanti

PROGETTARE UN EDIFICIO IN CLASSE A

Il Patto dei Sindaci Spunti per approfondimenti. Sistemi di riscaldamento Sistemi di distribuzione/emissione. Novembre 2011

Impianti Meccanici Calcoli Esecutivi e Relazione illustrativa Impianto Riscaldamento a Pannelli

pompe di calore\polivalenti MONOBLOCCO

PROJECT FINANCING SERVIZI ENERGETICI INTEGRATI

La riqualificazione energetica degli edifici residenziali: Il ruolo della formazione Michele VIO

KLIMA NUOVI SISTEMI RADIANTI. klima

Studio di fattibilità per la climatizzazione di una struttura alberghiera mediante sistema di trigenerazione

solare termico e pannelli fotovoltaici

Il Patto dei Sindaci Spunti per approfondimenti. Sistemi di riscaldamento Caldaie e Pompe di calore. Novembre 2011

EOLO Extra kw HP Pensile a condensazione con recuperatore di calore, per impianti ad alta temperatura. Pre Sales Dept.

GHE Deumidificatori con recupero di calore ad altissima efficienza

Regione Marche Prezzario ufficiale in materia di lavori pubblici

RECUPERATORE DI CALORE AD ALTISSIMA EFFICIENZA ENERGETICA

Una gamma completa. di serie fino a -15 C (modelli AG).

55% RISPARMIO ENERGETICO

CDP - Studio Tecnico Casetta & Del Piano Ingegneri Associati

MASAJA - MASAJA INOX DESCRIZIONE PER CAPITOLATO DIMENSIONI MASAJA / MASAJA INOX

EFFICIENZA ENERGETICA

Raffrescamento solare di Schüco Raffrescamento innovativo ed ecologico con l energia solare

turboinwall Caldaie murali a gas ad alto rendimento per riscaldamento e produzione di acqua calda. Per installazioni a incasso.

ARCHITETTURA DEL SISTEMA

SUPER SIRIO Vip. Libretto istruzioni. Installatore Utente Tecnico. Caldaie a basamento con accumulo a camera aperta (tipo B) e tiraggio naturale

SOFTWARE CALCOLO. Pompa di calore: calcolo potenza nel caso sia l unico generatore a servizio dell impianto di riscaldamento e dell ACS

17 aprile 2013

GENERATORI A CONDENSAZIONE PRINCIPI DI FUNZIONAMENTO GAMMA RENDIMENTI INSTALLAZIONE APPLICAZIONI IMPIANTISTICHE

Impianti di climatizzazione

Il radiatore termodinamico manda in pensione il vecchio termosifone

Alunno...classe...data...

Cogenerazione e teleriscaldamento urbano a Mirandola

Transcript:

Impianti di climatizzazione ad acqua Prof.Gianfranco Cellai Corso di Impianti Tecnici Scienze dell Architettura

Componenti Impianti ad acqua Tali impianti usano come fluido vettore termico l acqua riscaldata o raffrescata. Sono essenzialmente costituiti da: 1. Un sistema di alimentazione e distribuzione del combustibile 2. Un generatore di calore (caldaia) e/o da un gruppo frigorigeno (chiller); 3. Scambiatori di calore; 4. Tubazioni e collettori per collegare il generatore ai terminali; 5. Elettropompe per la movimentazione del fluido; 6. Sistema di regolazione e controllo; 7. Terminali d impianto che erogano il caldo/freddo all ambiente da climatizzare.

Impianti autonomi Gli impianti autonomi devono sottostare alle stesse norme degli impianti centralizzati per quanto attiene al periodo di inizio e fine dell accensione, stabilito per legge in funzione della zona climatica, ed all orario di accensione nell ambito delle 24 ore. Devono inoltre sottostare all ispezione della funzionalità (controllo della combustione e dei rendimenti) e della sicurezza con frequenza biennale, mentre la manutenzione è richiesta ogni anno. Il loro successo è dovuto da un lato alla metanizzazione sempre più capillare del territorio e dall altro all assoluta indipendenza nell uso rispetto agli impianti centralizzati condominiali. E altresì evidente che sfuggono ad ogni reale controllo per quanto attiene il rispetto delle norme succitate.

Schema funzionale impianto generazione regolazione Scarico prodotti della combustione in canna fumaria Condotto di aspirazione aria comburente Caldaia murale a camera stagna per riscaldamento ad uso sanitario Potenza utile 24 [kw] Cronotermostato ambiente TERMOARREDO AD ELEMENTI TUBOLARI IN ACCIAIO VERNICIATO IRSAP mod. "TESI" h 2000 [mm] Valvola termostatica SCALDASALVIETTE IN ACCIAIO VERNICIATO IRSAP mod. "NOVO" (bagni) sistema rilevazione fughe cu ø22 Alimentazione gas gpl Acqua calda sanitaria Ø3/4" Ai servizi Ø3/4" Collettore complanare di distribuzione Modul linea Radiatori TERMOARREDO AD ELEMENTI TUBOLARI IN ACCIAIO VERNICIATO IRSAP mod. "TESI" h 600 [mm] Valvola termostatica (in nicchia sottofinestra) Dall' acquedotto riduttore di prex. Contatore A/R Acqua calda c.to riscaldamento in rame precoibentato a norma di legge 10/91 Ø 20/22 Tubo rame precoibentato a norma legge 10/91 Alimentazione combustibile distribuzione emissione

1 - Alimentazione rete gas Colonne montanti ai singoli appartamenti Contatori gas Condotta gas derivazione

Esempi di collocazione contatori gas

Ingombri del contatore

Rete gas Occorre fare molta attenzione ai passaggi nei muri e sotto traccia

2- Generatore di calore NB. Consultare le norme UNI CIG

3 Scambiatori di calore Non stagna stagna Scambiatore di calore

4 - Tubazioni Le tubazioni degli impianti autonomi sono essenzialmente dei seguenti tipi: - in rame; - in polipropilene (per acqua acqua calda sanitaria); - in polipropilene reticolato (anche per riscaldamento); - in polipropilene del tipo sfilabile.

Dimensioni (*) mm Diametro Tubi in rame Press. esercizio MPa Press. scoppio MPa Peso g/m Prezzo Euro/m 6 x 1 13,3 69,7 140 1,02 8 x 1 10,0 52,3 196 1,34 10 x 1 8,0 41,8 252 1,61 12 x 1 6,6 34,8 308 1,87 14 x 1 5,7 29,8 363 2,21 16 x 1 5,0 26,1 419 2,57 18 x 1 4,4 23,2 475 2,93 22 x 1 4,0 19,1 587 3,96 (*) Diametro interno x Spessore

Diametro Tubi acciaio zincato NB 1 pollice = 25 mm

Tipologie produttive Tubo rivestito in PVC Tubo preisolato acqua calda Tubo preisolato per acqua refrigerata

Dimensioni tubi preisolati acqua calda

Dimensioni tubi preisolati acqua fredda

Giunzioni a caldo: saldatura

Giunzioni a freddo

Perdite di carico continue tubi in rame (acqua a 70 C) NB. 1 mmh 2 O = 10 Pa Velocità consigliate: Fino a 14 mm 0,50 m/s da 14 a 20 mm 0,65 m/s da 20 a 22 mm 0,80 m/s Per circuiti in pressione Non superare 60 mmh 2 O/m

Esempio di dimensionamento di tubazione A partire dalla relazione : Q = m c p ΔT (kcal/h) con : m = portata acqua espressa in lt/h c p = 1 kcal/kg C (calore specifico dell acqua) ΔT = salto termico andata/ritorno (valore tipico = 10 C con un massimo fino a 15 C) Si ricava che : m = Q /c p ΔT (lt/h)

Esempio Posto Q = 1000 kcal/h calcolare la portata d acqua m ed il corrispondente diametro della tubazione : m = 1000/10 = 100 lt/h usando l apposita tabella si sceglie un tubo 12/10 con : - velocità di circa 0,3 m/s - una perdita di carico continua di 15 mmh 2 O/m Velocità consigliate: Fino a 14 mm 0,50 m/s da 14 a 20 mm 0,65 m/s da 20 a 22 mm 0,80 m/s 100 Per circuiti in pressione Non superare 60 mmh 2 O/m

Circuiti impianti termici Per gli impianti autonomi e a zone, il sistema correntemente usato per l alimentazione dei terminali a livello di singolo appartamento è di tipo orizzontale con : A. distribuzione a collettori complanari; B. distribuzione monotubo. Nel caso A, il dimensionamento dei circuiti per i comuni appartamenti è sostanzialmente legato alla individuazione dei diametri dei singoli tratti di tubazione dal collettore al terminale, in quanto dalla caldaia ai collettori i diametri corrispondono a quelli degli attacchi andata/ritorno della caldaia (Tipicamente diametro 20/22 mm o ¾ ). Il principale vantaggio consiste nel fatto che l alimentazione avviene in parallelo con acqua a temperatura costante per i vari terminali. Nel caso B, il dimensionamento deve partire dalla determinazione accurata delle resistenze al moto, continue e accidentali a partire dal circuito più Sfavorito, mentre la temperatura dell acqua subisce variazioni nel percorso.

Impianti a due tubi con collettori Tale tipologia distributiva raccoglie il maggior successo per i seguenti motivi: per la semplicità di realizzazione; per la possibilità di tarare facilmente le portate grazie all allacciamento diretto andata/ritorno per ciascun terminale; per le dimensioni ridotte delle tubazioni; Per la possibilità di intercettare l impianto in caso di sostituzione o riparazione di un terminale; per la possibilità di realizzare impianti con tubazioni di estensione ridotta e pertanto sfilabili dal massetto dove sono alloggiate.

Schema funzionale

Impianto monotubo: schema distributivo Uno dei vantaggi principali consiste nella riduzione delle tubazioni: in molti casi di ristrutturazione dove non si prevede il rifacimento dei pavimenti è spesso l unica soluzione possibile. In figura con tratto rosso è rappresentato il percorso alternativo andata+ritorno con tracce lungo le pareti. Potenza massima per anelli monotubo in rame con salto termico A/R = 12 C Diametro esterno (mm) 12 14 16 18 Potenza massima (Watt) 3800 5000 6900 9700

Impianti monotubo Traccia nella muratura a) Alimentazione in serie b) Alimentazione in derivazione c) Alimentazione mista

Impianti centralizzati Costituiscono l alternativa agli impianti autonomi. Per tali impianti la normativa vigente prescrive l obbligo di contabilizzazione indipendente dei consumi per ciascuna unità immobiliare. Ciò comporta la necessità di ricorrere a sistemi con distribuzione a zone ovvero con: -produzione centralizzata del calore; -gestione autonoma dell impianto nell ambito delle modalità stabilite dal condominio. Dal punto di vista economico rappresentano sicuramente un vantaggio rispetto agli impianti autonomi, ed anche una limitazione ai consumi e all inquinamento ambientale, essendo soggetti a controlli più rigorosi.

Impianti centralizzati di vecchio tipo La loro sostituzione con impianti autonomi è stata incoraggiata dalla normativa in materia di risparmio energetico, che ha consentito la trasformazione degli impianti con la semplice maggioranza dei condomini anziché con l unanimità. La distribuzione avviene normalmente con colonne montanti che alimentano in colonna i vari terminali, non consentendo così di suddividere le spese del riscaldamento in base agli effettivi consumi ma semplicemente in base alle tabelle millesimali di proprietà, o al numero di elementi scaldanti installati, o alla superficie dell alloggio.

Schema circuito distributivo-funzionale vecchio impianto centralizzato

Impianto centralizzato a zone cronotermostato contacalorie

6 - Regolazione e controllo La regolazione ed il controllo della temperatura degli impianti avviene con modalità sostanzialmente simili sia per gli impianti autonomi che centralizzati : - la regolazione si attua mediante un dispositivo di azionamento costituito da una elettrovalvola a due o tre vie comandata da termostato; - negli impianti autonomi il controllo si attua mediante un cronotermostato ambiente dove si definiscono le modalità di gestione e attivazione dell impianto che comanda l apertura/chiusura delle elettrovalvole suddette; -Negli impianti centralizzati oltre al termostato ambiente vi è un cronotermostato centralizzato che regola le modalità di gestione e attivazione del generatore di calore condominiale; - nel caso di contabilizzazione dei consumi (impianti centralizzati) l attivazione dell impianto è rilevata anche mediante un dispositivo denominato contaore o contacalorie.

Impianto centralizzato: schema funzionale della regolazione

Valvola tre vie due vie 70 100 Portata costante 100 70 Portata variabile 70 30 70

Valvola a tre vie deviatrice 100 70 Portata variabile 100 30 Valvola deviatrice

Contabilizzazione dei consumi

Schema funzionale impianto a zone

Schema funzionale impianto a zone

Impianto a zone: piccoli condomini Collettore di centrale Generatore di calore

7 Terminali d impianto I terminali più diffusi sono: - radiatori (alluminio, ghisa, acciaio); - ventilconvettori (esterni e da incasso); - pannelli radianti (a pavimento o soffitto).

Radiatori Gli impianti a radiatori sono tra i più diffusi: per la loro semplicità d installazione; per l assenza di manutenzione; per i costi limitati. Presentano tuttavia una regolazione limitata, l ingombro in ambiente e talvolta, esteticamente, difficoltà d inserimento. Dal punto di vista energetico devono essere alimentati con acqua a temperatura piuttosto elevata (70-80 C) e pertanto non si accoppiano felicemente con caldaie a condensazione, con pompe di calore, con l uso dell energia solare.

Radiatori in alluminio

Rese termiche per ΔT diversi da 50 C

Dimensionamento Il dimensionamento dei radiatori in allumino avviene esclusivamente in funzione dell altezza e del numero degli elementi: ad esempio si debbano fornire 1600 W Usando il tipo Klass 800, altezza 882 mm, resa 162 W/elemento si ha : 1600/162 = n 10 elementi (arrotondamento superiore) elemento

Radiatori in ghisa

MODELLO PROFOND. ALTEZZA INTERASSE MOZZO DIAMETRO CONTEN. MASSA ESPONENT. ATTAC. ACQUA N TEMA 2-558 TEMA 2-681 TEMA 2-871 TEMA 3-400 TEMA 3-558 TEMA 3-640 TEMA 3-681 TEMA 3-790 TEMA 3-871 TEMA 4-558 TEMA 4-681 TEMA 4-871 m m m m m m m m /elem pollici litri/elem kg/elem 60 558 500 60 1" 0,52 3,40 1,288 60 681 623 60 1" 0,58 3,90 1,287 60 871 813 60 1" 0,71 5,00 1,300 94 400 342 60 1" 0,52 3,78 1,295 94 558 500 60 1" 0,73 4,80 1,302 94 640 581 60 1" 0,75 5,30 1,306 94 681 623 60 1" 0,80 5,70 1,312 94 790 731 60 1" 0,90 6,50 1,315 94 871 813 60 1" 1,00 6,80 1,315 128 558 500 60 1" 0,82 5,80 1,299 128 681 623 60 1" 0,97 7,00 1,337 128 871 813 60 1" 1,21 8,62 1,331

Modello Esp. Q 50 TEMA 2-558 1,288 55 TEMA 2-681 1,287 64 TEMA 2-871 1,3 81 TEMA 3-400 1,295 55 Rese Q (W) TEMA 3-558 TEMA 3-640 TEMA 3-681 TEMA 3-790 TEMA 3-871 TEMA 4-558 TEMA 4-681 TEMA 4-871 TEMA 5-558 TEMA 5-681 TEMA 5-871 TEMA 8-300 1,302 1,306 1,312 1,315 1,315 1,299 1,337 1,331 1,312 1,322 1,324 1,326 76 84 89 100 100 93 110 130 110 130 160 100

Radiatori classici in ghisa

Radiatori in acciaio

Dimensionamento Il dimensionamento dei radiatori in ghisa e acciaio avviene oltre che in funzione dell altezza e del numero degli elementi anche in funzione del numero di colonne: ad esempio si debbano fornire 1600 W Usando il tipo Tema 871, altezza 871 mm, 3 colonne resa 100 W/elemento si ha : 1600/100 = n 16 elementi Elemento 3 colonne

Modalità di scambio termico I radiatori scambiano calore con l aria ambiente prevalentemente per convezione naturale e pertanto per un buon funzionamento è necessario non ostacolare il moto naturale ascendente dell aria. In particolare se viene ostacolato il moto convettivo naturale si hanno penalizzazioni nella resa termica, con la necessità di dover aumentare il numero degli elementi per compensare tale riduzione. Per agevolare la cessione del calore è inoltre necessario aumentare la superficie di scambio termico, e ciò si ottiene mediante opportune alettature degli elementi, analoghe a quelle delle batterie. Alettatura per agevolare lo scambio termico Acqua calda Aria

Installazione ottimale Per evitare eccessive penalizzazioni nella resa termica è necessario rispettare le seguenti modalità di installazione: Accettabile Ottimale

Dimensioni d ingombro reali 10 cm 10 cm 10 cm 10 cm

Riduzione rese termiche mensola nicchia copertura in lamiera copriradiatore - 4% - 7% - 2 5% - 2 5% -20 30%

Riduzione in funzione degli attacchi ottimale -3 5 % -10 12 % -7 9 %

Errori di posizione sottofinestra Dietro una porta Parete interna

Esempio di impianto

Ventilconvettori Gli impianti a ventilconvettori si stanno sempre più affermando nelle residenze per le seguenti ragioni: possibilità di utilizzo anche per il raffrescamento; maggiori possibilità di regolazione anche con telecomando; possibilità di alimentazione con acqua a bassa temperatura. Rispetto ai radiatori gli aspetti più interessanti sono dovuti al raffrescamento estivo e alla doppia possibilità di regolazione della temperatura ambiente sia agendo sull acqua che sulla velocità dell aria. Essi possono inoltre essere posti in controsoffitto o in alto a parete, ed essere canalizzati per realizzare un impianto di termoventilazione. Dal punto di vista energetico sono alimentati con acqua a temperatura piuttosto bassa (40-50 C) e pertanto si accoppiano felicemente con caldaie a condensazione, con pompe di calore, con l uso dell energia solare. Gli svantaggi di tali apparecchi consistono nel maggior costo, nella necessità di pulire periodicamente i filtri dell aria e nella rumorosità prodotta.

Schema funzionale del circuito Il circuito di alimentazione dei terminali può essere alimentato in regime invernale dalla caldaia e in estate dal gruppo frigorigeno; in alternativa si può utilizzare una pompa di calore. A due tubi

Impianto a 3 e 4 tubi Il termostato ambiente agirà contemporaneamente sulle due valvole consentendo di alimentare le singole utenze o con acqua calda o con acqua refrigerata. Con questo tipo di impianti è possibile ottenere contemporaneamente il riscaldamento ed il raffreddamento in zone diverse in relazione ai carichi dei singoli ambienti. A quattro tubi A tre tubi

Schema funzionale dell apparecchio Lo scambio termico è di tipo a convezione forzata: l'aria aspirata dalla parte bassa del mobiletto da un ventilatore centrifugo investe la batteria nella quale scorre acqua calda d'inverno e acqua fredda d'estate. La resa termica è quindi molto superiore rispetto ai radiatori.

Schemi installativi a pavimento

Schemi installativi a soffitto Ventilconvettore a soffitto In vista Ventilconvettore a soffitto canalizzato

Apparecchi da pavimento

Ventilconvettore da incasso nel controsoffitto

Rese termiche

Dimensionamento Una volta determinato il carico termico, la scelta dell apparecchio avviene in base alla potenza resa, termica o frigorifera, assumendo una velocità bassa o media. Ciò viene fatto al fine di cautelarsi nei confronti del rumore e per avere un margine di sicurezza. Il dimensionamento delle tubazioni di alimentazione è analogo a quello dei radiatori; la portata dell acqua può essere fornita anche dal produttore nelle tabelle di resa termica. Se il ventilconvettore è a quattro tubi con doppia batteria (una per il caldo e l altra per il freddo) il dimensionamento tiene conto delle condizioni di carico termico più gravose (normalmente quelle estive).

Pannelli radianti Gli impianti a pannelli radianti non sono ancora molto usati nelle residenze specialmente nelle zone più temperate. Dopo un iniziale successo negli anni 60 sono stati abbandonati per i numerosi difetti, oggi sostanzialmente eliminati, a partire dal rischio della corrosione e da dimensionamenti errati. I principali vantaggi sono: possibilità di utilizzo anche per il raffrescamento (in forma limitata con acqua a 16 20 C); ottenimento di migliori condizioni di benessere con costi contenuti; alimentazione con acqua a bassa temperatura. Normalmente sono posti sottopavimento o a soffitto (con una resa peggiore). Dal punto di vista energetico sono alimentati con acqua a bassa temperatura (30 45 C) e pertanto si accoppiano felicemente con caldaie a condensazione, con pompe di calore, con l uso dell energia solare. Gli svantaggi di tali apparecchi consistono nel maggior costo, nella rigidità installativa (l impianto non segue eventuali spostamenti di pareti interne), ed in una maggiore inerzia termica, che li penalizza nelle zone più calde.

Prestazioni in benessere Il sistema a pannelli radianti garantisce un riscaldamento uniforme, grazie all'irraggiamento, che fornisce un COMFORT MAGGIORE, pur mantenendo basse le temperature dell'ambiente. Si contiene il problema dei moti convettivi dell'aria, del ricircolo di polveri e delle asimmetrie di temperature provocate dai radiatori tradizionali. L'acqua circola nei serpentini tra i 30 e i 45 C, in modo che la temperatura della superficie del pavimento risulti intorno ai 24-25 C, al fine di ottenere le migliori condizioni di comfort Il limite massimo accettabile per la temperatura superficiale è di 29 C.

Caratteristiche prestazionali massetto pavimento p U t Il pannello radiante è costituito dal sistema soletta + tubazioni annegate nella stessa. La resa del pannello U t dipende : D isolante solaio dal passo p tra i tubi; dal diametro D delle tubazioni, dalla conducibilità termica del massetto e del pavimento; dall isolamento termico sottostante al pannello; dalle caratteristiche del solaio di base. intonaco U r

Pannello a pavimento incorporato nel getto del solaio

Pannello a pavimento incorporato nel massetto

Pannello in materiale plastico estruso

Pannello radiante a soffitto incorporato nel solaio

Pannello radiante a soffitto applicato dopo il getto del solaio

Pannello radiante a controsoffitto in lastre di gesso

Schema distributivo pannelli a pavimento Posa a chiocciola posa a serpentina Le geometrie di posa più utilizzate sono "chiocciola" o "serpentina". La disposizione a chiocciola è consigliata negli edifici con permanenza costante di persone ed in edifici con maggiori dispersioni in quanto il calore è distribuito più omogeneamente. Il passo di posa varia in funzione delle superfici disperdenti dei locali, ma comunque tipicamente compreso tra 10 e 20 cm.

Pannelli radianti alimentati da collettore La serpentina può seguire l ingombro dei sanitari

Schema di posa su base di montaggio isolante prefabbricata

Regolazione La realizzazione di un efficiente sistema di regolazione è fondamentale negli impianti a pannelli radianti. Poichè gli impianti in esame sono generalmente caratterizzati da una certa inerzia (risposte lente alle variazioni climatiche) è consigliato un sistema di regolazione del generatore, con sonda climatica esterna, per adeguare rapidamente la temperatura di mandata dell acqua alle variazioni della temperatura esterna.

Rese termiche con pavimento in ceramica Rese superficiali con rivestimento ceramica 10 mm DATI DI PROGETTO u.m. q.tà Spessore massetto sopra i tubi cm 6 Temperatura del locale da riscaldare C 20 Temperatura del locale sottostante C 10 Temperatura di mandata Tv C 37 Temperatura di ritorno Tr C 32 Resistenza termica rivestimento m 2 /KW 0,016 Conduttività massetto W/mK 1,28 Resistenza termica totale verso il basso m 2 /KW 1,723 Passo (cm) 5 7,5 10 15 20 22,5 30 35 Resa sup. W/m 2 92,34 86 81,12 71 63 58 46 43 Temp. sup. ( C) 28,2 27,5 27 26,5 25,5 25 24 23

Rese con pavimento in legno Rese superficiali con rivestimento legno 12 mm DATI DI PROGETTO u.m. q.tà Spessore massetto sopra i tubi cm 6 Temperatura del locale da riscaldare C 20 Temperatura del locale sottostante C 10 Temperatura di mandata Tv C 37 Temperatura di ritorno Tr C 32 Resistenza termica rivestimento m 2 /KW 0,06 Conduttività massetto W/mK 1,28 Resistenza termica totale verso il basso m 2 /KW 1,723 Passo (cm) 5 7,5 10 15 20 22,5 30 35 Resa sup. W/m 2 70 67 62,11 56 50,21 48 41 36 Temp. sup. ( C) 26,5 26 25,8 25,3 24,8 24,5 24 23

Resa termica in raffrescamento

Impianti di raffrescamento Costituiscono sempre più un esigenza irrinunciabile da parte degli utenti, tanto che l uso di apparecchi frigorigeni in periodo estivo è una delle cause principali di rischio di interruzione di corrente elettrica (black out). In anni recenti si sono affermati impianti di vario tipo, tutti però caratterizzati dalla mancata integrazione con l impianto di riscaldamento: in pratica si inserisce nell appartamento un impianto frigorigeno che alimenta i relativi terminali in due modi: con il fluido frigorigeno che completa il ciclo direttamente nella batteria di espansione del terminale ( impianti split, con condensatore esterno ed evaporatore interno); con acqua refrigerata (impianti idronici). Ovviamente la soluzione migliore consiste nell installare una pompa di calore in grado di soddisfare, con i soliti terminali (ad es. ventilconvettori), sia le esigenze estive che invernali.

Impianti a pompa di calore ad espansione diretta estate inverno

Generalità Gli impianti per appartamenti sono usualmente costituiti da una unità esterna e da una a quattro unità interne. Tipiche caratteristiche dei componenti sono: gas refrigerante R410A Unità esterna con compressore rotativo Controllo a microprocessore Telecomandi a raggi infrarossi con display a cristalli liquidi per il controllo di tutte le funzioni Timer per la programmazione del funzionamento Programma di funzionamento notturno Programma di funzionamento in deumidificazione Programma di funzionamento in automatico con commutazione riscaldamento / raffreddamento Funzione di autodiagnosi Funzionamento silenzioso Filtro aria Unità interna:alette di mandata aria orientabili in orizzontale e in verticale Unità interna:alette deflettrici verticali motorizzate azionabili da telecomando Linee frigorifere fino a 15 m

Dati Tecnico-dimensionali

Schema distributivo unità interne MGH0702E Presa aria sopra porta Unità esterna MGH1402C

Impianto idronico

Dati tecnico-dimensionali

I rendimenti in condensazione Com è possibile ottenere un rendimento di più del 100% per le caldaie a condensazione? Esistono due possibilità di definire il rendimento: lo si può riferire al potere calorifico netto uguale a potere calorifico, oppure riferire al potere calorifico lordo uguale a potere calorifico superiore. Poiché una volta non esisteva lo sfruttamento del potere calorifico superiore (tecnica di condensazione), l energia utile veniva e viene ancor oggi riferita al potere calorifico netto. Ciò determina che per ottenere un rendimento del 100 % il potere calorifico deve essere completamente sfruttato e questo significa che la temperatura del gas di scarico è uguale alla temperatura dell aria di alimentazione e che tutti i prodotti di combustione sono presenti in forma gassosa. Se ora si mantiene la grandezza di riferimento potere calorifico e si sfrutta però contemporaneamente il calore latente del vapore che si condensa, si ottiene più energia utile del potere calorifico massimo attribuito al materiale combustibile. Ciò dipende esclusivamente dal fatto che si è scelta quale grandezza di riferimento una quantità di energia massima raggiungibile errata, vale a dire il potere calorifico. Di fatto è possibile ricavare energia ancora maggiore dal materiale combustibile, cioè in più il calore della condensazione del vapore. Da ciò risulta un rendimento massimo di 106,4 % per olio combustibile e del 111 % per il metano. Si tratta quindi di un problema di definizione, poiché dal punto di vista tecnico il potere calorifico superiore è la quantità massima di energia utile che si può ricavare da un materiale combustibile. Sarebbe quindi corretto riferire il rendimento di tutte le caldaie per riscaldamento al potere calorifico superiore. Solo che i produttori di caldaie per riscaldamento normali non lo vogliono fare, poiché allora le loro caldaie avrebbero ad esempio per l olio combustibile solo un rendimento dell 89 % invece che del 95 %, mentre la caldaia a condensazione integrale raggiunge un rendimento del 99 %.

La condensazione dei fumi Da quale temperatura il vapor acqueo si condensa nel gas di scarico? Il raffreddamento dei fumi sotto il punto di rugiada comporta la condensazione del vapor acqueo, il che equivale ad un lavaggio dei fumi di scarico. In questo modo grazie alla condensazione continua si ottiene anche una riduzione essenziale dell emissione di zolfo e di CO 2. Il vapore acqueo dei fumi di scarico condensa solo sotto: olio combustibile a 47 C (CO 2 13,3 %); metano a 57 C (CO 2 10,5 %). La quantità di condensa determina l energia recuperabile poiché solo la condensazione produce ulteriore energia termica utile. Questa corrisponde ad una percentuale della capacità energetica del combustibile paria al: 6 % per l olio combustibile 11 % per il metano.

Diagrammi di flusso Caldaia tradizionale Caldaia a condensazione Bilancio termico: 1. Perdite ai fumi 6,6 kwh 2. Perdita al mantello - 1,9 kwh 3. Perdite calore latente 6,5 kwh Totale - 15 kwh 90 kwh + 15 kwh = 105 kwh

Caldaie a condensazione 1 Bruciatore 2 Calotta fonoassorbente 3 Camera di combustione 4 Scambiatore di calore in acciaio 5 Scambiatore di calore in plastica 6 Aria di combustione 7 Aria di combustione preriscaldata 8 Gruppo di riscaldamento

Impianti ad energia solare Incentivati dalla legislazione vigente e da un sempre maggior numero di Comuni e Regioni, oltre che dalla normativa europea in gestazione, hanno recentemente riacquistato interesse. Essi sono costituiti essenzialmente da: un sistema di captazione costituito da collettori piani destinato a raccogliere la radiazione solare incidente; un sistema di circolazione dell acqua nei collettori; un sistema di accumulo (boyler) dell energia solare captata; un sistema di regolazione che attiva o meno la circolazione in funzione dell intensità della radiazione, della temperatura esterna e dell acqua nel boyler.

Schema funzionale sistema di captazione ed accumulo Sistema di captazione e accumulo

Schema completo accumulo + utilizzo Sistema di captazione e accumulo Utilizzo Sistema ausiliario