Esercizi su alberi binari

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi su alberi binari"

Transcript

1 Esercizi su alberi binari Esercizi svolti: Determinazione nodi contenti verifica completezza verifica quasi completezza lunghezza del cammino interno determinazione ultima foglia in un quasi completo verifica de bilanciamento in altezza. Esercizio proposto: individuazione di un cammino radice foglia la cui somma delle chiavi è uguale a un valore dato in input Prof. E. Fachini - Intr. Alg. 1

2 Numero di nodi contenti Si definisca un algoritmo ricorsivo che dà in output il numero di nodi contenti nel'albero di input, se non è vuota e -1 altrimenti. Un nodo e' contento se nell'albero in esso radicato ci sono piu' nodi figli sinistri che destri. Prof. E. Fachini - Intr. Alg. 2

3 nodi contenti non è contento è contento ed è l unico contento, bisogna dare 1 in output nessuno è contento, bisogna dare 0 in output se si hanno c1 nodi contenti nel sotto albero sinistro e c2 in quello destro e se il numero dei nodi nel sotto albero sinistro è minore di quello nel sotto albero destro allora bisogna dare in output c1+c2+1, altrimenti c1+c2 Occorre sapere per ogni nodo, sia il numero dei nodi nei sotto alberi e il numero dei nodi contenti nei due sottoalberi. Si può usare una coppia di valori in output. Prof. E. Fachini - Intr. Alg. 3

4 Numero di nodi contenti, pseudocodicce Si definisca un algoritmo ricorsivo che dà in output il numero di nodi contenti nel'albero di input, se non è vuoto e -1 altrimenti. Un nodo e' contento se nell'albero in esso radicato ci sono piu' nodi figli sinistri che destri. contenti(t) input: il puntatore alla radice di un albero binario output: il numero dei nodi contenti in T (n,c) = contaux(t); return c} Tempo di esecuzione: T(n) = T(k) +T(n-k-1) + Θ(1), nel caso peggiore, dove n è il numero dei nodi di T, quindi O(n) contaux(t) input: il puntatore alla radice di un albero binario e una variabile intera n output: la coppia con il numero dei nodi e il numero dei nodi contenti in T if T è nil return (0,0) if T è una foglia return (1,0) if (T.left nil) then (n1,c1) = contaux(t.left) if (T.right nil) then (n2,c2) = contaux(t.right) if (n1 - n2 > 0) then return (n1+n2+1,c1+c2+1) else return (n1+n2+1,c1+c2) Prof. E. Fachini - Intr. Alg. 4

5 Verifica completo Si costruisca un algoritmo ricorsivo che verifica se un albero binario t, rappresentato con strutture a puntatori, è completo. l albero è vuoto ed è completo è completo non è completo è completo in generale? Prof. E. Fachini - Intr. Alg. 5

6 Verifica completo Si costruisca un algoritmo ricorsivo che verifica se un albero binario t, rappresentato con strutture a puntatori, è completo. l albero è vuoto ed è completo è completo non è completo è completo in generale? Se ogni nodo ha lo stesso numero di nodi nel suo sotto albero sinistro e nel destro? Se ogni nodo ha l altezza del suo sotto albero sinistro uguale a quella del destro? Prof. E. Fachini - Intr. Alg. 6

7 Verifica completo u b d e f a i j m p q r s c g l albero è completo sse tutti e due i suoi sotto alberi hanno la stessa altezza o lo stesso numero di nodi h1 h2 Decidiamo di calcolare l altezza: se h1=h2 restituiamo h1+1 altrimenti? prendiamo -2 che non è un altezza. Prof. E. Fachini - Intr. Alg. 7

8 Verifica completo, pseudocodice VerCompl(T) input: un albero binario T, rappresentato con strutture a puntatori postc: restituisce l altezza dell albero se l albero è completo, -2 altrimenti. if (T==NIL) return -1 h1 = VerCompl(T.left) h2 = VerCompl(T.right) if (h1 = -2) or ( h2 = -2) then return -2 //almeno uno non è completo else if (h1 = h2) then return h1+1 else return -2 Tempo di esecuzione T(n) = T(k) + T(n-k -1) + Θ(1) in tutti i casi. Quindi Θ(n) Prof. E. Fachini - Intr. Alg. 8

9 Verifica quasi completo Si costruisca un algoritmo ricorsivo che verifica se un albero binario t, rappresentato con strutture a puntatori, è quasi completo. h= -1 h= 0, i due sottoalberi hanno altezza uguale -1 h= 1, il sinistro ha altezza h1=0 e il destro h2= -1, O.K. h= 1, il sinistro ha altezza h1=0 e il destro h2 = 0, O.K. Prof. E. Fachini - Intr. Alg. 9

10 Esercizio alberi binari qualunque Dato un albero binario la lunghezza del cammino interno è la somma dei livelli dei suoi nodi interni. Si scriva e si analizzi un algoritmo per il calcolo della lunghezza del cammino interno. Esempio: Per l albero in figura il cammino interno è 0*1 + 2*1 + 1*2 + 1*3 = E. Fachini

11 Lunghezza cammino interno B A C T1 T2 Bisogna chiedersi di quale valore si deve disporre al rientro dalle chiamate sui due figli A e C per poter concludere il calcolo su B. Se immaginiamo di disporre al rientro su A e C delle lunghezze dei cammini interni dei due sotto alberi, T1 e T2, (con i livelli riferiti a tutto l albero), cosa bisogna avere d altro per calcolare la lunghezza del cammino interno per B? Basta avere il livello di B e sommarlo ai risultati ottenuti dalle chiamate sui figli. Come ottengo il livello? Basta calcolarlo in un parametro, inizializzato a 0 e incrementato ad ogni chiamata, al rientro riprenderà il valore calcolato scendendo su quel nodo e sarà quindi il valore giusto da sommare. Prof. E. Fachini - Intr. Alg. 11

12 Soluzione esercizio cammino interno algoritmo cammint(t,liv) input: T è il puntatore alla radice di un albero binario e liv è un intero output: la lunghezza del cammino interno di T liv inizialmente vale 0 e contiene il livello di T. if T = NULL then return 0 if T.left = NULL and T.right = NULL then return 0 return cammint(t.left,liv+1) + cammint(t.right,liv+1) + liv E. Fachini 12

13 Ultima Foglia Dato un albero binario T, quasi completo (cioè completo fino al penultimo livello, con le foglie al più su due livelli e con le foglie sull ultimo livello tutte a sinistra) implementato con strutture a puntatori, si implementi un algoritmo che ricevuto in input T restituisce in output il puntatore all ultima foglia. L algoritmo deve avere una complessita O((lg n) 2 ), se n è il numero degli elementi in T. Si illustri l idea algoritmica prima di passare alla stesura in pseudocodice, in cui prima di tutto si deve indicare l output atteso delle singole funzioni utilizzate, oltre ad eventuali vincoli sull input. Esempio: nel primo albero la risposta è il link al nodo 1, nel secondo al nodo 2 più a destra

14 Casi base: 16 Analisi problema Come posso individuare il sotto albero che contiene l ultima foglia? Osserviamo che se la lunghezza del cammino più a sinistra nel sotto albero sinistro e destro sono uguali allora l ultima foglia è nel sotto albero destro, altrimenti nel sinistro. Sia CPS la funzione che restituisce il numero di nodi attraversati lungo un cammino che parte dalla radice e scende lungo legami padre-figlio sinistro fino a che il nodo è privo di figlio sinistro.

15 Verso la soluzione se CPS(T.left) = CPS(T.right) dirigo la ricerca nel sottoalbero destro CPS(T.left) = CPS(T.right) CPS(T.left) = CPS(T.right) se CPS(T.left) = CPS(T.right) + 1 dirigo la ricerca nel sottoalbero sinistro CPS(T.left) = CPS(T.right) + 1 CPS(T.left) = CPS(T.right) + 1 Tempo di esecuzione di CSP Θ(h) = Θ(lg n)

16 UltimaFoglia(T) Input: un albero binario T precond: T è quasi completo output: il puntatore all ultima foglia Pseudocodice if (T == NIL o è una foglia) then return T m = CPS(T.left) m = CPS(T.right) if (m == m ) then return UltimaFoglia(T.right) if (m == m + 1) then return UltimaFoglia(T.left) m = m CPS(T) Input: un albero binario T prec. T è non vuoto output: il numero di nodi attraversati lungo un cammino che parte dalla radice e scende lungo legami padre-figlio sinistro fino a che il nodo è privo di figlio sinistro. %Se T un solo nodo dà 1 m = m +1 Tempo di esecuzione T(h) = T(h-1) + Θ(h) in tutti i casi. Quindi Θ(h 2 ) e h = lg n.

17 ABR è un AVL? Si costruisca e si analizzi un algoritmo che verifica se un dato ABR è bilanciato in altezza. L albero è rappresentato in memoria con strutture e puntatori ai figli. La complessità prevista è O(n), dove n è il numero dei nodi dell albero 17

18 ABR è un AVL? algoritmo verificaavl(t) input: (il puntatore alla radice di ) un albero binario prec. T è un ABR output: l altezza dell albero se è bilanciato in altezza, -2 altrimenti if T = NULL return -1 h1 = verificaavl(t.left) if h1 = -2 then return -2 * non è bilanciato in altezza* h2 = verificaavl(t.right,) if h2-2 and h1 - h2 1 then return max(h1,h2) +1 else return -2 18

19 somma dei cammini radice-foglia Si definisca un algoritmo che prende in input un un albero T e un intero k e restituisce vero se c è un cammino radice foglia la cui somma delle chiavi è uguale a k. Si dimostri la correttezza e si analizzi la complessità dell algoritmo proposto.

Esercizio 1. E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1. livello 0 FB = -1. livello 1 FB = -1.

Esercizio 1. E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1. livello 0 FB = -1. livello 1 FB = -1. Esercizio 1 E vero che in un AVL il minimo si trova in una foglia o nel penultimo livello? FB = -1 livello 0 FB = -1 FB = -1 livello 1 FB = -1 livello 2 livello 3 L altezza è 3, il minimo si trova nel

Dettagli

In questa lezione Alberi binari di ricerca: la cancellazione

In questa lezione Alberi binari di ricerca: la cancellazione In questa leione Alberi binari di ricerca: la cancellaione 1 L algoritmo di Hibbard per cancellare (1962) Sia il nodo da cancellare: 1) è una foglia: si rimuove 2) ha un solo figlio x: si rende x figlio

Dettagli

Un albero completamente bilanciato o pieno (full) alberi completamente sbilanciati. Un albero binario completo

Un albero completamente bilanciato o pieno (full) alberi completamente sbilanciati. Un albero binario completo alberi completamente sbilanciati Un albero completamente bilanciato o pieno (full) Definizione: Un albero è pieno se tutte le foglie sono sullo stesso livello e ogni nodo non foglia ha due figli. Il numero

Dettagli

Problemi di ordinamento

Problemi di ordinamento Problemi di ordinamento Input: una sequenza di n numeri a 1, a 2,..., a n ; Output: una permutazione a 1, a 2,..., a n di a 1, a 2,..., a n tale che a 1 a 2... a n. Generalmente, la sequenza è rappresentata

Dettagli

Note per la Lezione 4 Ugo Vaccaro

Note per la Lezione 4 Ugo Vaccaro Progettazione di Algoritmi Anno Accademico 2016 2017 Note per la Lezione 4 Ugo Vaccaro Ripasso di nozioni su Alberi Ricordiamo che gli alberi rappresentano una generalizzazione delle liste, nel senso che

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla [email protected] Ultimo aggiornamento: 3 novembre 2010 1 Trova la somma/1 Scrivere un algoritmo che dati in input un array A[1... n] di n interi

Dettagli

In questa lezione. Heapsort. ordinamento con complessità, nel caso peggiore, O(nlogn) [CLRS01] cap. 6 da pag. 106 a pag. 114

In questa lezione. Heapsort. ordinamento con complessità, nel caso peggiore, O(nlogn) [CLRS01] cap. 6 da pag. 106 a pag. 114 In questa lezione Heapsort ordinamento con complessità, nel caso peggiore, O(nlogn) [CLRS01] cap. 6 da pag. 106 a pag. 11 1 Paternità L heapsort è stato pubblicato da J. W. J. Williams nel 106. Pochi mesi

Dettagli

Per semplicità eliminiamo le ripetizioni nell'albero.

Per semplicità eliminiamo le ripetizioni nell'albero. Albero binario di ricerca 20 40 100 95 Un albero binario di ricerca é un albero binario in cui ogni nodo ha un etichetta minore o uguale a quelle dei nodi nel sottoalbero radicato nel figlio destro e maggiore

Dettagli

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio

Algoritmi Greedy. Tecniche Algoritmiche: tecnica greedy (o golosa) Un esempio Algoritmi Greedy Tecniche Algoritmiche: tecnica greedy (o golosa) Idea: per trovare una soluzione globalmente ottima, scegli ripetutamente soluzioni ottime localmente Un esempio Input: lista di interi

Dettagli

Alberi Binari di Ricerca

Alberi Binari di Ricerca Alberi Binari di Ricerca Algoritmi su gli alberi binari: visite Dato un puntatore alla radice di un albero vogliamo scandire in modo sistematico tutti i nodi di tale albero In una lista abbiamo una unica

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi su Alberi Binari di Ricerca e (2,4)-Tree

Dati e Algoritmi I (Pietracaprina) Esercizi su Alberi Binari di Ricerca e (2,4)-Tree Dati e Algoritmi I (Pietracaprina) Esercizi su Alberi Binari di Ricerca e (2,4)-Tree Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1 Si definisca Interval Tree un albero binario di ricerca le

Dettagli

Verificare se un albero binario è bilanciato

Verificare se un albero binario è bilanciato Verificare se un albero binario è bilanciato Definizione: Un albero è bilanciato nel Numero dei Nodi, brevemente n- bilanciato, quando, per ogni sottoalbero t radicato in un suo nodo, il numero dei nodi

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi

Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1 Dimostrare che un albero non vuoto con n nodi interni, dove ogni nodo interno ha almeno

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Ilaria Castelli [email protected] Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/20010 I. Castelli Alberi binari di ricerca, A.A. 2009/20010

Dettagli

Algoritmi e Strutture Dati. HeapSort

Algoritmi e Strutture Dati. HeapSort Algoritmi e Strutture Dati HeapSort Selection Sort: intuizioni L algoritmo Selection-Sort scandisce tutti gli elementi dell array a partire dall ultimo elemento fino all inizio e ad ogni iterazione: Viene

Dettagli

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei Alberi Alberi: definizioni Alberi Binari Esercizi su alberi binari: metodi ricorsivi Struttura dati per alberi generici 1 Alberi Gli alberi sono strutture dati naturalmente ricorsive Un albero è un particolare

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 9 Agosto, 204 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

Alberi ed Alberi Binari

Alberi ed Alberi Binari Alberi ed Alberi Binari Il tipo di dato Albero Un albero è una struttura di data organizzata gerarchicamente. È costituito da un insieme di nodi collegati tra di loro: ogni nodo contiene dell informazione,

Dettagli

Albero binario. Alberi binari (introduzione) Terminologia. Alberi di ricerca binaria (BST)

Albero binario. Alberi binari (introduzione) Terminologia. Alberi di ricerca binaria (BST) Albero binario 2 Alberi binari (introduzione) Struttura di dati bidimensionale formata da nodi costituiti ciascuno dai dati da memorizzare e da due link Ver. 2.4 20 - Claudio Fornaro - Corso di programmazione

Dettagli

GLI ALBERI BINARI DI RICERCA. Cosimo Laneve

GLI ALBERI BINARI DI RICERCA. Cosimo Laneve GLI ALBERI BINARI DI RICERCA Cosimo Laneve argomenti 1. alberi binari di ricerca 2. la ricerca di elementi e la complessità computazionale 3. operazione di cancellazione di elementi 4. esempi/esercizi

Dettagli

Alberi. Gli alberi sono una generalizzazione delle liste che consente di modellare delle strutture gerarchiche come questa: Largo. Fosco.

Alberi. Gli alberi sono una generalizzazione delle liste che consente di modellare delle strutture gerarchiche come questa: Largo. Fosco. Alberi Alberi Gli alberi sono una generalizzazione delle liste che consente di modellare delle strutture gerarchiche come questa: Largo Fosco Dora Drogo Frodo Dudo Daisy Alberi Gli alberi sono una generalizzazione

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 5 - Alberi!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy

Dettagli

Lezione 12 Tabelle Hash

Lezione 12 Tabelle Hash Lezione 12 Tabelle Hash Rossano Venturini [email protected] Pagina web del corso http://didawiki.cli.di.unipi.it/doku.php/informatica/all-b/start Esercizio 2 ABR: Visita Scrivere un programma che legga

Dettagli

Heap e code di priorità

Heap e code di priorità Heap e code di priorità Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica AA 2009/2010

Dettagli

LE STRUTTURE DATI DINAMICHE: GLI ALBERI. Cosimo Laneve

LE STRUTTURE DATI DINAMICHE: GLI ALBERI. Cosimo Laneve LE STRUTTURE DATI DINAMICHE: GLI ALBERI Cosimo Laneve 1 argomenti 1. definizione di alberi e nozioni relative 2. implementazione degli alberi, creazione, visita 3. algoritmo di visita iterativa e sua implementazione

Dettagli

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione

Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla [email protected] Ultimo aggiornamento: 29 novembre 2010 1 Rotazioni semplici in ABR Si consideri l operazione di rotazione semplice applicata

Dettagli

ADT Coda con priorità

ADT Coda con priorità Code con priorità ADT Coda con priorità Una coda con priorità è una struttura dati dinamica che permette di gestire una collezione di dati con chiave numerica. Una coda con priorità offre le operazioni

Dettagli

Alberi Binari di Ricerca

Alberi Binari di Ricerca Alberi Binari di Ricerca Prof. G. M. Farinella [email protected] www.dmi.unict.it/farinella Riferimenti Bibliografici Cormen T.H., Leiserson C.E., Rivest R.L Introduction to Algorithms, Third Edition,

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 5 - Alberi Alberto Montresor Università di Trento This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this

Dettagli

Esercitazione 3. Heapsort

Esercitazione 3. Heapsort Esercitazione Heapsort Heapsort Algoritmo di ordinamento che utilizza una struttura dati detta heap per la gestione delle informazioni Tempo di esecuzione O(n lg n) Heap (binario) = struttura dati composta

Dettagli

Algoritmi (9 CFU) (A.A ) Heap e Algoritmo HeapSort. Prof. V. Cutello Algoritmi 1

Algoritmi (9 CFU) (A.A ) Heap e Algoritmo HeapSort. Prof. V. Cutello Algoritmi 1 Algoritmi (9 CFU) (A.A. 2009-10) Heap e Algoritmo HeapSort. Prof. V. Cutello Algoritmi 1 Overview Definiamo la struttura dati heap Operazioni di costruzione e gestione di un heap Algoritmo Heapsort Code

Dettagli

Laboratorio di Python

Laboratorio di Python , Esercizi su alberi Università di Bologna 16 maggio 2013 Sommario 1 2 Consegna non avvenuta Meno di 10 studenti hanno inviato l esercizio svolto. Definizione ricorsiva alberi binari Un albero binario

Dettagli

Alberi binari e alberi binari di ricerca

Alberi binari e alberi binari di ricerca Alberi binari e alberi binari di ricerca Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Il concetto di dato Il concetto di tipo di dato Insertion Sort for j 2 to lenght[a]

Dettagli

Esercizi su BST. IASD a.a A. De Bonis

Esercizi su BST. IASD a.a A. De Bonis Esercizi su BST Esercizio 1 Scrivere un algoritmo che prendein input un albero binarioe restituisce true se e solo se l alberoe` un albero binariodi ricerca. L algoritmo deve utilizzaresolo una quantita`

Dettagli

Esercitazione 6. Alberi binari di ricerca

Esercitazione 6. Alberi binari di ricerca Esercitazione 6 Alberi binari di ricerca Struttura base Rappresentabile attraverso una struttura dati concatenata in cui ogni nodo è un oggetto di tipo struttura Ogni nodo contiene: campo chiave (key)

Dettagli

Alberi Binari di Ricerca

Alberi Binari di Ricerca Alberi Binari di Ricerca Damiano Macedonio Università Ca' Foscari di Venezia [email protected] Original work Copyright Alberto Montresor, University of Trento (http://www.dit.unitn.it/~montreso/asd/index.shtml)

Dettagli

Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output

Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output Un algoritmo realizza una relazione funzionale tra i valori di input e quelli di output F = { (s, s ) } per ogni s esiste una e una sola coppia (s, s ). Esempio: un algoritmo che calcola il quadrato di

Dettagli

Laboratorio di Python

Laboratorio di Python Laboratorio di Python Alberi binari Lab15 12 Maggio 2017 Outline Correzione esercizi per oggi Alberi binari Teoria Esercizi Esercizi per casa Saluti Esercizio 1 per casa Scrivere una funzione palindroma(s)

Dettagli

Algoritmi e Strutture Dati. Alberi

Algoritmi e Strutture Dati. Alberi Algoritmi e Strutture Dati Alberi Alberto Montresor Università di Trento 2017/10/19 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Sommario 1 Introduzione

Dettagli

poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando termine a termine: Quindi possiamo concludere che f(n)+g(n) = Θ(max{f(n),g(n)})

poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando termine a termine: Quindi possiamo concludere che f(n)+g(n) = Θ(max{f(n),g(n)}) Sol Esercizio 1 Es. Notazione asintotica: 1. Si dimostri che f(n)+g(n) = Θ(max{f(n),g(n)}) sotto l ip. f(n),g(n) >0, a partire da un certo n 0. poiché f(n) max{f(n),g(n)}, e g(n) max{f(n),g(n)}, sommando

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Alberi e alberi binari I Un albero è un caso particolare di grafo

Alberi e alberi binari I Un albero è un caso particolare di grafo Alberi e alberi binari Un albero è un caso particolare di grafo È costituito da un insieme di nodi collegati tra di loro mediante archi Gli archi sono orientati (ogni arco esce da un nodo origine ed entra

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Heap Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Heap Heap binari: definizione Un heap binario è una struttura dati composta

Dettagli

In questa lezione Strutture dati elementari: Pila Coda

In questa lezione Strutture dati elementari: Pila Coda In questa lezione Strutture dati elementari: Pila Coda 1 strutture dati (astratte) Una struttura dati astratti consiste di uno o più insiemi con delle operazioni che li modificano (insiemi dinamici). Le

Dettagli

Laboratorio di Algoritmi e Strutture Dati. Aniello Murano. people.na.infn.it/~murano/ Murano Aniello - Lab. di ASD Terza Lezione

Laboratorio di Algoritmi e Strutture Dati. Aniello Murano. people.na.infn.it/~murano/ Murano Aniello - Lab. di ASD Terza Lezione Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ Heap e Heapsort Algoritmi di ordinamento Insertion Sort Quicksort Heapsort Insertion Sort L

Dettagli

Alberi binari di ricerca

Alberi binari di ricerca Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario

Dettagli

Espressioni aritmetiche

Espressioni aritmetiche Espressioni aritmetiche Consideriamo espressioni costruite a partire da variabili e costanti intere mediante applicazione delle operazioni di somma, sottrazione, prodotto e divisione (intera). Ad esempio:

Dettagli

Alberi. Strutture dati: Alberi. Alberi: Alcuni concetti. Alberi: definizione ricorsiva. Alberi: Una prima realizzazione. Alberi: prima Realizzazione

Alberi. Strutture dati: Alberi. Alberi: Alcuni concetti. Alberi: definizione ricorsiva. Alberi: Una prima realizzazione. Alberi: prima Realizzazione Alberi Strutture dati: Alberi Strutture gerarchiche di dati Esempi Il file system di un sistema operativo L organigramma di un azienda Alberi generali, alberi n-ari, alberi binari, Ogni nodo ha un unico

Dettagli

Albero di Riscorsione

Albero di Riscorsione Albero di Riscorsione Albero di ricorsione Un albero di ricorsione è un modo di visualizzare cosa accade in un algoritmo divide et impera L etichetta della radice rappresenta il costo non ricorsivo della

Dettagli

PROVETTE D ESAME. Algoritmi e Strutture Dati

PROVETTE D ESAME. Algoritmi e Strutture Dati PROVETTE D ESAME Algoritmi e Strutture Dati ESERCIZIO 1 Si ottengano limiti superiori e inferiori per la seguente ricorrenza ESERCIZIO 1 ESERCIZIO 2 Dato un albero binario T, il grado di sbilanciamento

Dettagli

Implementazione dell albero binario in linguaggio C++

Implementazione dell albero binario in linguaggio C++ Implementazione dell albero binario in linguaggio C++ Costruire il programma per gestire le operazioni su un albero binario. Ogni nodo dell albero contiene un codice e una descrizione; il programma deve

Dettagli

Esercitazioni di Algoritmi e Strutture Dati

Esercitazioni di Algoritmi e Strutture Dati Esercitazioni di Algoritmi e Strutture Dati III esercitazione, 17/03/2016 Tong Liu 1 ESERCIZIO PRECEDENTE Es 2.5, Il rango di un elemento di una lista di interi é la somma degli elementi successivi piú

Dettagli

Il tipo astratto coda con priorità: specifiche sintattiche e semantiche. Realizzazioni.

Il tipo astratto coda con priorità: specifiche sintattiche e semantiche. Realizzazioni. Il tipo astratto coda con priorità: specifiche sintattiche e semantiche. Realizzazioni. Algoritmi e Strutture Dati + Lab A.A. 14/15 Informatica Università degli Studi di Bari Aldo Moro Nicola Di Mauro

Dettagli

alberi binari e ricorsione

alberi binari e ricorsione alberi binari e ricorsione un albero binario: ogni nodo ha al più 2 figli ogni figlio è destro o sinistro figlio sinistro nodo interno radice figlio destro foglia cammini = sequenze di nodi = sequenze

Dettagli

Problema del cammino minimo

Problema del cammino minimo Algoritmi e Strutture di Dati II Problema del cammino minimo Un viaggiatore vuole trovare la via più corta per andare da una città ad un altra. Possiamo rappresentare ogni città con un nodo e ogni collegamento

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Alberi Binari di Ricerca (BST) Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Alberi Binari di Ricerca (Binary Search Trees BST)

Dettagli

B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in:

B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: B-Tree Prof. Rudolf Bayer Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: Filesystem: btrfs, NTFS, ReiserFS, NSS, XFS, JFS

Dettagli

Capitolo 3: Gli alberi. Alberi n-ari

Capitolo 3: Gli alberi. Alberi n-ari Alberi n-ari Un albero ordinato è formato da un insieme finito di elementi, detti nodi. Se questo insieme non è vuoto, allora un particolare nodo avrà il ruolo di radice dell albero e gli altri nodi, se

Dettagli

Alberi rosso-neri. Le operazioni sugli alberi binari di ricerca hanno complessità proporzionale all altezza h dell albero.

Alberi rosso-neri. Le operazioni sugli alberi binari di ricerca hanno complessità proporzionale all altezza h dell albero. Alberi rosso-neri Le operazioni sugli alberi binari di ricerca hanno complessità proporzionale all altezza h dell albero. Gli alberi rosso-neri sono alberi binari di ricerca in cui le operazioni Insert

Dettagli

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti

Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Esercizi Capitolo 10 - Code con priorità e insiemi disgiunti Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente,

Dettagli

Strutture di accesso ai dati: B + -tree

Strutture di accesso ai dati: B + -tree Strutture di accesso ai dati: B + -tree A L B E R T O B E L U S S I S E C O N D A P A R T E A N N O A C C A D E M I C O 2 0 0 9-2 0 0 Osservazione Quando l indice aumenta di dimensioni, non può risiedere

Dettagli

Implementazione ADT: Alberi

Implementazione ADT: Alberi Implementazione ADT: Alberi Livelli di astrazione 2001/2002 1 Esercitazione 5 (E6): alberi (tree) albero struttura dati fondamentale, soprattutto per le operazioni di ricerca tipi di albero con radice

Dettagli