Esercitazioni di Algoritmi e Strutture Dati
|
|
|
- Giuseppa Paoletti
- 9 anni fa
- Visualizzazioni
Transcript
1 Esercitazioni di Algoritmi e Strutture Dati III esercitazione, 17/03/2016 Tong Liu 1
2 ESERCIZIO PRECEDENTE Es 2.5, Il rango di un elemento di una lista di interi é la somma degli elementi successivi piú se stesso. Rango di [3,2,5] é [10,7,5] Creare una funzione che calcola il rango di una lista 2
3 ALBERI 3
4 ALBERO In un albero Profondità di un nodo: la lunghezza del percorso dalla radice al nodo (i.e., numero archi attraversati) Livello: l'insieme dei nodi alla stessa profondità Altezza dell'albero: massimo livello delle sue foglie p=0 p=1 p=2 p=3 Livello 3 Altezza albero: 3 4
5 ALBERI: OPERAZIONI TREE % Costruisce un nuovo albero, costituito da un solo nodo e contenente v Tree(ITEM v) % Legge il valore ITEM read() % Scrive v nel nodo write(item v) % Restituisce il padre; nil se questo nodo è radice TREE parent() % Restituisce il primo figlio; nil se questo nodo è foglia TREE leftmostchild() % Restituisce il prossimo fratello del nodo a cui è applicato; nil se assente TREE rightsibling() % Inserisce il sottoalbero t come primo figlio di questo nodo insertchild(tree t) precondition: t.parent() = nil % Inserisce il sottoalbero t come successivo fratello di questo nodo insertsibling(tree t) precondition: t.parent() = nil % Distrugge il sottoalbero radicato nel primo figlio di questo nodo deletechild() % Distrugge il sottoalbero radicato nel prossimo fratello di questo nodo deletesibling() 5
6 VISITA : PRE-VISITA visitaprofondità(tree t) precondition: t = nil (1) esame anticipato del nodo radice di t TREE u t.leftmostchild() while u = nil do visitaprofondità(u) u u.rightsibling() (2) esame posticipato del nodo radice di t T a b e c d f g Sequenza: a b c d e f g 6
7 VISITA : POST-VISITA visitaprofondità(tree t) precondition: t = nil (1) esame anticipato del nodo radice di t TREE u t.leftmostchild() while u = nil do visitaprofondità(u) u u.rightsibling() (2) esame posticipato del nodo radice di t T a b e c d f g Sequenza: c d b f g e a 7
8 VISITA : IN-VISITA invisita(tree t) precondition: t = nil TREE u t.leftmostchild() integer k 0 while u = nil and k<ido k k +1 invisita(u) u.rightsibling() u esame simmetrico del nodo t while u = nil do invisita(u) u u.rightsibling() T a b e c d f g Sequenza (i=1): c b d a f e g 8
9 VISITA : IN AMPIEZZA visitaampiezza(tree t) precondition: t = nil Queue() Q.enqueue(t) QUEUE Q while not Q.isEmpty() do TREE u Q.dequeue() esame per livelli del nodo u u u.leftmostchild() while u = nil do Q.enqueue(u) u u.rightsibling() T a b e c d f g Sequenza: a b e c d f g
10 ESERCIZIO VISITE [Libro 5.4] Gli ordini di visita di un albero binario di 9 nodi sono i seguenti: A, E, B, F, G, C, D, I, H(anticipato) B, G, C, F, E, H, I, D, A (posticipato) B, E, G, F, C, A, D, H, I (simmetrico). Si ricostruisca l albero binario e si illustri brevemente il ragionamento. 10
11 SOLUZIONE 11
12 ESERCIZIO ALTEZZA [Libro 5.1] L altezza di un albero ordinato è il massimo livello delle sue foglie. Si fornisca una funzione che calcoli in tempo ottimo l altezza di un albero ordinato T di n nodi. 12
13 ESERCIZIO CANCELLA [Libro 5.2] Dato un albero ordinato i cui nodi contengono valori interi, se ne vogliono cancellare tutte le foglie per le quali il percorso radice-foglia ha somma complessiva dei valori uguale a k. Fornire una procedura di complessità ottima. (Suggerimento: utilizzare l algoritmo pre-visita, modificare tale funzione in modo che la funzione ritorna un bool per dare segnale di cancellazione) 13
14 SOLUZIONI Le soluzioni si trovano nella pagina 104 del libro: Alan Bertossi, Alberto Montresor. Algoritmi e Strutture di Dati, 3a edizione. Città Studi Edizioni,
15 LINKS Visita Albero: Approfondimenti: 15
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Capitolo 5 - Alberi Alberto Montresor Università di Trento This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this
Alberi binari di ricerca
Alberi binari di ricerca Ilaria Castelli [email protected] Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/20010 I. Castelli Alberi binari di ricerca, A.A. 2009/20010
Esercizi Capitolo 6 - Alberi binari di ricerca
Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 9 Agosto, 204 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile
Esercizi Capitolo 5 - Alberi
Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle
Esercitazione 6. Alberi binari di ricerca
Esercitazione 6 Alberi binari di ricerca Struttura base Rappresentabile attraverso una struttura dati concatenata in cui ogni nodo è un oggetto di tipo struttura Ogni nodo contiene: campo chiave (key)
Alberi Binari di Ricerca
Alberi Binari di Ricerca Prof. G. M. Farinella [email protected] www.dmi.unict.it/farinella Riferimenti Bibliografici Cormen T.H., Leiserson C.E., Rivest R.L Introduction to Algorithms, Third Edition,
Alberi binari e alberi binari di ricerca
Alberi binari e alberi binari di ricerca Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica
Esercizi Capitolo 6 - Alberi binari di ricerca
Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile
Algoritmi e Strutture Dati. HeapSort
Algoritmi e Strutture Dati HeapSort Selection Sort: intuizioni L algoritmo Selection-Sort scandisce tutti gli elementi dell array a partire dall ultimo elemento fino all inizio e ad ogni iterazione: Viene
Appunti del corso di Informatica 1 (IN110 Fondamenti) 7 Grafi e alberi: introduzione
Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica (IN0 Fondamenti) Grafi e alberi: introduzione Marco Liverani ([email protected])
Esercitazione. Ricorsione. May 31, Esercizi presi dal libro di Rosen
Esercitazione Ricorsione May 31, 2016 Esercizi presi dal libro di Rosen Problema 2 a) sezione 5.3 Data la seguente funzione definita ricorsivamente come: f(n+1) = 2f(n) f(0) = 3 Determinare il valore di
Per semplicità eliminiamo le ripetizioni nell'albero.
Albero binario di ricerca 20 40 100 95 Un albero binario di ricerca é un albero binario in cui ogni nodo ha un etichetta minore o uguale a quelle dei nodi nel sottoalbero radicato nel figlio destro e maggiore
Algoritmi e Strutture di Dati I 1. Algoritmi e Strutture di Dati I Massimo Franceschet http://www.sci.unich.it/ francesc
Algoritmi e Strutture di Dati I 1 Algoritmi e Strutture di Dati I Massimo Franceschet http://www.sci.unich.it/ francesc Algoritmi e Strutture di Dati I 2 Grafo Un grafo G è una coppia (V, E) ove V è un
Esercizi proposti 10
Esercizi proposti 10 In questo gruppo di esercizi assumiamo, dove non sia specificato diversamente, di rappresentare i grafi mediante liste di archi, con il tipo di dati così dichiarato: type a graph =
Strutture di accesso ai dati: B + -tree
Strutture di accesso ai dati: B + -tree A L B E R T O B E L U S S I S E C O N D A P A R T E A N N O A C C A D E M I C O 2 0 0 9-2 0 0 Osservazione Quando l indice aumenta di dimensioni, non può risiedere
lezione 9 min-heap binario Heap e Alberi posizionali generali
lezione 9 Heap e Alberi posizionali generali min-heap binario Un min-heap è un albero binario quasi completo in cui ogni nodo i diverso dalla radice soddisfa la seguente proprietà: il valore memorizzato
Progettazione di algoritmi
Progettazione di algoritmi Discussione dell'esercizio [labirinto] Nel testo dell'esercizio abbiamo considerato come lunghezza del percorso il numero di bivi ma possiamo stimare meglio la lunghezza reale
Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi
Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore
Tracce. 1. Data una lista di elementi di tipo intero, implementare in C++ le seguenti funzioni
Algoritmi e Strutture Dati Tracce 1. Data una lista di elementi di tipo intero, implementare in C++ le seguenti funzioni int freq(list &L, int k): restituisce il numero di occorrenze dei multipli
Heap e code di priorità
Heap e code di priorità Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica AA 2009/2010
Alberi binari. Esercizi su alberi binari
Alberi binari Definizione della struttura dati: struct tree int dato; struct tree *sx, *dx; ; typedef struct tree tree; Esercizi su alberi binari 1. Scrivere una funzione che cerchi un intero k all'interno
Esercizi di Algoritmi e Strutture Dati
Esercizi di Algoritmi e Strutture Dati Moreno Marzolla [email protected] Ultimo aggiornamento: 29 novembre 2010 1 Rotazioni semplici in ABR Si consideri l operazione di rotazione semplice applicata
ADT Coda con priorità
Code con priorità ADT Coda con priorità Una coda con priorità è una struttura dati dinamica che permette di gestire una collezione di dati con chiave numerica. Una coda con priorità offre le operazioni
INDICI PER FILE. Accesso secondario. Strutture ausiliarie di accesso
INDICI PER FILE Strutture ausiliarie di accesso 2 Accesso secondario Diamo per scontato che esista già un file con una certa organizzazione primaria con dati non ordinati, ordinati o organizzati secondo
TRIE (albero digitale di ricerca)
TRIE (albero digitale di ricerca) Struttura dati impiegata per memorizzare un insieme S di n stringhe (il vocabolario V). Tabelle hash le operazioni di dizionario hanno costo O(m) al caso medio per una
Esercitazione 5 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016
Esercitazione 5 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016 Tong Liu April 7, 2016 Liste trabocco (Separate Chaining) Esercizio 1 [Libro 7.5] Un dizionario è realizzato con liste di trabocco.
Problema dell albero di cammini minimi (SPT, Shortest Path Tree) o problema dei cammini minimi :
Per almeno una delle soluzioni ottime { P i, i r } del problema generalizzato, l unione dei cammini P i forma un albero di copertura per G radicato in r e orientato, ossia un albero la cui radice è r i
Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi
Dati e Algoritmi I (Pietracaprina) Esercizi sugli Alberi Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1 Dimostrare che un albero non vuoto con n nodi interni, dove ogni nodo interno ha almeno
Alberi binari. Ilaria Castelli [email protected] A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione
Alberi binari Ilaria Castelli [email protected] Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari
UNIVERSITA DEGLI STUDI DI PERUGIA
UNIVERSITA DEGLI STUDI DI PERUGIA REGISTRO DELLE LEZIONI E DELLE ALTRE ATTIVITÀ DIDATTICHE Anno accademico 2006-2007 Dott./Prof. Pinotti Maria Cristina Settore scientifico-disciplinare INF01 Facoltà Scienze
Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione
Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Esercizi II parte Esercizio 1 Discutere la correttezza di ciascuna delle seguenti affermazioni. Dimostrare formalmente la validità
Problemi, istanze, soluzioni
lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un
Grafi: visita generica
.. Grafi: visita generica Una presentazione alternativa (con ulteriori dettagli) Algoritmi di visita Scopo: visitare tutti i vertici di un grafo (si osservi che per poter visitare un vertice occorre prima
Alberi Bilanciati di Ricerca
Alberi Bilanciati di Ricerca Damiano Macedonio Uniersità Ca' Foscari di Venezia [email protected] Copyright 2009, 2010 Moreno Marzolla, Uniersità di Bologna (http://www.moreno.marzolla.name/teaching/asd2010/)
Algoritmi e strutture dati
Algoritmi e strutture dati Roberto Cordone A. A. 2015-16 Capitolo 4 Implementazioni delle partizioni Nota: queste dispense sono un rapido riassunto delle lezioni svolte nel dicembre 2015 e gennaio 2016.
Prova di Laboratorio del [ Corso A-B di Programmazione (A.A. 2004/05) Esempio: Media Modalità di consegna:
Prova di Laboratorio del 12.1.2005 [durata 90 min.] Corso A-B di Programmazione (A.A. 2004/05) 1. Leggere da tastiera un insieme di numeri interi ed inserirli in un vettore A 2. Calcolare tramite una funzione
Algoritmi e Principi dell Informatica
Algoritmi e Principi dell Informatica Appello del 20 Febbraio 2012 Chi deve sostenere l esame integrato (API) deve svolgere tutti gli esercizi in 2h e 30 Chi deve sostenere solo il modulo di Informatica
Problema: calcolare il massimo tra K numeri
Problema: calcolare il massimo tra K numeri Scrivere un algoritmo che fornisca in input ad un programma un numero K e K interi positivi. L algoritmo deve restituire il valore massimo tra quelli introdotti
Esercizi Capitolo 7 - Hash
Esercizi Capitolo 7 - Hash Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle rispettive
ADT: Abstract Data Type. Quasi ADT. ADT per collezioni di dati (code generalizzate) 04 I tipi di dati astratti (I parte)
ADT: Abstract Data Type I tipi di dati astratti (I parte) Gianpiero Cabodi e Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Scopo Livello di astrazione sui dati tale da mascherare completamente
Laboratorio di Algoritmi e Strutture Dati. Aniello Murano. people.na.infn.it/~murano/ Murano Aniello - Lab. di ASD Terza Lezione
Laboratorio di Algoritmi e Strutture Dati Aniello Murano http://people.na.infn.it people.na.infn.it/~murano/ Heap e Heapsort Algoritmi di ordinamento Insertion Sort Quicksort Heapsort Insertion Sort L
Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione
Algoritmi e Strutture Dati & Laboratorio di Algoritmi e Programmazione Appello dell 8 Febbraio 2005 Esercizio 1 (ASD) 1. Dire quale delle seguenti affermazioni è vera giustificando la risposta. (a) lg
STRUTTURE NON LINEARI
PR1 Lezione 13: STRUTTURE NON LINEARI Michele Nappi [email protected] www.dmi.unisa.it/people/nappi Per la realizzazione della presentazione è stato utilizzato in parte materiale didattico prodotto da Oronzo
Ordinamenti per confronto: albero di decisione
Ordinamenti per confronto: albero di decisione Albero di decisione = rappresentazione grafica di tutte le possibili sequenze di confronti eseguite da un algoritmo assegnato di ordinamento per confronto
Lezione 9 Alberi binari di ricerca
Lezione 9 Alberi binari di ricerca Rossano Venturini [email protected] Pagina web del corso http://didawiki.cli.di.unipi.it/doku.php/informatica/all-b/start Esercizio 1 Lista monodirezionale Scrivere
4.1 Modelli di calcolo analisi asintotica e ricorrenze
4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più
Il TDA Tree. Alberi. Esempio. Alberi. Applicazioni. Definizione di albero
Il T Tree lberi In informatica, un albero è un modello astratto di una struttura dati gerarchica Struttura dati non lineare Si pensi al file system di un sistema operativo Le relazioni in un albero sono
B-Tree. Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in:
B-Tree Prof. Rudolf Bayer Struttura dati usata in applicazioni che necessitano di gestire insiemi di chiavi ordinate Una variante (B+-Tree) è diffusa in: Filesystem: btrfs, NTFS, ReiserFS, NSS, XFS, JFS
Algoritmo basato su cancellazione di cicli
Algoritmo basato su cancellazione di cicli Dato un flusso ammissibile iniziale, si costruisce una sequenza di flussi ammissibili di costo decrescente. Ciascun flusso è ottenuto dal precedente flusso ammissibile
Linguaggi e Grammatiche Liberi da Contesto
N.Fanizzi-V.Carofiglio Dipartimento di Informatica Università degli Studi di Bari 22 aprile 2016 1 Linguaggi Liberi da Contesto 2 Grammatiche e Linguaggi Liberi da Contesto G = (X, V, S, P) è una grammatica
GRAFI. fig.1 - GRAFI (1) Si avvisa il lettore che certe definizioni che verranno date differiscono da quelle presenti in letteratura.
GRAFI 1. Definizioni, terminologia, esempi e applicazioni (1) Un grafo orientato (o diretto o di-grafo) G è una coppia (V,E) dove V è un insieme non vuoto ed E una relazione binaria su V, E V V, ossia
alberi binari di ricerca (BST)
Le tabelle di simboli e gli alberi binari di ricerca (BT) ianpiero abodi e Paolo amurati Dip. utomatica e Informatica Politecnico di Torino Tabelle di simboli Definizione: una tabella di simboli è una
La codifica di sorgente
Tecn_prog_sist_inform Gerboni Roberta è la rappresentazione efficiente dei dati generati da una sorgente discreta al fine poi di trasmetterli su di un opportuno canale privo di rumore. La codifica di canale
Algoritmi e Strutture Dati
Algoritmi e Strutture Dati Capitolo 8 Code con priorità: Heap binomiali Riepilogo Array non ord. Array ordinato Lista non ordinata Lista ordinata Find Min Insert Delete DelMin Incr. Key Decr. Key merge
Laboratorio di Algoritmi e Strutture Dati II Semestre 2005/2006. Riassunto sui dizionari
Laboratorio di Algoritmi e Strutture Dati II Semestre 2005/2006 Alberi di Ricerca Bilanciati Marco Antoniotti Riassunto sui dizionari Dizionario: astrazione di collezioni Operazioni fondamentali
In molte applicazioni sorge il problema di sapere in quanti modi possibili si può presentare un certo fenomeno.
Definizione Oggetto del calcolo combinatorio è quello di determinare il numero dei modi mediante i quali possono essere associati, secondo prefissate regole, gli elementi di uno stesso insieme o di più
Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.
Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale
Suffix Tree & Suffix Array
Suffix Tree & Suffix Array Corso Bioinformatica Francesca Marzi String matching esatto Data una stringa T (chiamata testo) e una stringa P (chiamata pattern), trovare tutte le occorrenze di P in T. Di
La teoria dei grafi permette di esprimere in modo sistematico le LKT e LKC con i metodi della
Grafi La teoria dei grafi permette di esprimere in modo sistematico le LKT e LKC con i metodi della topologia combinatoria. Definizione intuitiva di grafo: Un Grafo è un insieme di nodi (rappresentabili
TEORIE E TECNICHE PER LA COMUNICAZIONE DIGITALE
TEORIE E TECNICHE PER LA COMUNICAZIONE DIGITALE Riccardo Dondi Dipartimento di Scienze dei linguaggi, della comunicazione e degli studi culturali Università degli Studi di Bergamo Informazione sul corso
Indici ad albero. Albero Binario di Ricerca
Indici ad albero Ogni nodo contiene una sequenza di valori ed un insieme di puntatori ai nodi successivi. I valori sono le chiavi di ricerca dell indice N.B. In strutture fisiche ogni nodo corrisponde
Informatica Generale Homework di Recupero 2016
Informatica Generale Homework di Recupero 016 docente: Ivano Salvo Sapienza Università di Roma Gruppo 1 Esercizio 1.1 Scrivere un programma C che presi in input due interi positivi a ed b (a, b > 0) calcola
16.3.1 Alberi binari di ricerca
442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di
Algoritmi e loro proprietà. Che cos è un algoritmo? Un esempio di algoritmo
1 Cos è l informatica? L informatica è la scienza della rappresentazione e dell elaborazione dell informazione Algoritmi e loro proprietà Proprietà formali degli Algoritmi Efficienza rispetto al tempo
Sistema Operativo (Software di base)
Il Software Il software del PC Il computer ha grandi potenzialità ma non può funzionare senza il software. Il software essenziale per fare funzionare il PC può essere diviso nelle seguenti componenti:
I B+ Alberi. Sommario
I B+ Alberi R. Basili (Basi di Dati, a.a. 2002-3) Sommario Indici organizzati secondo B + -alberi Motivazioni ed Esempio Definizione Ricerca in un B + -albero Esempio Vantaggi Inserimento/Cancellazione
Informatica ALGORITMI E LINGUAGGI DI PROGRAMMAZIONE. Francesco Tura. F. Tura
Informatica ALGORITMI E LINGUAGGI DI PROGRAMMAZIONE Francesco Tura [email protected] 1 Lo strumento dell informatico: ELABORATORE ELETTRONICO [= calcolatore = computer] Macchina multifunzionale Macchina
Informatica 3. LEZIONE 23: Indicizzazione. Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees
Informatica 3 LEZIONE 23: Indicizzazione Modulo 1: Indicizzazione lineare, ISAM e ad albero Modulo 2: 2-3 trees, B-trees e B + -trees Informatica 3 Lezione 23 - Modulo 1 Indicizzazione lineare, ISAM e
Sommario. Rappresentazione dei grafi. Ordinamento topologico. Visita in ampiezza Visita in profondità
Visite Grafi Sommario Rappresentazione dei grafi Visita in ampiezza Visita in profondità Ordinamento topologico Visita in ampiezza La visita in ampiezza breadth-first-search (BFS) di un grafo dato un vertice
alberi binari e ricorsione
alberi binari e ricorsione un albero binario: ogni nodo ha al più 2 figli ogni figlio è destro o sinistro figlio sinistro nodo interno radice figlio destro foglia cammini = sequenze di nodi = sequenze
Corso di elettrotecnica Materiale didattico: i grafi
Corso di elettrotecnica Materiale didattico: i grafi A. Laudani 12 ottobre 2005 I grafi costituiscono uno strumento matematico che permette di descrivere e schematizzare una grande varietà di problemi
4 Le liste collegate 4.0. Le liste collegate. 4 Le liste collegate Rappresentazione di liste 4.1 Rappresentazione di liste
4 Le liste collegate 4.0 Le liste collegate c Diego Calvanese Fondamenti di Informatica Corso di Laurea in Ingegneria Elettronica A.A. 2001/2002 4.0 0 4 Le liste collegate Rappresentazione di liste 4.1
Alberi binari di ricerca
Alberi binari di ricerca Definizione Visita dell albero inorder Ricerca Ricerca minimo, massimo e successore. Inserimento ed eliminazione di un nodo Problema del bilanciamento dell albero Albero binario
Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi
Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi ([email protected]) Dipartimento di Informatica Università degli Studi di Bari Grammatiche
Algoritmi e Strutture Dati
Alberi Binari di Ricerca (BST) Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Alberi Binari di Ricerca (Binary Search Trees BST)
in termini informali: un algoritmo è una sequenza ordinata di operazioni che risolve un problema specifico
Click to edit Algoritmo Master title style algoritmo: un insieme ordinato di operazioni non ambigue ed effettivamente computabili che, quando eseguito, produce un risultato e si arresta in un tempo finito
