di SURESH HARIHARAN, Director and Product Definer, Maxim Integrated Products

Documenti analoghi
Cos è un alimentatore?

INDICE. Capitolo 3 Caratteristiche dei LED 39

Circuiti Integrati : Regolatore di tensione lineare

Elettronica per l'informatica 21/10/03

GW : ATTUATORE DIMMER RESISTIVO CAPACITIVO (400W)

ELETTRONICA : Compiti delle vacanze. Nome e Cognome:.

Raddrizzatore monofase a doppia semionda con filtro capacitivo

VARIALUCE UNIVERSALE 4 FILI CON PULSANTE

Due tipi di programmazione: con o senza memoria. Metodo di regolazione. Leading edge Compatibile con lampade LED dimmerabili

ESERCITAZIONE DI ELETTRONICA I L Alimentatore Stabilizzato (Realizzazione Circuitale e Prova Sperimentale)

Sistemi elettronici di conversione

Elettronica = Elaborazione e trasmissione di. Grandezza Fisiche Trasduttori Segnali Elettrici (V,I)

Laboratorio misure elettroniche ed elettriche: regolatori di tensione a tiristori

MODALITÀ DI FUNZIONAMENTO DELLE LAMPADE ALOGENE

Modulo di corrente Tipo: SM/S , EC 282 0

2 Alimentazione. +Vdc. Alimentazione 1 IGBT1 GND1. Alimentazione 2 IGBT2 GND2. -Vdc. Fig.1 - Alimentazione corretta degli switchs di uno stesso ramo

DISPOSITIVI PANNELLO

tecnologie ecosostenibili applicate

tecnologie ecosostenibili applicate

ALIMENTAZIONE E REGOLAZIONE LED DRU7630M/N RPS400 DRU7636J/N RPS1000

POLITECNICO DI TORINO TERZA ESERCITAZIONE ATTENZIONE

Circuiti elettrici non lineari. Il diodo

Modulo a relè SB300. Manuale di installazione. Manuale di installazione. Modulo a relè SB300

CONVERTITORE LUCE-TENSIONE

Il modo intelligente per massimizzare l uso della tua energia fotovoltaica!

Condizionatori di segnale.

Alimentatori. Schema a blocchi di un alimentatore non stabilizzato

Gli alimentatori stabilizzati

SINEAX I552 Trasduttore di misura per corrente alternata

I.I.S.S. G. CIGNA MONDOVI

A.S. 2014/15 CLASSE 4 BEE MATERIA: ELETTROTECNICA ED ELETTRONICA

ALIMENTAZIONE E REGOLAZIONE LED DRU7630M/N RPS400 DRU7636J/N RPS1000

MANUALE D'ISTRUZIONI GENERATORI DI FUNZIONI

GW : ATTUATORE DIMMER RESISTIVO INDUTTIVO (600W)

ALIMENTAZIONE E CONTROLLI LED

Diodi Tandem Hyperfast per PFC, soluzioni a confronto

5. Esercitazioni di laboratorio

SMARTLIGHT. La Tecnologia Completamente Statica nella regolazione del Flusso Luminoso. Light and energy saving FHDHGFDHCHBA

posta September 2011

Corso di ELETTRONICA INDUSTRIALE

Dimensioni. Indicatori/Elementi di comando

CENNI SU ALCUNI DISPOSITIVI ELETTRONICI A STATO SOLIDO

1 Indicazioni di sicurezza. 2 Struttura dell'apparecchio. Modulo dimmer multiplo universale. N. ordine : Istruzioni per l uso

ELETTRONICA CdS Ingegneria Biomedica

Generatore. Generatore. Un sistema a raggi-x consiste di: Tubo a raggi-x. Sistema di rilevazione

LED PER IL SETTORE COMMERCIALE

Figura 1 Schema di ponte monofase adottato negli inverter.

MANUALE UTENTE PMA480 PMA240 FINALE DI POTENZA

Lampade fluorescenti Generalità sulle lampade fluorescenti:

FILTRI DI USCITA REO Filtri elettrici di potenza per l automazione industriale

Serie 77 - Relé modulare allo stato solido 5 A. Caratteristiche

Corso di Elettronica di Potenza (9 CFU) ed Elettronica Industriale (6CFU) Convertitori c.a.-c.a. 2/24

PowerWave 33 Protezione di alimentazione efficiente per gli ambienti di lavoro IT ed industriali

Alimentatore stabilizzato con tensione di uscita variabile

Inverter ibrido onda pura per impianto fotovoltaico ad isola Genius 3000VA 3KW 24V con Regolatore di Carica 50A 1500W GENIUS30 420,71

SENSORE DI TENSIONE SP

indoor air quality and energy saving SCHEDA TECNICA AURA UNITÀ DI VENTILAZIONE con RECUPERO DI CALORE per EDIFICI RESIDENZIALI

V, +35 ma max (modalità corrente attiva) 1-10 V, 35 ma max (modalità corrente passiva) 1 NO (6 A/230 V AC)* 400 (1) 400 (2) 100 (3)

G4BM400V12ATL20. Dati tecnici. Controllo potenza reale sistemi monofase o trifase

3- CENNI SUI PRINCIPALI DISPOSITIVI BASATI SULLE GIUNZIONI p-n

Lampade per distributori di benzina

CIRCUITI RADDRIZZATORI

ARC 544 ALIMENTATORE DC REGOLABILE STABILIZZATO IN TENSIONE

G4BM480V12ATL20. Dati tecnici. Controllo potenza reale sistemi monofase o trifase

Serie 14 - Temporizzatore luce scale 16 A. Caratteristiche SERIE

INSTALLAZIONE CIVILE Apparecchi per standard British

Figura 1: Struttura dell'apparecchio

Unità Thyristor con Trasformatore

Filtro attivo per la compensazione delle armoniche

Lampade LED anti Black-Out

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

Contattori elettronici CI-tronic Tipo ECI

Riscaldatore/termometro elettronico

MANUALE ISTRUZIONI REGOLATORI SERIE. Cod. 201S.B. Motori, azionamenti, accessori e servizi per l'automazione


COMPONENTI PER L ELETTRONICA INDUSTRIALE E IL CONTROLLO DI PROCESSO

PRESENTAZIONE SEZIONE DRV (DIMMER E DRIVER LED)

Comprendere il funzionamento dei convertitori V/f Saper effettuare misure di collaudo

Scheda tecnica online UE48-2OS2D2 UE48-2OS DISPOSITIVI DI COMANDO E SICUREZZA

MANUALE D USO 2AMDI515TPS

LAMPEGGIANTI POLIZIA A LED

Gli schemi circuitali impiegati per la realizzazione dei convertitori statici sono molteplici.

Moduli LED circolari. DRAGONpuck DP35 / DP51

Collaudo statico di un ADC

TVD RM1 VAL / SKC RILEVATORE DI VIBRAZIONI NEL PUNTO DI CONTATTO PER SISTEMA DI MISURAZIONE RMS MANUALE

DI-MTL Serie piastrelle calpestabili a LED

SERIE 15 Varialuce (Dimmer)

Promozione Led Febbraio/Marzo

Multifunzione 1 NO Montaggio su barra 35 mm (EN 60715)

RELAZIONE DI LABORATORIO

Lampade per capannoni magazzini e gallerie stradali

Materiale contatti AgNi, adatto per carichi resistivi, debolmente induttivi e carichi motore fluorescenti compatte (CFL) W

MPD-1CV BLE L322 MANUALE UTENTE V. 1.2

BMSA1203. SSensor da soffitto PIR IP20 solo trimmer

Sensori Magnetici di Sicurezza

4.4 Il regolatore di tensione a diodo zener.

ELETTRONICA APPLICATA E MISURE

0 20mV; 0 40mV; 0 80mV; 0 160mV; 0 320mV; 0 640mV; 0 1,28V; 0 2,56V 0 5V; 0 10V

tecnologie ecosostenibili applicate INVERTER HTG 30 MP

Modulo di potenza. Esempio di sistema. Modulo di potenza per comando acceso/ spento e 0-10 V

Transcript:

Utilizzando un driver LED HB ottimizzato per le lampade MR16 e altre lampade a 12 VAC è possibile rendere i LED MR16 compatibili con i trasformatori elettronici di SURESH HARIHARAN, Director and Product Definer, E I TRAS Maxim Integrated Products

FORMATORI Questo articolo descrive le differenze tra il funzionamento dei trasformatori AC a bassa frequenza e i trasformatori elettronici che forniscono corrente alle lampade MR16. Spiega le differenze di consumo di corrente tra le lampade alogene MR16 e le lampade a LED MR16. Queste differenze sono importanti, in quanto il consumo di corrente in genere impedisce il funzionamento della lampada a LED MR16 con la maggior parte dei trasformatori elettronici. L articolo mostra come un driver LED HB ottimizzato per le lampade MR16 rende le lampade LED compatibili con la maggior parte dei trasformatori elettronici, ma non entra nel merito del funzionamento senza sfarfallio della combinazione tra dimmer e trasformatore elettronico per le lampade a LED MR16. IMPORTANZA DEI CARICHI RESISTIVI E DEI TRASFORMATORI ELETTRONICI Le lampade alogene MR16 in genere funzionano con un alimentatore AC a bassa tensione, tipicamente prodotta da un trasformatore AC a bassa frequenza o da un trasformatore elettronico ad alta frequenza. Nella maggior parte delle applicazioni dell MR16 la corrente alternata ad alta tensione fornita dalle aziende elettriche viene convertita in corrente alternata a bassa tensione da un trasformatore elettronico ad alta frequenza oppure da un trasformatore magnetico a bassa frequenza. Un trasformatore elettronico ad alta frequenza è dotato di un avvolgimento principale che si collega direttamente a 120 VAC / 230 VAC, utilizza elevate frequenze di commutazione per fornire la bassa tensione (12 VAC) applicata alla lampada alogena MR16. Un trasformatore AC a bassa frequenza

Figura 1: schema del driver LED HB MAX16840 in una configurazione di boost per le lampade a LED MR16. Questa configurazione fornisce una buona compatibilità con i trasformatori elettronici. è pesante e ingombrante, e occupa molto spazio. A confronto, un trasformatore elettronico è piccolo e compatto e progettato per alimentare un carico resistivo con una richiesta di potenza tipica superiore a 20 W. Quando un trasformatore elettronico è alimentato da 120 VAC / 230 VAC, in genere non funzionerà se il carico resistivo sull uscita è impostato per consumare meno di 20 W. Le lampade alogene MR16 convenzionali consumano più di 20 watt di potenza da un alimentazione AC in condizioni operative normali, quindi funzionano bene con i trasformatori elettronici. Le lampade a LED MR16, tuttavia, richiedono solo 7 W di potenza per fornire la stessa resa luminosa di una lampada alogena MR16 da 35 W. CARICHI RESISTIVI E LUMINOSITÀ Una lampada alogena MR16 funge da carico resistivo non lineare. Quando la lampada è fredda, la resistenza è bassa e consumerà correnti elevate che supportano il funzionamento dei trasformatori elettronici. Quando la lampada è accesa, il filamento si riscalda e la resistenza aumenta. Una tipica lampada

Figura 2: corrente di ingresso con alimentazione fornita da un LET75 senza dimmer a 120 VAC. Figura 3: corrente di ingresso con alimentazione fornita da un LET75 a 120 VAC senza dimmer. Questa forma d onda viene rilevata con un tempo base di 40 µs e mostra chiaramente il carico supplementare aggiunto dal circuito con Q3 e Q4. Questo carico viene rimosso dopo i primi 80 µs di ogni mezzo ciclo della forma d onda AC. alogena da 35 W consumerà 35 W di potenza a 120 VAC / 230 VAC quando è alimentata da un trasformatore elettronico o magnetico. Poiché la lampada alogena è un carico resistivo, la luminosità diminuirà se la tensione di linea si riduce rispetto al valore nominale; la luminosità aumenterà quando la tensione di linea aumenta rispetto al valore nominale. Luminosità in aumento, luminosità in diminuzione: questo non è il funzionamento coerente richiesto oggi dalla maggior parte delle applicazioni. Tuttavia, è possibile mantenere costante la luminosità di una lampada a LED MR16 quando la linea varia attorno alla tensione di ingresso nominale. Ma le lampade a LED MR16 non sono carichi resistivi, che è ciò che i trasformatori elettronici richiedono. Pertanto, il comportamento del carico della lampada a LED MR16 deve essere regolato in modo che consumi la potenza richiesta per fornire la resa luminosa desiderata e mantenga operativo il trasformatore elettronico. OTTIMIZZAZIONE DI UNA LAMPADA A LED PER UNA CORRENTE COSTANTE Il circuito del driver della lampada a LED MR16 può essere regolato in modo che consumi un carico di corrente costante dall uscita del trasformatore elet-

Figura 4: forma d onda della tensione di ingresso alla scheda MR16 con alimentazione fornita da un LET75 a 120 VAC. Figura 5: forma d onda della tensione di ingresso alla scheda MR16 con alimentazione fornita da un LET75 a 120 VAC. tronico. Non è possibile aggiungere capacità all uscita del trasformatore elettronico, poiché questo potrebbe impedire alla lampada a LED MR16 di funzionare come carico di corrente costante. Inoltre, la corrente consumata dalla lampada a LED MR16 deve raggiungere il livello programmato in pochissimo tempo. Nello specifico, deve arrivare al valore programmato entro 3-4 µs. Se l accelerazione è inferiore, significa che il trasformatore elettronico può interrompere la commutazione. Un nuovo design per un driver LED HB consentirà alla maggior parte dei trasformatori elettronici di funzionare correttamente con le lampade a LED MR16. La corrente consumata dalla lampada MR16 viene regolata con la tensione RMS applicata alla lampada. Quando la tensione è bassa, la lampada MR16 consuma una certa quantità di corrente. Per mantenere costante la corrente di ingresso, questa corrente diminuirà quando aumenterà la tensione di ingresso RMS. Questo driver LED HB integra un MO- SFET da 0,2 Ω, 48 V adatto alla maggior parte delle applicazioni. Può essere configurato per le tensioni delle stringhe di LED comprese tra 6 V e 40 V. Se il numero di LED in una stringa è superiore a 6, il driver può essere utilizzato nella configurazione di boost. Se il numero di LED è inferiore a 6, dovrebbe essere utilizzato in una configurazione SEPIC.

Questo articolo prende in considerazione solo la configurazione di boost. La figura 1 riporta lo schema della configurazione di boost. RENDERE LA LAMPADA A LED MR16 COMPATIBILE CON IL TRASFORMATORE ELETTRONICO MAX16840 utilizza il controllo medio in current mode per controllare la corrente di ingresso. La tensione sul resistore di rilevamento corrente, R3, è controllata dalla tensione sul pin REFI; la tensione media sul resistore R3 è regolata per ciascun ciclo di commutazione dalla tensione sul pin REFI. La frequenza di commutazione è impostata internamente a 300 khz. La tensione massima sull R3 è bloccata a 200 mv, quindi la corrente non può superare 0,2/R3. Il raddrizzatore a ponte fornisce la tensione di ingresso rettificata sul pin 3 del ponte di diodi D2. R7 e C7 impostano la tensione rettificata sul valore medio. La tensione DC su C7 viene convertita in corrente dal resistore R8. Il circuito della corrente di mirroring composto da Q2, R10 e R19 preleverà corrente dal pin REFI, dove la corrente consumata da Q2B = V C7 /R8. La tensione sul pin REFI sarà quindi (50 µa-lv C7 /R8) R4, dove 50 µa è la fonte di corrente interna presente sul pin Figura 6: forma d onda della corrente LED con alimentazione fornita da un LET75 a 120 VAC. Figura 7: forma d onda della corrente LED con alimentazione fornita da un LET75 con un dimmer trailingedge a 120 VAC. Il dimmer è impostato sulla resa luminosa massima.

REFI. I valori R8 e R4 sono adattati in modo che la potenza di ingresso vari entro ±5% per la tensione di uscita che, a sua volta, varia entro ±10% del valore nominale. Il design mantiene la potenza di ingresso pressoché costante per variazioni della tensione di linea di ±10%. L induttore di boost è impostato a 100 µh per fornire un basso ripple della corrente di ingresso per una migliore compatibilità con i trasformatori elettronici. Durante ogni mezzo ciclo della tensione rettificata che appare sul pin 3 del ponte di diodi, la corrente di ingresso Trasformatore Prestazioni a 208 VAC/254 VAC Corrente LED media (ma) Philips Primaline 70 283 Philips Primaline 105 Sfarfallio Osram Halotronic HTM 70 296 Osram Halotronic HTM150 Funzionamento a metà della potenza 181 Osram ET-P 60 283 Philips ET-E 60 Sfarfallio oltre i 240 V 303 Philips Certaline 105W 269 Philips ET-S 150 272 Philips Certaline 150W Sfarfallio; funzionamento a metà della potenza Varilight YT70 310 Nobile EN-110D 300 CDN CS60 309 OPPLE DB602-220/12 302 TCL ET60H 311 GE SET60LS 274 TF TF-1100 50-100 W 296 Tabella 1: dati di test per i trasformatori elettronici a 230 VAC/50 Hz.

sarà azzerata quando la tensione del trasformatore elettronico è vicina allo zero. Per il funzionamento corretto è importante che la corrente consumata dalla lampada MR16 raggiunga il valore di corrente programmato sul pin REFI in uno dei cicli di commutazione del trasformatore elettronico. Se il consumo di corrente della lampada è molto inferiore alla corrente desiderata per mantenere in funzione il trasformatore elettronico, la lampada inizierà a emettere uno sfarfallio. Con un induttore da 100 µh come quello utilizzato qui, la corrente richiederà un po di tempo per ripartire da zero. Alcuni trasformatori elettronici possono interrompere la commutazione e quindi il riavvio, producendo un sfarfallio. Per risolvere questo problema, il design del circuito è provvisto di un carico aggiuntivo costituito da R18, D7, C14, Q4, D8, R17, R11, R13 e Q3. Il circuito aggiunge 5 Ω al trasformatore elettronico, ma solo per circa 80-90 µs per mezzo ciclo della corrente dell onda sinusoidale AC rettificata, che in genere ha Trasformatore Prestazioni a 109 VAC/133 VAC Corrente LED media (ma) Wang WH-601E2N 307 Trasformatore elettronico SET02B 301 Allight AL-80A 307 WAC Lighting EN-1260-R2 Funzionamento a metà della potenza Hera UE-E60FT 308 Hatch RS12-80M Sfarfallio oltre i 115 V Lightech LET-105 311 Lightech LET75 310 Hatch RS12-150 297 Pony PET-120-12-60 309 Nora Lighting T50C2 309 B e L CV90098 310 Tabella 2: dati di test per i trasformatori a 120 VAC/60 Hz.

Figura 9: forma d onda della corrente d ingresso quando il dimmer è impostato vicino alla metà del dimmer. Figura 10: forma d onda della corrente LED quando il dimmer è impostato sulla resa luminosa minima. una frequenza di 100-120 Hz. Il carico viene rimosso non appena la corrente nell induttore ha raggiunto un valore sufficientemente alto per mantenere operativo il trasformatore. La potenza dissipata da questo carico supplementare è ridotta. Esiste anche un altro modo di risolvere il problema: riduzione dell induttore di boost a 10 µh, funzionamento a frequenze di commutazione elevate e rimozione del carico aggiuntivo. Le elevate frequenze produrranno maggiori perdite di commutazione, ma non sarà necessario il carico supplementare. Entrambi i metodi citati sono proprietà di Maxim Integrated Products. MAX16840 è provvisto di un pin EXT per il comando di un transistore esterno quando la tensione sul pin IN è inferiore a 5 V. Il MOSFET interno sarà disattivato. Il pin EXT accende Q5 e il carico 5 Ω viene aggiunto all uscita del raddrizzatore a ponte. Quando la tensione sul pin IN supera 5 V, il carico viene disattivato. Questo approccio è utile quando il trasformatore elettronico funziona con dimmer trailing-edge. Con alcune combinazioni di trasformatori elettronici e dimmer il trasformatore non esegue la commutazione in modo corretto quando il dimmer è impostato sulla resa luminosa minima. Ciò si verifica quando la potenza AC

viene applicata al trasformatore con il dimmer impostato al minimo. Il circuito di Q5, R20 e il pin EXT di MAX16840 risolvono questo problema aggiungendo il carico 5Ω al trasformatore elettronico. Il carico viene rimosso non appena i LED si accendono e forniscono luce, in quanto il pin IN è direttamente collegato alla tensione di uscita di boost. DIMOSTRAZIONE DELLA COMPATIBILITÀ CON I TRASFORMATORI ELETTRONICI I dati prestazionali vengono mostrati qui per un boost di 6 W, lampada a LED MR16 alimentata da trasformatori elettronici diversi. L MR16 di boost è stato Figura 11: forma d onda della corrente di ingresso quando il dimmer è impostato sulla resa luminosa minima. testato con 7 LED sull uscita. Le tabelle 1 e 2 riepilogano le prestazioni con trasformatori diversi. Le prestazioni di dimming (figure 2-11) sono state testate con un LET75 e un dimmer Lutron SELV-303P. CONCLUSIONI Utilizzando un driver LED HB ottimizzato per l MR16 e altre lampade a 12 VAC, è possibile rendere i LED MR16 compatibili con i trasformatori elettronici. Il driver LED trattato qui è MAX16840. Si noti, tuttavia, che è necessario testare le prestazioni di ciascuna singola combinazione di trasformatore elettronico e dimmer. I test dimostrano che alcune combinazioni di dimmer trailing-edge e trasformatori elettronici funzionano in modo soddisfacente. I dimmer triac non funzionano correttamente con i trasformatori elettronici perché non sono progettati per gestire carichi capacitivi. Il filtro EMI del trasformatore elettronico, combinato con altre resistenze all ingresso del trasformatore elettronico, crea risonanza quando abbinato a un dimmer. La risonanza, a sua volta, produce sfarfallio quando l uscita del trasformatore elettronico è collegata a una lampada a LED utilizzando MAX16840 nella configurazione corrente. Codice MIP 2824480