Sommatori e Moltiplicatori

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sommatori e Moltiplicatori"

Transcript

1 Sommatori e Moltiplicatori Prof. Alberto Borghese Dipartimento di Scienze dell Informazione [email protected] Università degli Studi di Milano Riferimenti: B.5 sul Patterson, per i moltiplicatori HW, capitolo 9 fino a sul Fummi, Per gli algoritmi di moltiplicazione: capitolo 3 (fino a 3.4) del Patterson. /23 Sommario Sommatori Moltiplicatori 2/23

2 Somma e prodotto logico A B Y Somma => OR A B Y Moltiplicazione => AND A B Y A B Y 3/23 Tabella della verità della somma: (Half) Adder ad bit a b a b somma riporto r HA s s = a b r = ab a b s r La somma è diventata un operazione logica! Cammini critici: Somma = ; Riporto = ; Complessità Somma = porta; Riporto = porta; 4/23 2

3 Tabella della verità della somma completa: a b r in somma riporto Full Adder ad bit s = m + m 2 + m 4 + m 7 r = m 3 + m 5 + m 6 + m 7 s = a b r in + a b r in + a b r in + a b r in = _ = (a b) r in + (ab + ab) r in = = (a b) r in + (a b) r in r in a b _ r out = a b r in + a b r in + a b r in + a b r in = ab + (a b) r in r out FA s 5/23 s = (a b) r in + (a b) r in r out =ab+ (a b) r in Implementazione circuitale r in r in a (a b) (a b) ab r out b!r in!(a b) s r in 7 porte logiche. Cammini critici: s -> 3; r out -> 3 6/23 3

4 r s = out = Semplificazione circuitale ( a b) rin + ( a b) rin = ( a b) ab + ( a b) r in r in a b r in s r in 5 porte logiche. Cammini critici: s > 2; r out -> 3 a r out b 7/23 Implementazione mediante PLA a b r in somma r out SOP: costruisco i mintermini e li sommo. r in a b 8/23 AND OR r out s 4

5 Esercizi Scrivere il circuito che esegue la somma di: in base 2. Riportare tutte le uscite delle porte logiche. Scrivere il circuito che esegue la seguente sottrazione: 5-2 in base 2. Riportare tutte le uscite delle porte logiche. 9/23 Sommario Addizionatori Moltiplicatori /23 5

6 Moltiplicazione binaria Moltiplicando Moltiplicatore x 27 = Prodotto x = /23 La moltiplicazione binaria Possiamo vederla come: Un primo stadio in cui si mette in AND ciascun bit del moltiplicatore con il moltiplicando. Un secondo stadio in cui si effettuano le somme (full adder) dei bit sulle righe contenenti i prodotti parziali. 2/23 6

7 Moltiplicazione binaria Prodotti parziali Riporto Somma parziale Moltiplicando Moltiplicatore x 27 x = = = = -> 297 Prodotto 3/23 Moltiplicazione binaria (su 4 bit) Prodotti parziali (AND) Somma parziale (Sommatori) Prodotto Moltiplicando Moltiplicatore x = * * 2 + * *2 = **2 2 = Il prodotto parziale è = Moltiplicando incolonnato opportunamente 4/23 7

8 La matrice dei prodotti parziali Prodotti parziali In binario i prodotti parziali sono degli AND. 5/23 Il circuito che effettua i prodotti Prodotti parziali 6/23 8

9 La matrice dei prodotti parziali In binario i prodotti parziali sono degli AND. 7/23 Somma delle prime 2 righe dei prodotti parziali Somma dei primi 2 prodotti parziali: Aggiunge il terzo prodotto parziale: HA e FA non sono equivalenti per i diversi cammini critici. 8/23 x = = -> 297 9

10 Somma della terza riga I primi due prodotti parziali sono sommati dalla prima batteria di sommatori. Ogni altro prodotto parziale è sommato da un ulteriore batteria di sommatori. x 27 x = = = = -> 297 9/23 Circuito completo della somma dei prodotti parziali N- batterie di sommatori Problema: overflow: A e B su 32 bit => P su 64 bit. 2/23

11 b3 Valutazione della complessità Complessità: Half Adder: 2 porte Full Adder: 5 porte Stadio AND: 3 A su N bit B su M bit N * M porte AND Stadio OR: N sommatori per riga M- righe Numero porte se N = M = 4 -> 48 riga Altre righe Numero porte = (N-2) * 5 + 2*2 + (M-2) * (N-) * 5 + (M-2)*2 2/23 b2 Valutazione del cammino critico Cammini critici: Half Adder: Somma porta Riporto porta Full Adder: Somma - 2 porte Riporto - 3 porte Gli AND operano in parallelo: ritardo Cammino critico: 2 22/23

12 Diapositiva 2 b3 prova lalfafdafdakmn adf borghese; 4/3/25 Diapositiva 22 b2 prova lalfafdafdakmn adf borghese; 4/3/25

13 Sommario Addizionatori Moltiplicatori 23/23 2

Lezione 7 Sommatori e Moltiplicatori

Lezione 7 Sommatori e Moltiplicatori Architettura degli Elaboratori e delle Reti Lezione 7 Sommatori e Moltiplicatori Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 /36 Sommario

Dettagli

Lezione 7 ALU: Moltiplicazione e divisione

Lezione 7 ALU: Moltiplicazione e divisione Architettura degli Elaboratori e delle Reti Lezione 7 ALU: Moltiplicazione e divisione F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 1/34 Sommario! Sommatori

Dettagli

Es. 05. Addizionatori (Half Adder, Full Adder); sommatori a n bit (con e. complemento a due e sottrazione; overflow.

Es. 05. Addizionatori (Half Adder, Full Adder); sommatori a n bit (con e. complemento a due e sottrazione; overflow. Es. 05 Addizionatori (Half Adder, Full Adder); sommatori a n bit (con e senza riporto); conversione in complemento a due e sottrazione; overflow. Es. 1 Si scriva la tabella di verità per un addizionatore

Dettagli

Firmware Multiplier. Sommario

Firmware Multiplier. Sommario Firmware Multiplier Prof. lberto Borghese Dipartimento di Informatica [email protected] Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: B.6 & 3.4 /33 Sommario Il moltiplicatore firmware

Dettagli

Aritmetica binaria e circuiti aritmetici

Aritmetica binaria e circuiti aritmetici Aritmetica binaria e circuiti aritmetici Architetture dei Calcolatori (lettere A-I) Addizioni binarie Le addizioni fra numerali si effettuano cifra a cifra (come in decimale) portando il riporto alla cifra

Dettagli

Circuiti combinatori

Circuiti combinatori Laboratorio di Architetture degli Elaboratori I Corso di Laurea in Informatica, A.A. 2017-2018 Università degli Studi di Milano Circuiti combinatori Nicola Basilico Dipartimento di Informatica Via Comelico

Dettagli

Firmware Division & Floating pointer adder

Firmware Division & Floating pointer adder Firmware Division & Floating pointer adder Prof. Alberto Borghese Dipartimento di Scienze dell Informazione [email protected] Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/47

Dettagli

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano Firmware Division Prof. Alberto Borghese Dipartimento di Informatica [email protected] Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/36 Sommario Divisione intera Circuiti

Dettagli

Reti Logiche Combinatorie

Reti Logiche Combinatorie Reti Logiche Combinatorie Modulo 4 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Microelettronica e Bioingegneria (EOLAB) Logica combinatoria Un blocco di logica

Dettagli

Floating pointer adder & Firmware Division. Sommario

Floating pointer adder & Firmware Division. Sommario Floating pointer adder & Firmware Division Prof. Alberto Borghese Dipartimento di Scienze dell Informazione [email protected] Università degli Studi di Milano Riferimenti sul Patterson: 3.4, 3.5 1/43

Dettagli

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano

Firmware Division. Prof. Alberto Borghese Dipartimento di Informatica Università degli Studi di Milano Firmware Division Prof. Alberto Borghese Dipartimento di Informatica [email protected] Università degli Studi di Milano Riferimenti sul Patterson 5a ed.: 3.4, 3.5 1/36 Sommario Divisione intera Circuiti

Dettagli

Dalla tabella alla funzione canonica

Dalla tabella alla funzione canonica Dalla tabella alla funzione canonica La funzione canonica è la funzione logica associata alla tabella di verità del circuito che si vuole progettare. Essa è costituita da una somma di MinTerm con variabili

Dettagli

Lezione 7 Sommatori e Moltiplicatori

Lezione 7 Sommatori e Moltiplicatori Architettura degli Elaboratori e delle Reti Lezione 7 Sommatori e Moltiplicatori Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi di Milano L 7 1/36 Sommario!

Dettagli

Circuiti Combinatori

Circuiti Combinatori Circuiti Combinatori circuiti combinatori sono circuiti nei quali le uscite dipendono solo dalla combinazione delle variabili logiche presenti nello stesso istante all ingresso Essi realizzano: Operazioni

Dettagli

Aritmetica dei calcolatori. La rappresentazione dei numeri

Aritmetica dei calcolatori. La rappresentazione dei numeri Aritmetica dei calcolatori Rappresentazione dei numeri naturali e relativi Addizione a propagazione di riporto Addizione veloce Addizione con segno Moltiplicazione con segno e algoritmo di Booth Rappresentazione

Dettagli

Esercitazioni di Reti Logiche. Lezione 4

Esercitazioni di Reti Logiche. Lezione 4 Esercitazioni di Reti Logiche Lezione 4 Progettazione dei circuiti logici combinatori Zeynep KIZILTAN [email protected] Argomenti Procedura di analisi dei circuiti combinatori. Procedura di sintesi

Dettagli

Moduli Combinatori. Moduli Combinatori. Corso di Architetture degli Elaboratori

Moduli Combinatori. Moduli Combinatori. Corso di Architetture degli Elaboratori Moduli Combinatori Moduli Combinatori Corso di Architetture degli Elaboratori Coder Circuito codificatore x x z z k n=2 k x n La linea su cui si ha valore viene codificata in uscita mediante log 2 n bit

Dettagli

Progetto di Circuiti Aritmetici

Progetto di Circuiti Aritmetici Progetto di Circuiti Aritmetici Maurizio Palesi Maurizio Palesi 1 Introduzione Caratteristiche principali di valutazione Velocità Valutata per il caso peggiore Costo Precisione Es., operazioni in virgola

Dettagli

Appunti di informatica. Lezione 3 anno accademico Mario Verdicchio

Appunti di informatica. Lezione 3 anno accademico Mario Verdicchio Appunti di informatica Lezione 3 anno accademico 2015-2016 Mario Verdicchio Numeri binari in memoria In un calcolatore, i numeri binari sono tipicamente memorizzati in sequenze di caselle (note anche come

Dettagli

PSPICE simulazione di circuiti digitali Flip Flop M/S, Moltiplicatore parallelo, Memoria SRAM, sommatore, comparatore

PSPICE simulazione di circuiti digitali Flip Flop M/S, Moltiplicatore parallelo, Memoria SRAM, sommatore, comparatore PSPICE simulazione di circuiti digitali Flip Flop M/S, Moltiplicatore parallelo, Memoria SRAM, sommatore, comparatore Laboratorio di Architettura degli Elaboratori - A.A. 24/25 Il flip flop di tipo Master/Slave

Dettagli

Reti Logiche Combinatorie

Reti Logiche Combinatorie Testo di riferimento: [Congiu] - 2.4 (pagg. 37 57) Reti Logiche Combinatorie 00.b Analisi Minimizzazione booleana Sintesi Rete logica combinatoria: definizione 2 Una rete logica combinatoria èuna rete

Dettagli

Esercizi svolti Y Z. 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari AND, OR, NOT.

Esercizi svolti Y Z. 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari AND, OR, NOT. Esercizi svolti 1. Date le seguenti funzioni logiche ricavare le corrispondenti reti logiche realizzate con porte elementari ND, OR, NOT. a) F= b) F= F= 2. Date le seguenti funzioni logiche ricavare le

Dettagli

Esercitazioni di Reti Logiche

Esercitazioni di Reti Logiche Esercitazioni di Reti Logiche Sintesi di Reti Combinatorie & Complementi sulle Reti Combinatorie Zeynep KIZILTAN Dipartimento di Scienze dell Informazione Universita degli Studi di Bologna Anno Academico

Dettagli

Es. 8 Moltiplicazione e divisione tra numeri interi (Firmware)

Es. 8 Moltiplicazione e divisione tra numeri interi (Firmware) Es. 8 Moltiplicazione e divisione tra numeri interi (Firmware) Circuito della moltiplicazione Moltiplicando (A), 32 bit 32 32 ALU 32 Operazione: P = A x B 32 add P Prodotto (P), 63 32 bit Moltiplicatore

Dettagli

Aritmetica dei Calcolatori 2

Aritmetica dei Calcolatori 2 Laboratorio di Architettura 1 aprile 2011 1 Operazioni bit a bit 2 Rappresentazione binaria con segno 3 Esercitazione Operazioni logiche bit a bit AND OR XOR NOT IN OUT A B A AND B 0 0 0 0 1 0 1 0 0 1

Dettagli

una rete combinatoria è un circuito logico avente n ingressi (x 1

una rete combinatoria è un circuito logico avente n ingressi (x 1 Reti combinatorie una rete combinatoria è un circuito logico avente n ingressi (x,,,x n ) ed m uscite (y,y 2,,y m ), ciascuno dei quali assume valori binari (/), e tale che a ciascuna combinazione degli

Dettagli

Moltiplicazione e ALU

Moltiplicazione e ALU Moltiplicazione e ALU Docente teoria: prof. Federico Pedersini (https://homes.di.unimi.it/pedersini/ae-inf.html) Docente laboratorio: Matteo Re (https://homes.di.unimi.it/re/arch1-lab-2017-2018.html) 1

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti

I circuiti digitali: dalle funzioni logiche ai circuiti Architettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi

Dettagli

Il livello logico digitale

Il livello logico digitale Il livello logico digitale porte logiche e moduli combinatori Algebra di commutazione Algebra booleana per un insieme di due valori Insieme di elementi A={,} Operazioni NOT (operatore unario) => = e =

Dettagli

Architettura degli Elaboratori

Architettura degli Elaboratori circuiti combinatori: ALU slide a cura di Salvatore Orlando, Marta Simeoni, Andrea Torsello 1 ALU ALU (Arithmetic Logic Unit) circuito combinatorio all interno del processore per l esecuzione di istruzioni

Dettagli

senza stato una ed una sola

senza stato una ed una sola Reti Combinatorie Un calcolatore è costituito da circuiti digitali (hardware) che provvedono a realizzare fisicamente il calcolo. Tali circuiti digitali possono essere classificati in due classi dette

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP)

I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) I circuiti digitali: dalle funzioni logiche ai circuiti (le SOP) Prof. Alberto Borghese Dipartimento di Informatica [email protected] Università degli Studi di Milano Riferimento al testo: Sezione C.3;

Dettagli

Addizionatori: metodo Carry-Lookahead. Costruzione di circuiti combinatori. Standard IEEE754

Addizionatori: metodo Carry-Lookahead. Costruzione di circuiti combinatori. Standard IEEE754 Addizionatori: metodo Carry-Lookahead Costruzione di circuiti combinatori Standard IEEE754 Addizionatori Il circuito combinatorio che implementa l addizionatore a n bit si basa su 1-bit adder collegati

Dettagli

Esercitazione 02. Circuiti Aritmetici. Gianluca Brilli 09/04/19 ARCHITETTURA DEI CALCOLATORI 1

Esercitazione 02. Circuiti Aritmetici. Gianluca Brilli 09/04/19 ARCHITETTURA DEI CALCOLATORI 1 Esercitazione 02 Circuiti Aritmetici Gianluca Brilli [email protected] 09/04/19 ARCHITETTURA DEI CALCOLATORI 1 Esercizio 01 Creare un nuovo sottocircuito chiamato "adder_1", e implementarvici

Dettagli

Reti Combinatorie: sintesi

Reti Combinatorie: sintesi Reti Combinatorie: sintesi Sintesi di reti combinatorie Una rete combinatoria realizza una funzione di commutazione Data una tabella di verità è possibile ricavare più espressioni equivalenti che la rappresentano.

Dettagli

Le operazioni. di somma. e sottrazione

Le operazioni. di somma. e sottrazione Le operazioni di somma e sottrazione S. Salvatori marzo 2016 (36 di 171) L'unità aritmetico-logica La ALU rappresenta l'elemento principale di una CPU quale dispositivo di elaborazione. ALU AI BUS ESTERNI

Dettagli

Codifica e aritmetica binaria

Codifica e aritmetica binaria Codifica e aritmetica binaria Corso ACSO prof. Cristina Silvano, Politecnico di Milano Codifica binaria dell informazione Il calcolatore utilizza un alfabeto binario: usiamo dispositivi elettronici digitali

Dettagli

Calcolatori Elettronici

Calcolatori Elettronici Calcolatori Elettronici LIVELLO ORGANIZZAZIONE: SCHEMI DI BASE ALU e REGISTER FILE Massimiliano Giacomin 1 DOVE CI TROVIAMO LIVELLO SIST. OP. Application Binary Interface (ABI) ISA Instruction Set Architecture

Dettagli